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In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some
of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells,
suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar
aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles
of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older
individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play
a role in kidney degeneration with age.
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Introduction

Aging affects nearly all organisms and is a major risk factor
in most human diseases. Recent work has begun to uncover
molecular mechanisms that specify lifespan and to identify
alterations in cellular physiology that occur at the end of life
(Tissenbaum and Guarente 2002). For example, oxidative
damage caused by the generation of free radicals in the
mitochondria has been found to hasten aging by causing an
accumulation of damaged cellular components (Droge 2003).
Telomere shortening may also play a role in aging by
preventing DNA replication and cell division in later years
(Hasty et al. 2003). Genetic studies have identified many genes
that play a role in specifying lifespan. For example, mutations
in yeast sir2 (chromatin regulator), worm daf-2 (insulin-like
growth factor receptor), fly methuselah (tyrosine kinase
receptor), mouse p53, and the human Werner’s syndrome
gene (DNA helicase) cause dramatic changes in lifespan
(Guarente and Kenyon 2000). Several aging mechanisms alter
longevity in multiple organisms. For example, mutations in
the gene encoding insulin-like growth factor receptor alter
lifespan in worms, flies, and mice, indicating that an
endocrine signaling pathway has a conserved role in aging
(Hekimi and Guarente 2003).

Genetic studies have shown that aging can be slowed in
mutants that are defective in a wide range of cellular
processes (such as mitochondrial function, chromatin regu-
lation, insulin signaling, transcriptional regulation, and
genome stability). This indicates that aging is a complex
process driven by diverse molecular pathways and biochem-
ical events. As such, a powerful approach to study aging is to
use systems biology, which allows a multitude of factors
affecting aging to be analyzed in parallel. For example, DNA
microarrays and gene expression chips have been used to
perform a genome-wide analysis of changes in gene expres-

sion in old age. Extensive studies in Caenorhabditis elegans and
Drosophila melanogaster have identified hundreds of age-
regulated genes (Hill et al. 2000; Zou et al. 2000; Lund et al.
2002; Pletcher et al. 2002; Murphy et al. 2003). Several studies
have described age-regulated genes in the muscle and brain
of mice (Lee et al. 1999, 2000) and the retina and muscle of
humans (Yoshida et al. 2002; Welle et al. 2003, 2004). These
age-regulated genes may serve as markers of aging, enabling
one to assess physiological age independently of chronolog-
ical age. Analysis of the functions of these age-regulated genes
has identified specific biochemical mechanisms that change
toward the end of life.
A key question still unresolved is to what extent the

mechanisms of aging are conserved between species with
vastly different lifespans. Some studies suggest that similar
mechanisms are involved in aging in many species. For
example, caloric restriction extends lifespan in yeast, worms,
flies, mice, and primates (Weindruch 2003). Additionally,
signaling through the insulin-like growth factor pathway,
chromatin regulation by sir2, and oxidative damage have each
been shown to affect lifespan in diverse model organisms
(Tissenbaum and Guarente 2002). Other studies emphasize
that changes occurring at the end of life are unlikely to be
evolutionarily conserved (Kirkwood and Austad 2000). In the
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wild, very few animals (including humans) survive to their
maximal biological lifespan. Thus, the changes in physiology
that occur in very old animals have minimal effects on the
fitness of individuals, and are unlikely to be evolutionarily
conserved. Therefore, aging is likely to be species-specific,
and studies of old age in model organisms are unlikely to be
relevant to humans.

We have begun our studies of human aging by focusing on
the kidney, an organ that shows a quantifiable decline in
function with age. One of the primary functions of the kidney
is to remove toxins from the blood, which involves filtering
plasma through specialized capillary beds (glomeruli) in the
renal cortex. The primary function of the tubules within the
medulla is to concentrate or dilute the urine so as to maintain
fluid balance. The major age-related change in kidney
function is a 25% decline in the glomerular filtration rate
starting at age 40 (Hoang et al. 2003). The ability of the
medulla to concentrate urine declines progressively with age.

