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Abstract

The immune system must discriminate between agents of disease and an organism’s healthy cells. 

While the identification of an antigen as self/non-self is critically important, the dynamic features 

of antigen presentation may also determine the immune system’s response. Here, we use a simple 

mathematical model of immune activation to explore the idea of antigen discrimination through 

dynamics. We propose that antigen presentation is coupled to two nodes, one regulatory and one 

effecting the immune response, through an incoherent feedforward loop and repressive feedback. 

This circuit would allow the immune system to effectively estimate the increase of antigens with 

respect to time, a key determinant of immune reactivity in vivo. Our model makes the prediction 

that tumors growing at specific rates evade the immune system, despite the continuous presence of 

antigens indicating disease, a phenomenon closely related to clinically observed “two-zone 

tolerance.” Finally, we discuss a plausible biological instantiation of our circuit using 

combinations of regulatory and effector T cells.
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INTRODUCTION

In vertebrates, the innate and adaptive immune systems combine to provide a finely 

orchestrated multicomponent host defense mechanism, which protects against infective 

pathogens and also helps to identify and eliminate malignantly transformed cells (Kindt et 

al. 2013; Abbas, Lichtman, and Pillai 2016). A prerequisite for successful immune action is 

the ability to distinguish agents of disease from an organism’s own healthy cells. A central 

role in this discriminatory ability is played by antigens, which are molecules capable of 

inducing an immune response. Nonself antigens appear not only in pathogens, but also in 

malignantly transformed cells due to their overexpression of normal proteins, mutated 

proteins, or oncogenic viruses. In its normal functioning, the immune system is trained not 

to react improperly to self-antigens. This paradigm of “self/nonself pattern” recognition 

traces back to Burnet (F. Burnet 1957), and related ideas in (Talmage 1957).

The static view, however, is not entirely consistent with a number of phenomena which hint 

to a role for discrimination based on the antigen’s dynamic features, as suggested by the 

following examples: (1) The presence of commensal bacteria (microbiome) is stably 

tolerated by the immune system, despite the presence of bacterially derived, non-self 

molecules that exist in intimate proximity to the host (Pradeu 2012). (2) Slow-growing 

tumors are known to evade the immune system (Grossman and Berke 1980) despite their 

expression of non-self antigens. (3) Decreased activation of natural killer cells is observed 

under chronic receptor activation (Pradeu, Jaeger, and Vivier 2013) despite the continued 

presence of antigens. (4) The reduced capacity of a host to respond to the pro-inflammatory 

stimuli of bacterial signatures such as lipopolysaccharides after a first exposure to the same 

type of stimulus, a phenomenon called endotoxin tolerance in macrophages (also known as 

deactivation, desensitization, adaptation, or reprogramming) (West and Heagy 2002). 

Notably, autoimmune diseases also offer examples of the immune system responding to 

changes in antigen presentation. For example, Pradeu and collaborators argue (Pradeu 2012) 
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that many autoimmune diseases appear during puberty, when relatively fast changes occur in 

the physiology of the host, or due to a sudden exposure to chemical or biological agents and, 

conversely, allergy treatment by slow desensitization through antigen exposure leads to 

tolerance (Burks et al. 2012). These examples suggest that to understand the immune 

response, one might want to also consider dynamic features of antigen presentation as a 

complement to discrimination mechanisms which are only based on a static response that 

depends on the presence or absence of antigen.

During the past 30 or so years, a number of authors, most notably Zvi Grossman and 

collaborators (Grossman and Berke 1980) and Pradeu and collaborators (Pradeu 2012), have 

proposed the necessity of incorporating dynamics of antigen presentation when attempting 

to understand the body’s decision to initiate the immune response. They support this line of 

reasoning by experimental observations that (a) lymphocytes mount a sustained response 

only when faced with a sufficiently steep increase in their level of stimulation (for example, 

acute antigen presentation, proliferation rates of infected cells or tumors, stress signals) and 

(b) even when a new motif triggers an immune response, its chronic presence may result in 

adaptation: downregulation or even complete termination of the inflammatory response. One 

mathematical formulation was introduced by Grossman and Paul (Grossman and Paul 1992), 

who postulated the “tunable activation threshold” model for immune responses: effector 

cells in the innate or adaptive systems should become tolerant to continuously expressed 

motifs, or even gradually increasing ones, but should induce an effector response when a 

steep change is detected. Among recent variations upon this theme are the “discontinuity 

theory” postulated by Pradeu, Jaeger, and Vivier (Pradeu, Jaeger, and Vivier 2013), and the 

“growth threshold conjecture” due to Arias, Herrero, Cuesta, Acosta, and Fernández-Arias 

(Arias et al. 2015) (see Document S1 for details). Here, I present an extremely simple, 

conceptual mathematical model that describes how the immune system may discriminate 

between immune challenges based on their dynamics. I go on to demonstrate that it can 

capture a clinically important behavior, “two-zone tolerance,” in which tumors growing at 

specific rates evade the immune system.

Results

My model consists of three ordinary differential equations, as I will describe in detail below. 

They are:

[sys:production.expo

(dots indicate time derivatives), see Figure 1. The constants λ, κ, δx, β, are positive, and 

they represent reaction constants as discussed below. The function h is continuous, strictly 
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increasing, and satisfies h(0) = 0; for our purposes we could simply take a linear function, 

h(p) = μp where μ is a constant and p represents u/x. Qualitatively, the plot of the function f 
is as in the left panel of Figure 1(B).

We view the system described by equations as a “toy model” that encompasses immune 

suppression as well as pattern discrimination based on antigen dynamics. The variable u 
represents an immune challenge, such as the volume or number of cells in a tumor, an 

infection, or the number of antigen-presenting cells (APC) of a certain type, and the term λu 
in the equation for u represents its exponential rate of growth. The variable x represents what 

I will call an “intermediate regulatory node,” because it driven by u and in turn regulates y. 

This node has an explicit biological correlate, such as the number of T regulatory cells in a 

defined tumor microenvironment. Within the model, this variable evolves according to a 

linear activation, proportional to the immune challenge, and decays linearly (inactivation or 

degradation). The variable y represents an agent that can eliminate the challenge u, such as 

the number of tumor-specific cytotoxic T cells (CTL) in the same environment. This 

elimination is represented by the mass-action term −κyu in the equation for u. As I will 

discuss in detail below, the variable y increases in proportion to the ratio of u to x, which 

implies that y is driven by the rate of growth of u. The function f(y) combines both 

degradation of y and a positive autocatalytic feedback between the presence of y and its 

induction, such as is observed when T cell activation is induced by cytokines; this function is 

chosen so as to endow the y component with bistable behavior, as explained next.

Initial intuition regarding the system can be obtained by thinking of p = h(u/x) as a 

parameter in the scalar differential equation ([sys:production.expo]c), writing ẏ = p + f(y) 

and temporarily ignoring that in the full model p is not constant but it depends on y through 

a feedback repression of u. Note that in this thought exercise the plot of p + f(y) is a vertical 

translation by p of the plot of f. If p is small, then, starting from the initial condition y(0) = 

0, the solution y(t) approaches asymptotically a low value of y, the left-most stable green-

labeled point in the center plot in Figure 1(B). However, once that p has a value large 

enough that this first equilibrium disappears (in what is known as a “saddle-node 

bifurcation”) then y(t) will converge, instead, to a comparatively large value, the green stable 

point in Figure 1(B), right. This higher equilibrium represents the triggering of a 

substantially increased immune response.

Further intuition can be gleaned from another simplification. Let us think of u as an input to 

equations ([sys:production.expo]b,c), once again ignoring the repression of u by y, see 

Figure 1(C). In addition, let us take h(u/x) = μu/x and let the function f include only 

degradation or deactivation but no autocatalytic feedback. Thus ([sys:production.expo]b,c) 

simplify to:

[sys:openloop]
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where β, μ, δx, δy are some positive constants and u is viewed as an external stimulus. The 

resulting system is a type of incoherent feedforward loop (IFFL), a “motif” which is 

ubiquitous in biological networks (Milo et al. 2002; Alon 2006), and is statistically enriched 

in many intracellular networks (metabolic pathways, genetic circuits, kinase-mediated 

signaling) as well as the intercelullar level. IFFL’s are characterized by the existence of two 

antagonistic (“incoherent”) alternative pathways from the input to the output; these paths can 

be direct or indirect, see Figure 1C

For our model, in there is an activating, direct path within the IFFL from the stimulus u 
(given as a step function, for example, in the left panel of Figure 1(D)) to the effector node 

y. In addition, there is an inhibitory, indirect path from stimulus u to node y:u activates 

regulatory node x which in turn represses y. This structure endows IFFL’s with powerful 

signal processing capabilities, studied in detail in Alon’s textbook (Alon 2006). As the 

indirect effect requires an accumulation of x over time, there is typically a delay in the 

downregulation of y, leading to a response that consists of a short activity burst followed by 

a return to a basal value which is the same no matter what was the magnitude of the input, as 

shown in the left plots in Figure 1(D). The return to a basal value independent of the 

excitation magnitude is a phenomenon called “perfect adaptation” (Alon 2006; Sontag 