In this study, we present a molecular portrait of the aging
process in the human kidney by analyzing gene expression as
a function of age on a genome-wide scale. We show that age
regulation is similar in the cortex and the medulla, and that
age-regulated genes in the kidney are broadly expressed. We
show that the expression profiles of age-regulated genes
correlate well with the morphological and physiological state
of the kidney in old age. Finally, we analyze the set of age-
regulated genes to identify specific metabolic processes and
cellular functions that change as a function of age, and
discuss their possible roles in specifying the functional
lifespan of the kidney.

Results

To procure material for analyzing changes in gene
expression with age in the human kidney, we obtained kidney
samples from normal tissue removed at nephrectomy for
either removal of a tumor or for transplantation from 74
patients ranging in age from 27 to 92 y (Tables S1 and S2). We
dissected each of the 74 kidney samples into cortex (72
samples) and medulla (62 samples) sections, isolated total
RNA from each section, synthesized biotinylated comple-
mentary RNA (cRNA), and hybridized the labeled cRNA to
Affymetrix high-density oligonucleotide arrays (HG-U133A
and HG-U133B, containing a total of 44,928 probe sets
corresponding to approximately 33,000 well-substantiated
human genes). The level of expression for each gene was
determined using DChip (Zhong et al. 2003), and the gene
chip data were entered into the Stanford Microarray Data-
base ( http://genome-www5.stanford.edu/) . Using our dataset,
the expression level for every gene as a function of age could
be plotted. For example, the expression of CDO1 (which
encodes a cysteine dioxygenase type 1 protein) tended to
increase with age. There was also variation between subjects
and between the cortex and the medulla (Figure 1A). Nearly
all of the variation represents true differences between
samples, as very little variation was observed when we
performed repeat hybridizations using the same tissue sample
(data not shown).

We used a linear regression model to identify genes that
showed a statistically significant change in expression with
age (i.e., were age-regulated). We saw large differences in
expression between tissue types and between the sexes. These

differences were of similar magnitude for both young and old
subjects, so that aging in one tissue (or sex) typically ran
parallel to aging in the other (as seen in Figure 1A). Our
linear regression model allowed for these parallel trends;
reasons for arriving at such a model are given below.
Mathematically, our model takes the form

Yij ¼ b0j þ b1jAgei þ b2jSexi þ b3jTissuei þ eij: ð1Þ

In equation 1, Yij is the base 2 logarithm of the expression
level for gene j in sample i, Agei is the age in years of the
subject contributing sample i, Sexi is one if sample i came
from a male subject (and zero for female), Tissuei is one if
sample i was a medulla sample (and zero for cortex), and eij is
a random error term. The coefficients bkj for k¼ 0, 1, 2, and 3
are values to be estimated from data. Our primary interest is
in b1j, which describes how quickly the expression of gene j
changes with age, with b1j ¼ 0 for genes with no linear age
relationship.
In model 1 and others that we considered, the coefficients

were estimated by least squares. The estimated values b̂kj can
differ from zero, even when the true coefficient is zero. We
judged statistical significance through p-values, where a value
of pij near zero corresponds to a large absolute value jb̂kj j
unlikely to have arisen by chance. Such p-values do not
distinguish genes that increase with age from those that
decrease with age. We also use one-tailed p-values, written ~pkj ,
taking values near zero to be significantly decreasing trends
and those near one to be significantly increasing trends (see
Materials and Methods).
To make p-values comparable over genes, it is essential to

use the same model for all genes. Before settling on the
common model 1, we considered an alternative that allowed a
quadratic trend in age. The ~p-values for the quadratic
coefficient (not shown) gave no reason to suspect that a
curved relationship was needed. Similarly, a piecewise linear
age relationship (with bends at ages 50 and 70) was not
significantly better than a linear one. Large and statistically
significant differences in expression were found for the two
tissue types, and so the tissue type was included in equation 1.
Incorporating tissue type into the model reduces the estimate
of the noise variance, leading to greater power for detecting
an age relationship. Similarly, a small number of genes were
found to have significantly different expression between
sexes. Seven genes were found to have a difference at p ,