2003), and holds also for ramps (linearly increasing) inputs u(t), see, for example, the center 

plots in Figure 1(D). However, when instead we consider an exponentially growing input, 

such as the solution u(t) = u(0)eνt of the differential equation u̇ = νu, then the response y(t) 
approaches a constant multiple of the rate ν, instead of returning to its basal value, see right 

plots in Figure 1(D). Combining these two observations, we see that the system has two 

interesting properties. First, it effectively estimates the growth constant ν, if the input is 

exponentially growing, and second, it does not respond persistently to sub-exponential 

inputs. Supplementary Materials section B includes a formal proof of this property. In this 

context, if we the autocatalytic feedback term in f into account, then a large value of u/x, 

which depends on the steepness of the input u, may trigger an irreversible transition to a 

higher state for y, which persists even after the excitation goes away. An important property 

of our system, which will allow us to simplify considerably its mathematical analysis, is that 

it incorporates a subsystem, the IFFL system just discussed, that has the “fold change 

detection” or “scale invariance” property: if the input is scaled by a positive constant p, then 

the same response y is obtained, provided that the regulatory variable x is also scaled by p. 

One uses the term “fold detection” for the initial activity burst, motivated by the response to 

an input that switches from u(t) = u− for t < 0 to u(t) = u+ for ≥ 0: assuming that x(0) is 

adapted to u−, the initial amplitude of u/x, which triggers the initial change in response in y, 

is (δx/β)u+/u−, and u+/u− is the fold change in the input. In the IFFL system [sys:openloop], 

an input that is scaled by a positive constant p leads to the same response y, provided that the 

regulatory variable x is also scaled by p, since one has

and
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In mathematical terms, this says that the equations do not change under the one-parameter 

Lie group of transformations

In other words, this system is “scale invariant” (or, in different terminology, it is a “fold 

change detector”) (Shoval et al. 2010). Supplementary Materials section D includes a more 

detailed discussion of scale invariance for this system. Irrespectively of it being a property 

that is very useful in our mathematical analysis, scale-invariance allows a system to detect 

relative, as opposed to absolute, changes in input signals, and to do so robustly even when 

intermediates in signaling pathways are varied (Shoval et al. 2010).

In summary, our model combines three central motifs in modern systems biology: (1) an 

IFFL for estimating the rate of growth of u(t), which is scale-invariant, (2) multi-stable 

dynamics for y(t), and (3) feedback control of y(t) that represses the input u(t).

In spite of its extreme simplicity, analysis of the model reveals a key biological implication: 

an immune challenge, for instance a tumor, can be eliminated in more than one range of 

growth rates. Specifically, we find three thresholds, λ1, λ2, λ3, so that:

• if the per-capita rate of growth λ of the tumor is less than λ1, then it is 

eventually eliminated by the immune system;

• when the tumor is more aggressive, λ > λ1 but λ < λ2, it cannot be eliminated 

(it is “tolerated” by the immune system);

• for an even more aggressive challenge, with λ > λ2 but λ < λ3, again the tumor 

is eliminated; and

• if λ > λ3, again there is no elimination (the tumor “escapes”).

Intuitively, in the intermediate range λ2 < λ < λ3 the immune system goes into “overdrive,” 

engaging additional resources through activation of a positive feedback mechanism, and this 

level is powerful enough to effectively repress the challenge. As we mentioned earlier, the 

impact of growth rates on immune responses has been a hot topic of discussion in the 

immunology literature, and it has been proposed that different rates provide a way to 

differentiate among threats based on their aggressivity. “Non-self” and potentially dangerous 

cells presumably reproduce faster, compared to “self” and also beneficial microorganisms. 

As we will discuss, the role of exponential rates in determining immune response has also 

been the subject of experimental research, including a recent immunotherapy patent, and the 

role of T suppressor cells in providing what we may now view as the regulatory node in an 

incoherent feedforward loop has been well-established experimentally as well.

The prediction of the existence of disjoint regions of tumor elimination, depending on rate of 

growth, remains to be tested. However, this behavior is strongly reminiscent of the well-
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known phenomenon of “two-zone” tumor tolerance, which has been observed in the 

experimental literature since the mid-1960s (Gatenby, Basten, and Creswick 1981), (Kolsch 

and Mengersen 1976), (Li et al, 2016). This phenomenon is analogous to our predictions, the 

only difference being the “zones” are now determined by the magnitude of an initial tumor 

inocula in animal subjects instead of tumor growth rates. Moreover, the model is capable of 

logarithmic sensing and scale invariance. These phenomena, and the origins of two-zone 

tolerance, will be discussed in detail below.

RESULTS

A key step in our analysis will be an exact reduction to a certain two-dimensional system, as 

such a system is far easier to analyze than the full three-variable one. Indeed, scale 

invariance under the transformations (u, x, y) ↦ (pu, px, y) suggests performing a change 

of variables in which x is replaced by p = u/x. As x = u/p, the original variables (u, x, y) can 

be recovered from (u, p, y), so the transformation is invertible. Rearranging the order of 

equations, we will from now study the system in these new coordinates:

[eq:changed_coordinates]

Writing the equations in these new coordinates has a major advantages for analysis, because 

the equations for y and p are now decoupled from u, and therefore we may study the two-

dimensional (y, p) system using techniques suitable for planar systems, such as phase planes 

and nullclines. Information regarding the asymptotic behavior of u can be inferred from that 

of the (y, p) system. Suppose that we have determined that a solution (y(t), p(t)) tends to an 

equilibrium (ȳ, p̅) with p̅ ≠ 0. This implies that λ − κy → λ − κȳ as t → ∞, and, because 

δx + λ − κȳ − βp̅ = 0 at any equilibrium with p̅ ≠ 0, asymptotically u(t) ∝ eνt with ν = λ − 

κȳ = βp̅ − δx. This allows us to decide if u(t) converges to zero or infinity (that is, whether 

the immune challenge is eliminated or grows without limit):

Thus, from now on we study ([eq:changed_coordinates]a,b). Recall the plot of f is as in 

Figure 1(B), and that h is assumed to be strictly increasing with h(0) = 0, which we will later 

specialize to h(p) = μp. We are only interested in solutions with y(t) ≥ 0 and p(t) ≥ 0.
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The equilibria of system ([eq:changed_coordinates]a,b) are obtained by simultaneously 

solving

and

When p = 0 the first of these is simply f(y) = 0 (because h(0) = 0), and when p > 0, the 

second gives δx + λ − κy − βp = 0. The y and p nullclines of this system are the subsets of 

the first quadrant where ẏ = 0 and ṗ = 0, that is,

and

respectively. Note that (y, p) can only belong to N1 if − f(y) is in the range of h, and in 

particular this means that f(y) ≤ 0, thus ruling out the values of y for which the plot of f is 

positive. Similarly, (y, p) can only belong to N2 if y ≤ (δx + λ)/κ. The equilibria of the 

system are the points at the intersection of these two sets.

We are interested in analyzing the behavior of the system for different values of the 

parameter λ which quantifies the initial growth rate of the immune challenge. The only 

place where λ plays a role is the equation for the line p = (1/β)(δx + λ − κy), picking one of 

its parallel translates. See Figure 2.

We assume, for simplicity, there are no more than two positive intersections between any 

(green) line p = (1/β)(δx + λ − κy) and the (blue) y nullcline; this means that the slope −κ/β 
is not ≈ 0. We also assume for the values of λ that we analyze that there is at most one 

intersection, like ξ̂, on the decreasing branch of the blue curve. (If there are such additional 

intersections, the theoretical analysis is somewhat more complicated, but is analogous.) The 

dashed line is the threshold that determines the behavior of u: if (y(t), p(t)) converges to an 

equilibrium that has p̅ < δx/β, then u(t) → 0 as t → ∞, but if p̅ > δx/β, then u(t) → ∞.

The Jacobian matrix for the system ([eq:changed_coordinates]a,b), evaluated at a generic 

equilibrium (ȳ, p̅), is:

and therefore
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if p̅ = 0 and

if p̅ > 0, where we used that

when p̅ > 0 (since the equilibrium condition is δx + λ − κy − βp̅ = 0 in that case). Note that 

these cases correspond, respectively, to points labeled η and ξ in Figure 2.