0.001 for both sex and age.
We performed a genome-wide scan for genes that changed

expression with respect to age. Age-regulated genes can be
identified by plotting ~p-values for age based on model 1
(Figure 1B). Genes that significantly decrease in expression
with age appear in a peak on the left, while those whose
expression increases with age are in a peak at the right. Using
model 1, we found 985 genes that change with respect to age
(p , 0.001), which is considerably greater than would be
expected by chance (approximately 45 from a total of 44,928
genes). Of these, 742 genes increase expression with age and
243 decrease expression with age (Table S3).
Most of our samples were taken from patients that

underwent nephrectomy for various medical reasons (see
Table S1). We evaluated whether pathology, medical history,
or medication might be factors that confounded our aging
analysis. For example, if old people tend to be hypertensive
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more often than young, then genes that respond to hyper-
tension may appear to be age-related.

We identified 20 different medical and other factors that
might potentially confound our study, including race, blood
pressure, diabetes, and type and size of tumor present in the
kidney (see Table S1). Fourteen factors (such as diabetes or
proteinuria) affected less than ten patients, making it unlikely
that they could account for age-related change in gene
expression in the 74 patients analyzed. Six factors occurred in
ten or more patients (non-white race, two types of tumors,
size of tumor, and hypertension), but it is unlikely that these
affected our aging study for the following reasons.

First, with the exception of transitional cell carcinoma,
none of the other factors were skewed with respect to age,
and would not be expected to bias gene expression in an age-
related fashion (Figure S1).

Second, the two types of tumors (renal cell carcinoma and
transitional cell carcinoma) were localized to an isolated
region of the kidney. Our normal samples were obtained
from the region of the kidney furthest from the carcinoma,
were not directly contaminated with cancer cells, and
appeared normal histologically (see Materials and Methods).
This procedure for obtaining kidney samples has been used
previously to profile gene expression in normal kidney
(Higgins et al. 2004) and as a normal control in a kidney
cancer study (Higgins et al. 2003).

Third, we used regression models to directly test whether
our aging studies were affected by seven medical factors:
renal cell carcinoma, transitional cell carcinoma, size of
tumor, hypertension, systolic blood pressure, diastolic blood
pressure, and diabetes mellitus. For renal cell carcinoma, we
used a regression model predicting expression from age, sex,
tissue type, and a zero/one variable indicating whether the
sample came from a patient with renal cell carcinoma or not.
The result gave a p-value for whether renal cell carcinoma
affected each of the 44,928 genes present on the Affymetrix
DNA chip. The smallest p-value was 0.00013. We would expect
to see almost six such p-values by chance alone. This result
indicates that the presence of renal cell carcinoma does not
significantly affect the expression of any gene in the normal
tissue from the same kidney, compared to normal tissues
taken from kidneys without renal cell carcinoma.

Next, we plotted the results using only the age-regulated
genes, to investigate whether adjustments for renal cell
carcinoma could affect their change in expression with
respect to age. We used one regression model that included
a renal cell carcinoma term and another model that did not
have the term. We then selected genes that showed statisti-
cally significant (p , 0.001) age regulation using either of
these models. Renal cell carcinoma does not significantly
affect the age slopes for these genes (Figure S2A), indicating
that this medical factor has little effect on age-related gene
expression.
We repeated the regression analysis for six other factors

that might confound our results (transitional cell carcinoma,
size of tumor, hypertension, systolic blood pressure, diastolic
blood pressure, and diabetes mellitus). The regression slopes
changed very little with and without these factors, indicating
that these factors do not strongly affect our analysis of age
regulation (Figure S2B–S2G).
Fourth, five of the samples were from kidneys that did not

have tumors, and two of these were from donor kidneys used
for transplantation that had no associated pathology at all.
The expression profile from these five patients was similar to
the profile from other samples used in our study. In summary,
it is unlikely that these disease and medical factors have
confounded our analysis of age-regulated changes in gene
expression.
Changes in the expression for some of the 985 age-

regulated genes may directly reflect the aging process in the
kidney; these genes would serve both as aging markers and
provide clues about molecular mechanisms for aging in the
kidney. Other changes may result from an age-related change
in the relative proportion of cell types within the kidney, such
as would result from increased infiltration of immune cells
with age. Finally, the expression changes may reflect the
downstream response of the kidney to an age-related process
elsewhere, such as would result from age-related changes in
blood pressure or vascular supply.