At points with p̅ = 0, the eigenvalues of the upper triangular matrix J are f′(ȳ) and δx + λ − 

κȳ. Referring to the plot of f in Figure 1(B), f′(ȳ) > 0 at the point η2 and f′(ȳ) < 0 at the 

points η1 and η3. This is because the blue curve in Figure 2 is h−1(−f(y)) and therefore is 

qualitatively like an upside-down version of the plot of f, so that positive (respectively 

negative) f′ corresponds to negative (respectively positive) slope at the equilibrium. Thus η2 

is unstable. At the point η1, the second eigenvalue is δx + λ − κȳ = δx + λ, which is 

positive, so η1 is also unstable (a saddle point). The stability of η3 depends on the sign of δx 

+ λ − κȳ: η3 is stable if this sign is negative, that is, if

and unstable otherwise. Suppose that all parameters are fixed except for λ. We use Figure 2 

to determine stability: if λ is such that the corresponding line

intersects the y axis at a point y0 to the left of η3, that is, if y0 < ȳ, then δx + λ − κy0 = 0 

implies δx + λ − κȳ < 0, and hence η3 is stable. If, on the other hand, λ is larger and p = 

(1/β)(δx + λ − κy) intersects the y axis at a point y0 to the right of η3, then δx + λ − κy0 = 0 

implies δx + λ − κȳ < 0 so we conclude that η3 is unstable. In the figure, only for the 

largest λ (top line) is η3 unstable.

We next analyze stability of the equilibrium points for which p̅ > 0, labeled ξ or ξ̂ in Figure 

2. Stability is equivalent to the trace of J being negative and its determinant positive (Hirsch 

and Smale 1974; Sontag 1998), that is:
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and

Since h is increasing and all constants are positive, these expressions are both positive when 

f′(ȳ) < 0. Remembering again that the blue curve is an “upside down” version of f, we 

conclude that all the intersections ξ shown in Figure 2 are stable, with the possible exception 

of the intersection labeled ξ̂, which needs further analysis. At the point ξ̂, the slope of the 

green line is −κ/β and the slope of the blue line is the derivative of h−1(−f(y)) evaluated at y 
= ȳ, where h(p̅) + f(ȳ) = 0, so this slope is −f′(ȳ)/h′(p̅). Since the slope of the green line is 

larger (less negative) than the slope of the blue line, we have that −κ/β > −f′(ȳ)/h′(p̅), or 

equivalently κh′(p̅) − βf′(ȳ) < 0, so the determinant of J is negative, which means that ξ̂ is a 

saddle point and therefore unstable.

These theoretical results strongly suggest that, for trajectories that start with small p = u/x, 

convergence will be to one of the points labeled ξ in Figure 2, or η3 in the case of the line 

that does not intersect the blue curve. In other words, if λ, the reproduction rate of the 

immune challenge, such as a tumor, is small, then we’ll have an intersection below the 

threshold (dashed line), meaning that the challenge will be eliminated. For a larger, but not 

too much larger, λ, the intersection is above the threshold, so the challenge will be 

“tolerated” (it will grow). For λ’s such that there are no intersections with the blue curve, 

solutions should converge to η3, which is again under the threshold, implying a second zone 

of elimination of the challenge. Finally, for very large λ, the immune system is not capable 

of eradicating the challenge (ξ is over the threshold), so escape again occurs. This “two-zone 

tolerance” (at both intermediate and large λ) is reminiscent of analogous experimental 

findings, see Box 1. The analysis based on stability of equilibria can be complemented by 

numerical simulations, done in Box 1 for an example, as well as a global phase-plane 

analysis, done below. A simplified case is analyzed further in Supplementary Section B.

Observe that ẏ > 0 in those regions of the phase plane where h(p) + f(y) > 0, that is to say, 

where

Geometrically, this means that the flow of the vector field defining the system will point to 

the right at points that lie over the blue curve (y nullcline); it will point left under the blue 

curve and will be exactly vertical (or an equilibrium) on the curve itself.

Similarly, for p > 0, ṗ > 0 in those regions of the phase plane where

that is to say, where
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Geometrically, this means that the flow of the vector field defining the system will point up 

at points that lie under the green lines (p nullcline); it will point down over the green lines 

and will be exactly horizontal (or an equilibrium) on the lines. At p = 0, the vector field is 

horizontal.

In summary, motions are “Northeast”, etc., as per these rules in each region delimited by the 

blue curve and the line δx + λ − κy − βp = 0:

1. NE: over blue, under green

2. SE: over blue, over green

3. NW: under blue, under green

4. SW: under blue, over green

Figure 2 shows the directions of movement in each region, for each of the sample nullclines 

shown earlier, as well as what a typical trajectory might look like, consistently with these 

directions of movement and converging to the stable points ξ or η3. (The precise approach 

depends on the functional forms of f and h and their parameters. The inset in Figure 2B 

shows several possibilities.) As λ is increased, the equilibrium shown lies under, above, 

under, and finally again above the threshold. Box 1 discusses a specific model where these 

predictions are verified, and relates our results to experimental evidence of similar 

phenomena.

Biology Box: Case Study: A concrete mathematical model featuring Treg cells and 
cytokines

In aggregate, the results of our model analysis show that (1) the role of the underlying IFFL 

as an estimator of the exponent λ of immune challenge growth and (2) the existence of four 

regimes, alternating tolerance and rejection, which correspond to different values of λ. In 

our abstract theoretical arguments, we did not specify the function f(y), except for the 

requirement that its graph be as in Figure 1B. We view the model as qualitative and 

phenomenological, merely as an illustration of behaviors that can arise from, and can be 

easily explainable by, simple motifs, and not necessarily instantiated by a specific biological 

system. Nonetheless, it is fair to ask if there is a plausible biological system that gives rise to 

an f(y) of this form, and for which our conclusions hold true. We address this issue now, 

using as a guide simplified versions of standard models in immune dynamics such as found 

in (Kuznetsov et al. 1994; Kirschner and Panetta 1998), and using simulations to verify for 

this system the theoretically predicted four-regime behavior.

We will pick h(p) = μp, a linear function, and
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The term  in this expression can be thought of as representing a cytokine-mediated 

positive feedback, as discussed in Supplementary Materials section D. Motivated by a 

similar term in (Khailaie et al. 2013), the term −εy2 can be thought of as representing cell-

contact-dependent activation-induced cell death (“fratricide”) through the Fas receptor / 

FasL (“death ligand”) mechanism for T-cell homeostasis suggested by Callard, Stark, and 

Yates (Callard, Stark, and Yates 2003). Finally, the term −δyy represents a linear constitutive 

deactivation and/or degradation. The resulting system is therefore as follows

and the reduced system written in (y, p) coordinates is

We take the units of time to be days. Cell populations (u, x, y) are in units of 106 cells, but p 
= u/x is non-dimensional. In this model, u, x, y represent, respectively, populations of tumor, 

Treg, and effector T cells. The parameters that we used, and corresponding units, are as 

follows: μ = 10 day−1, V = 0.25 day−1, δx = 0.1 day−1, δy = 0.1 day−1, β = 1 day−1, ε = 10−5 

day−1 (106 cells)−1, K = 100 (106 cells), κ = 10−5 (106 cells)−1 day−1. The particular choice 

of algebraic forms and parameters is discussed in Supplementary Materials section D; basic 

descriptions of the model’s behavior can be found in Supplementary Materials section E.

Shown in Figure 3(A–D) are simulations of the complete closed-loop system, where we now 

included a carrying capacity term for the immune challenge: u̇ = [λ(1 − Bu) − κy]u. When u 
is small, the term Bu is dominated by the other terms, but we include this term for numerical 

convenience in order to avoid blow-up of solutions in the case when u is unstable; in any 

event, such a term is biologically realistic. We picked, specifically, B = 10−3; (see 

Supplementary Materials section D). As predicted, for increasing λ there are alternating 

decay and growth behaviors for u(t). Notably, for the third value, λ = 10−1, the immune 

challenge load u(t) only starts decreasing after about 120 days. This time scale happens to 

be, purely coincidentally, the start of remission observed in some patients under Ipilimumab 

[CTLA-4 checkpoint blockade therapy (Wolchok 2010). For this model and parameters, 
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Figure 3(E) shows the asymptotic value of u, the immune challenge, as a function of the 

parameter λ, clearly illustrating the four-regime phenomenon. In Supplementary Materials 

section E, similar results are shown to hold for a model in which the effect of regulatory 

variables is through an inactivation of a helper-cell population.

The existence of disjoint regions of tumor elimination depending on rate of growth is 

reminiscent of “sneaking through.” The idea of tumors “sneaking through” from immune 

control can be traced to the mid 1960s, when Klein (Klein 1966) found the “preferential take 

of tumours after small size inocula to a similar degree with that seen with large size inocula, 

compared to the rejection of medium sized inocula.” Put simply, there is an intermediate 

region in which tumors can be eliminated. This picture is at least consistent with a larger 

initial rate of increase in exposure leading to tumor suppression, as in our model. These 

ideas were explored experimentally in (Gatenby, Basten, and Creswick 1981) and (Kolsch 

and Mengersen 1976), and are analogous to behavior that can be seen in our model, see 

Figure 4, but with the important proviso that the numbers represent tumor incidence, and 

that we work with rates of increase instead of initial tumor size (see Supplementary Section 

G for more discussion).