Common Mechanisms of Aging in the Cortex and Medulla
of the Kidney
Since the cortex and medulla contain different cell types

and have distinct functions, it was of interest to test whether

Figure 1. Age-Regulated Genes

(A) Shown are expression levels for gene
CDO1. White and black circles represent
expression from cortex and medulla, re-
spectively. The y-axis indicates log2 (expres-
sion level), and the x-axis indicates age of
patient (years). Dotted and solid lines
indicate best fit slopes for the cortex and
medulla values, respectively.
(B) For every gene, we calculated a one-
sided ~p-value that its expression changes
with age. Shown is a histogram representing
all of the genes represented by the Affyme-
trix DNA chip. Genes that decrease with age
have ~p-values near zero, and genes that
increase with age have ~p-values near one. If
there were no age-regulated genes (i.e., the
true bkj ¼ 0 for every gene j), then the
histogram of ~p-values would be flat (i.e.,
have a uniform distribution on the interval

from zero to one). The x-axis shows the ~p-value, and the y-axis shows the number of genes with that ~p-value. There are 985 genes with a p-value
less than 0.001.
DOI: 10.1371/journal.pbio.0020427.g001
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they age similarly. It is possible that the pattern of
degeneration in a particular cell type reflects those metabolic
pathways that are used most heavily by that cell. For example,
there could be deterioration in cell adhesion in glomerular
epithelial cells that form part of the filtration barrier in the
cortex, while there could be an age-related decline in ion
traffic or water flow across the apical or basolateral
membranes of tubular epithelial cells in the medulla.
Alternatively, distinct cell types could show a common
pattern of age-related decline involving pathways common
to all cells, such as protein synthesis and mitochondrial
function. This degeneration of core cellular processes would
affect every cell function, including filtration by glomerular
epithelial cells and water and solute reabsorption by tubular
epithelial cells.

To test whether age-related gene expression changes are
different in cortex and medulla, we considered a model in
which a term of the form b4j 3Tissue3Age was added to the
model in equation 1. In such a model, the change in
expression with age is linear within each tissue type, but the
slope in the medulla is larger than that in the cortex by b4j.
Figure 2A shows the histogram of the ~p4j-values. Genes
showing tissue-specific slopes would appear in peaks on the
left and right. The figure shows neither of these peaks,
indicating there is no statistically significant difference in
aging between the two tissue types.

To further investigate coordinate aging in the cortex and
medulla, we searched for age-regulated genes in each of these
tissues independently, and then tested whether age-regulated
genes in one were also age-regulated in the other. Specifically,
to find age-regulated genes in the cortex, we fit the model

Yij ¼ bC
0j þ bC

1jAgei þ bC
2jSexi þ eCij ; ð2Þ

using the cortex samples only. To find age-regulated genes in
the medulla, we fit the model

Yij ¼ bM
0j þ bM

1j Agei þ bM
2j Sexi þ eMij ; ð3Þ

using only the medulla samples. We found 634 genes in the
cortex samples and 72 genes in the medulla samples that
showed significant changes in expression with age (p , 0.001).

Having identified age-regulated genes in the cortex, we
next examined whether they were also age-regulated in the
medulla. Figure 2B shows the ~p-values for change with age in
the medulla samples, for those genes that are age-regulated (p
, 0.001) in the cortex samples. If aging in the medulla were
unrelated to aging in the cortex, we would expect to see a flat
histogram. The actual histogram has a strong peak of genes
on the right, indicating that significantly age-regulated genes
in the cortex tend to also be significantly age-regulated in the
medulla. Of the 634 genes that increased expression with age
in the cortex, 22 also increased expression with age in the
medulla, compared with the 0.6 genes expected at p = 0.001.
We obtained similar results when we took the converse
approach, first selecting the 72 age-regulated genes in the
medulla, and then testing whether they were also age-
regulated in the cortex (data not shown).