Our analysis is merely a phenomenological “toy model” which does not specify immune 

components. Nonetheless, one might speculate that, as far as T cell activation and 

deactivation, regulatory T cells (Tregs) may play a role as a regulating intermediate variable 

x. Tregs are a type of CD4+ cell that play “an indispensable role in immune homeostasis” 

(Josefowicz, Lu, and Rudensky 2012). They arise during maturation in the thymus from 

autoreactive cells (“natural Tregs”), or are induced at the site of an immune response in an 

antigen-dependent manner (“induced Tregs”). They are thought to play a role in limiting 

cytotoxic T-cell responses to pathogens, and Treg− mice have been shown to suffer from 

extreme inflammatory reactions. It is known from animal studies that Tregs inhibit the 

development of autoimmune diseases such as experimentally induced inflammatory bowel 

disease, experimental allergic encephalitis, and autoimmune diabetes (Owen, Punt, and 

Stranford 2009). Moreover, the involvement of T suppressor cells (now Tregs) in regulating 

the immune response to tumor has a long history, see for instance (Fujimoto, Greene, and 

Sehon 1976).

Our analysis suggests that the immune system might act as an estimator of the rate of growth 

of an immune challenge, and more specifically the rate of exponential increase. In recent 

work, Kündig and coauthors (Johansen et al. 2008) emphasized the role of antigen kinetics 

in determining immune reactivity, with exponentially increasing antigenic stimulation 

recognized by the immune system as a pattern associated with pathogens and thus leading to 

strong immune responses. They showed that the dynamics of immune stimulation (through 

dendritic cell vaccination and for T cells stimulated in vitro) was by itself a factor in 

determining the strength of T cell and anti-tumor responses, and obtained a patent for the 

idea of using exponential increasing antigen stimulation (Kundig et al. 2008). See 

Supplemental Section G for more discussion.
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DISCUSSION AND CONCLUSIONS

The study of immune systems and their interactions with tumors has long been the focus of 

theoretical and mathematical immunology (Jerne 1974; Bell, Perelson, and (editors) 1978). 

Two influential contributions were the 1980 paper by Stepanova (Stepanova 1979) in which 

a set of two ODE’s was used to represent tumor and immune system cells, and the 1994 

paper by Kuznetsov, Makalkin, Taylor, and Perelson (Kuznetsov et al. 1994) in which a 

similarly simple model was used to provide an explanation for the sneaking-through 

phenomenon, though with escape of small tumors and with no mechanism for detection of 

rates of change of the immune challenge. It is impossible here to review the literature in this 

very active area of research; some reviews and textbooks are (Bell, Perelson, and (editors) 

1978; Callard and Yates 2005; Andrew, Baker, and Bocharov 2007; Eftimie, Bramson, and 

Earn 2011; Wodarz and Komarova 2014; Pillis and Radunskaya 2014; Vodovotz et al. 2017).

In this paper, we proposed a very simple phenomenological model that recapitulates some of 

the basic features of interactions between the immune systems and tumors (or more 

generally at this level of abstraction, other immune challenges) in the context of the 

estimation of tumor growth rates. The model leads to interesting conclusions regarding 

transitions between tolerance and elimination and the role of dynamics in self/nonself 

discrimination, and makes contact with several theory and experimental papers. Obviously, 

our model represents a purely phenomenological, macroscopic, and hugely over-simplified 

view of a highly complex, intricate, and still poorly understood network of interactions 

between different components of the immune system, as well as immune interactions with 

pathogens and tumors, Paraphrasing the well-known quote, our model is “as simple as 

possible but not simpler” to illustrate the particular phenomena of interest.

Since Paul Ehrlich’s work in 1909, (Ehrlich 1909) the interplay with the immune system has 

been a controversial, though recently accepted, aspect of cancer biology. These ideas were 

formalized in Burnet’s immune surveillance hypothesis (M. Burnet 1957), as an interaction 

between cancers that continuously arise and their repression by immune system, resulting in 

eventual elimination. Initial interest in this work was soon tempered by early experiments, 

but eventually new data led to a revival of these ideas in the late 1990s (Dunn et al. 2002). 