Next, we compared the slope of expression with respect to
age in the cortex to that in the medulla (Figure 2C). The
results show a strong correlation between age coefficients in
cortex and medulla. For the 684 genes age-regulated in at
least one of the tissue types, the age coefficients had a

correlation of r = 0.487. Models 2 and 3 allow us to
investigate whether the cortex and medulla age at the same
rate as specified in model 1. For the 22 genes that are
significantly age-related in both tissues, the age coefficients
have a high correlation (r = 0.96), and the slopes themselves
are numerically close (Figure 2D). We found a small mean
absolute difference in slopes of 0.00185 (log2 expression per
year), corresponding to only a 6% divergence in expression
over 50 y. Given the strong similarities in the aging profiles of
these two tissue types, we are able to increase the statistical
power of our analysis by pooling the cortex and medulla
datasets (resulting in model 1).

Increased Expression of Immune Genes in the Kidney in
Old Age
We examined the list of 985 age-regulated genes, and

immediately found evidence for increased expression of
genes from immunocytes. Many of the 985 age-regulated
genes are expressed specifically in B cells (e.g., immunoglo-
bulin mu, kappa, and lambda), T cells (e.g., T cell receptor
beta), or neutrophils (e.g., neutrophil cytosolic factors 1 and
4) (see Table S3). Nearly all of these immune genes increase
expression with age. These results suggest that there are
increased numbers of immune cells in the kidney in old age,
resulting in an age-related increase in abundance in all genes
that are expressed specifically in these cells. Immune function
is known to decline with age, and the increased numbers of
immunocytes in the kidney might compensate for decreased
function in individual immune cells, either for immune
surveillance or for responding to low levels of inflammation
occurring normally. In addition to increased cell numbers,
the apparent increase in expression of the immune genes
could also be due to increased expression within the immune
cells themselves.
Immunohistochemical experiments using antibodies direc-

ted against markers specific for B cells, T cells, or neutrophils
showed that the kidney samples contained a small proportion
of immune cells (less than 1%) in sporadic clusters scattered
throughout each section (data not shown). The number of
immune cells varied greatly from section to section, and thus
it was not possible to use immunohistochemistry to confirm a
quantitative increase in the numbers of immune cells in the
kidney with age.
If the number of immune cells increases with age in our

kidney samples, then any gene showing an age-related
increase in expression might do so because it is expressed
in immune cells and not because it is age-regulated in the
kidney. As immune cells comprise only a small fraction of the
kidney sample, age-regulated genes that are expressed at
higher levels in the kidney than the blood are likely to be
expressed in kidney cells themselves. To compare gene
expression levels between the blood and the kidney, we
purified RNA from whole blood from five new individuals,
prepared labeled cRNA, and then hybridized it to Affymetrix
gene chips in the same manner as before. We computed the
log2 of the expression level for each gene, and then calculated
an average expression level for the blood (five samples) and
the kidney (134 samples). Of the 985 genes that change
expression with age, 538 are expressed at higher levels in
blood cells than in the kidney samples. Age-related changes in
the RNA abundance of these genes may reflect either changes
in the fraction of immune cells in the kidney or age-related
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changes in expression in kidney cells. The remaining 447 are
expressed at higher levels in the kidney than in whole blood,
and age regulation of these genes is likely to reflect
expression changes in kidney cells themselves (Table S4). Of
these 447 genes, 257 have increased expression levels in old
age (age-induced) and 190 have decreased expression levels
(age-repressed) (Figure 3).

Age Regulation Compared to Developmental Regulation
Aging is thought to be caused by slow degeneration of the

transcriptome (the entire set of genes expressed in a tissue),
rather than a qualitative change in expression, as occurs
during tissue specification. As such, changes in gene
expression associated with aging should be less than
expression differences between different types of tissues. To
confirm this idea, we compared the magnitude of gene
expression differences due to differentiation (cortex versus
medulla) to those due to aging. We used the same approach as
before to evaluate differences in expression in cortex versus
medulla on a genome-wide scale. For every gene, we
calculated the p-value for differential expression in the
cortex and the medulla, and plotted the results in a histogram
(Figure 4). Genes contained in the peak on the right are more
abundant in the medulla whereas genes in the peak on the left
are more abundant in the cortex. There were 23,322 genes
that were differentially expressed between the cortex and
medulla (p , 0.001), indicating that regulation of expression
due to differentiation (between the cortex and medulla) is

much greater than that related to aging. This result is
consistent with the idea that aging results from a slow
degeneration of a core transcriptome in the cortex and the
medulla of the kidney.