There is little doubt nowadays that immunosurveillance acts as a tumor suppressor, although 

it is also widely understood that the immune system can facilitate tumor progression by 

“sculpting” the immunogenic phenotype of tumors as they develop. Indeed, one current 

paradigm (Dunn, Old, and Schreiber 2004) is the so-called “three Es of cancer 

immunoediting” hypothesis: elimination, equilibrium, and escape. The first of this 

corresponds with the classical immunosurveillance idea: the immune system successfully 

eradicates the developing tumor. In the equilibrium or immune sculpting phase, the host 

immune system and any tumor cells that have survived the elimination phase enter into a 

dynamic quasi-steady state equilibrium during which the tumor cell population stays at sub-

clinical levels. Ultimately, however, genetic and epigenetic heterogeneity in tumors, coupled 

by the Darwinian selection pressure exerted by the immune system, lead to the emergence of 

dominant clones with reduced immunogenicity which expand and become clinically 

detectable, and this is termed the escape phase. Our model does not directly address the 
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effect of genetic or epigenetic modifications, and expanding it to do so remains a most 

interesting direction for further work.

Clinically, the interactions between the immune system and tumors are the focus of much 

current research because of the promise of novel immunotherapies such as checkpoint 

inhibitors (Pardoll 2012). It is worth pointing out the role of dynamical responses in 

immunotherapies, compared to classical chemotherapy and pathway inhibitors, which is 

emphasized in the UpToDate physician reference guide, from which we quote from the 01 

Sep 2015 version: “patients may have a transient worsening of disease, manifested either by 

progression of known lesions or the appearance of new lesions, before disease stabilizes or 

tumor regresses.” (Interestingly, the solution in Figure 3B has this behavior.) This statement 

helps justify, in our view, the introduction of dynamical systems concepts into the field of 

immunotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. The model being considered in this paper. Blunt-end red arrows denote repression, green 

arrows denote activation or autocatalytic feedback. B. Plot of the nonlinear function f that 

endows the system with bistability (left), and two translates of this plot; open red and filled 

green circles denote unstable and stable states respectively. C. Simplified model when 

feedbacks are ignored, an incoherent feedforward loop (IFFL). D. Simulations of system, 

with input u(t) switching in the middle of the interval from u(t) = 1 to a new constant value 

u(t) = 2, a shifted ramp u(t) = t, and a shifted exponential u(t) = et respectively; also shown 

are x(t) and y(t). In every case, the horizontal axis is time, t. Parameters used: δx = β = μ = 

δy = 1; initial conditions x(0) = y(0) = 1.
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Figure 2. 
A. Nullclines for the system ([eq:changed_coordinates]a,b) on the quadrant y ≥ 0, p ≥ 0. 

Blue curve is y-nullcline. Green lines are p-nullclines, shown for four typical values of λ. 

There are two different types of equilibria: the η’s are equilibria with p = 0 and the ξ’s with 

p > 0. The four points labeled ξ are stable for the reduced dynamics, for the respective λ’s, 

as discussed in the text. The intercepts of the green lines with the p axis (vertical) are at the 

locations p = (1/β)(δx + λi), i = 1,2,3,4. Red dashed horizontal line is threshold p = δx/β 
discussed in the text. B–E. Directions of movement in each region determined by the 

nullclines, along with typical trajectories, respectively, low to high for each of the values of 

λ represented in A. Inset in B shows various possibilities for approach of trajectory to point 

labeled ξ.
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Figure 3. 
A–D. Simulations of full system as described in text, for λ = 10−4, 10−2, 10−1, and 1. (In A, 

u(t) converges to zero as t → ∞, but very slowly.) Parameters as described in text. Initial 

states are always u = 1, x = 1, y = 0. E. Values of u(∞) plotted against λ, showing four 

regimes of elimination, tolerance, elimination, and escape (zero values shown as 10−2 to fit 

in log scale).
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Figure 4. 
A: four regions of “sneaking through”, and B: no sneaking-through when eliminating 

suppressor T cells, plots drawn from data in (Gatenby, Basten, and Creswick 1981). Very 

low zone (less than 100 cells): low tumor incidence; low zone (102 – 103 cells): tolerance of 

tumor; moderate zone (103 – 105 cells): immunogenic (low tumor); high zone (> 106): again 

tolerogenic. C: Another illustration of the same general idea of four regions. Plot drawn 

from data in (Kolsch and Mengersen 1976). The x axis in these plots case measures the 

initial number of tumor cells, and not the rate of growth λ of tumor as it did as in Figure 3. 

In both cases, the y-axis measures the percentages of mice in which tumors were detected by 

some predetermined point. Supplemental Section G discusses experiments in more detail.

Sontag Page 22

Cell Syst. Author manuscript; available in PMC 2018 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical abstract
	INTRODUCTION
	Results

	RESULTS
	Biology Box: Case Study: A concrete mathematical model featuring Treg cells and cytokines

	DISCUSSION AND CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