Majority of Age-Regulated Genes in the Kidney Are
Expressed Broadly
To address whether different organs have distinct or

common aging profiles, we analyzed whether the 447 age-
regulated genes in the kidney were expressed specifically in
the kidney or broadly in many tissues. If the kidney has its
own specific pattern of aging, one might expect that the set of
447 aging-regulated genes would be enriched for those
expressed specifically in the kidney, such as genes that have
direct roles in forming the filtration barrier or in regulating
ion or water reabsorption. If there is a common profile for
aging shared among tissues, one might expect that most of the
list of 447 aging-regulated genes would be expressed in many
tissues.
We determined the level of expression of the age-regulated

genes in different tissues using data from a previous study
reporting a genome-wide profile of gene expression in 26
different human tissues with Affymetrix gene arrays (Su et al.
2002). Of the 447 aging-regulated kidney genes, 227 are
represented in the previous work. Nearly all of these have
general, rather than kidney-specific, expression patterns;
specifically, we calculated the median expression level from
all tissues and compared this to the average expression level

Figure 2. Similar Age-Regulation in Cortex

and Medulla

(A) For every gene, we calculated a ~p-
value that there is a Tissuei 3Agei effect,
and plotted the results in a histogram.
Genes that show different age regulation
in the cortex or the medulla would be
contained in peaks on the left and right
parts of the histogram. The figure shows
that the number of genes that have
different expression levels in the cortex
and medulla is about the same as or less
than would be expected by chance. The x-
axis shows one-sided ~p-values for Tissuei
3Agei, and the y-axis shows the number
of genes with that ~p-value. There is a
systematic under-representation of the
edge regions compared to a random
sample of uniform random variables
because of correlations among the
44,928 ~p-values computed from 133 sam-
ples.
(B) To show whether aging in the cortex
and the medulla is similar, we selected
age-regulated genes in the cortex and
calculated the one-tailed ~p-value for age
effects in the medulla. The histogram
shows these selected ~p-values. The spike
at the right shows genes that increase
with age in the medulla. Those genes also
increased with age in the cortex.
(C) Shown is a scatterplot of all 684 genes
that are age-regulated in either the
medulla or the cortex (p , 0.001). The
y-axis is the slope for the medulla of the
expression change with respect to age,
and the x-axis is the slope for the cortex.

The solid line is the least squares line, with a slope of 0.58. The dotted line has a slope of one and passes through the origin.
(D) Same as (C) but for 22 genes that are age-regulated in both the cortex and the medulla (p , 0.001).
DOI: 10.1371/journal.pbio.0020427.g002
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from the kidney samples. We found that only seven of the 227
aging-regulated genes were enriched in the kidney more than
2-fold compared to the median level from all tissues (Figure
5). The observation that nearly all of these 227 age-regulated
genes are expressed in many tissues suggests that they act in
common cellular pathways. Altered expression of these genes
in old age may weaken these common functions, subse-
quently leading to physiological decline of kidney-specific
functions.

Molecular Markers for Physiological Aging
The expression levels of these 447 age-regulated genes

constitute a molecular profile of aging, and we can examine
the expression profile of individual patients to observe how
they compare to the average for their age group. Older
individuals tended to express age-induced genes at higher
levels and age-repressed genes at lower levels than younger
individuals. However, certain individuals had unusual ex-
pression profiles, in which genes were expressed at levels
more typical of a different age group. For example, patient 81
was 78 y old but had an expression profile as though she were
older (see Figure 3). Her kidney showed very high levels of
age-induced genes and very low levels of age-repressed genes.

Patient 95 was 81 y old, with an expression profile similar to
patients 30 or 40 y younger.
Do the molecular gene expression profiles correlate with

the physiological ages of the kidney samples? That is, does
patient 81 have a kidney showing excessive age-related
damage and does patient 95 have a kidney with unusually
good health? To answer these questions, we determined the
morphological and physiological states of the kidneys from
each of the patients by examining histological stains. As
people grow older, there is a general decline in the
morphological appearance of the kidney: (1) the glomeruli
lose their structure and their capillaries are replaced with
fibrous tissue (glomerular sclerosis), (2) the tubules collapse
and atrophy, and the interstitial space between them widens
and scars (tubular atrophy/interstitial fibrosis), and (3) there is
a thickening of the innermost layer of the arteriole wall due
to the accumulation of hyaline material (arterial intimal
hyalinosis). We gave three scores to each kidney section
corresponding to the appearance of the glomeruli, the
tubules, and the arterioles. Scores ranged from zero for
normal appearance for youthful patients to four for an
advanced state of glomerular sclerosis, tubular atrophy/
interstitial fibrosis, or arterial intimal hyalinosis (see Table
S1). We then added the glomerular, tubular, and arteriolar
scores together to form a combined score ranging from zero
(best) to 12 (worst), termed the chronicity index. The
chronicity index is a quantitative estimate of the morpho-
logical appearance and physiological state of the kidney for
each of the patients (see Table S1). Figure 6 shows an example
of a kidney in good condition from patient 40 (29 y old with a
chronicity score of zero) and a kidney showing age-related
morphological decline from patient 62 (84 y old with a
chronicity score of ten). As expected, the chronicity index
shows a strong positive correlation with age showing that
morphology and function tend to be worse for older subjects
(Figure 7).
We then compared the chronicity index to the gene

expression profiles of the 447 age-regulated genes as a
function of age (see Figure 3). In general, we found that the
gene expression profiles correlated well with the chronicity
index. Patients with expression profiles normally associated
with people much older also had a high chronicity index; for
example, the expression profile of patient 81 was similar to
that of patients who were much older, and the chronicity
index was also unusually high for the patient’s age.
Conversely, patients with expression profiles normally asso-
ciated with younger people tended to have a low chronicity
index for their age, such as patient 95. Although the 447 age-
regulated genes were selected solely on the basis of their
change with chronological age, these results indicate that
their expression profiles are able to predict patients that have
kidneys exhibiting unusual health or abnormal degeneration
for their age. Thus, the 447 age-regulated genes can be used as
molecular markers for physiological decline in the kidney
during aging.

Age-Regulated Genes in the Kidney
Some of the 447 age-regulated genes may be involved in

either causing or preventing aging in the kidney, whereas
expression changes for others may be a consequence of age-
related cellular changes. A candidate from our list that might
promote age-related decline is mortalin-2 (which encodes Heat

Figure 3. Expression of the 447 Genes as a Function of Age

Rows correspond to age-regulated genes, ordered from most highly
induced to most highly repressed. Columns correspond to individual
patients, ordered from youngest to oldest. The age of certain patients
is shown for reference. Left panel refers to data from cortex samples,
and right panel depicts data from medulla samples. The first row
shows the chronicity index (ChI; morphological appearance and
physiological state of the kidney),from blue (healthiest) to yellow
(least healthy) as indicated in the scale bar. Key genes discussed in the
text are marked. Scale shows log2 of the expression level (Exp). A
navigable version of this figure can be found at http://cmgm.stan-
ford.edu/;kimlab/aging_kidney/explorer.html.
DOI: 10.1371/journal.pbio.0020427.g003
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Shock Protein 70), which decreases expression in the kidney
in old age. Heat shock proteins act as protein chaperones,
and likely function to counteract cell senescence by alleviat-
ing the accumulation of damaged proteins in old cells. In
human fibroblasts, overexpression of mortalin-2 extends life-
span in vitro (Kaul et al. 2003). In the nematode C. elegans,
overexpression of mortalin or HSP-16 (a related heat shock
protein) extends longevity, and several genes encoding heat
shock proteins decrease expression in old age (Lund et al.
2002). Reduced expression of mortalin-2 in old human kidneys
could increase the accumulation of denatured proteins and
thereby reduce general cellular function.

A gene from our list that might function to prevent aging is
the gene encoding insulin-like growth factor receptor, which
decreases expression in old age. Loss-of-function mutations
in this gene result in extended longevity in worms, flies, and
mice (Tissenbaum and Guarente 2002). This observation
suggests that decreased expression of this gene during normal
aging might help prolong the functional lifespan of human
kidneys.

We examined the list of 447 age-regulated genes for
functional groups showing a consistent change with age.
One group includes genes involved in the formation of the
extracellular matrix, which show a consistent increase in
expression in old age. Seven age-regulated genes encode
proteins known to play key roles in maintaining epithelial
polarity (three types of claudins, two cadherins, occludin, and
a cell adhesion molecule), all but one of which increase
expression in old age (see Table S4). Forty-nine age-regulated
genes encode protein components of the extracellular matrix,
all but four of which increase expression in old age. In the
kidney, the extracellular matrix could play a key role in
governing the filtration of blood via the basement membrane,

a capacity that declines with age. The observation that genes
involved in forming the extracellular matrix increase
expression in the kidney with age may be directly relevant
to the age-related decline in glomerular filtration rate.
Another functional group is a set of 11 genes encoding

ribosomal proteins, all of which increase expression with age.
Protein synthesis rates are known to decline as animals grow
older, and increased expression of these ribosomal protein
genes may serve to offset this.
Changes in the expression of regulatory genes with age may

have particularly strong effects on kidney metabolism and
function, since these changes are likely to initiate cascades of
changes in downstream genes. We examined our list of 447
age-regulated genes for those that are likely to function as
regulatory genes. Of the 447 age-regulated genes, 15 encode
transcription factors and 51 encode proteins that are part of
signaling pathways.

Age-Regulated Genes Enriched in the Glomeruli
As filtration of the blood takes place in the glomerulus, age-

regulated genes that are enriched in the glomerulus may be
especially important for understanding how kidney function
declines with age. We identified genes enriched in the
glomerulus using data from a previous study, in which cDNA
microarrays were used to compare expression levels in the
glomeruli relative to the rest of the kidney (Higgins et al.
2004). Of the 447 genes identified in our study, 213 were
represented on the cDNA microarrays in the previous
experiment, and 19 were enriched greater than 2-fold in
the glomeruli relative to total kidney (Table S5). These
included four genes that encode proteins involved in the
formation of the extracellular membrane (a type 5 collagen,
alpha-2 macroglobulin, and two tissue inhibitors of met-
alloproteinase), all of which increase expression with age.

Discussion

Old age is associated with a functional decline in a myriad
of molecular and cellular processes. To gain a global
perspective of the diverse pathways that change with age,
we performed a whole-genome analysis of gene expression as
a function of age for kidney samples from 74 patients ranging
in age from 27 to 92 y. Many factors affect gene expression in
addition to age, including variability between individuals,
between different tissues within the kidney, and between
sexes. The large number of samples in our dataset provided
good power for identifying age-regulated genes in noisy data
despite small changes in expression, and allowed us to use a
statistical linear regression model to identify 985 genes that
change expression with age.
The results from this work show that transcriptional

differences between young and old individuals involve an
accumulation of small changes in expression from many
genes, rather than resulting from large expression changes in
a small number of genes. This observation suggests that
functional decline in old age is not the result of the complete
failure of a small number of cellular processes. Rather, it is
the slight weakening of many pathways that cumulatively
causes a significant decrease in cell function. Studying aging
by analyzing one pathway at a time is difficult, because any
single pathway might show only a small change with respect
to age and might contribute only a small amount to the

Figure 4. Differential Expression in the Cortex and the Medulla

For each gene, we calculated a p~-value for expression differences in
the cortex versus the medulla. Shown is a histogram of these p~-values.
Genes enriched in the cortex are in a peak on the left, and genes
enriched in the medulla are in a peak on the right. The x-axis
indicates p~-value, and the y-axis indicates number of genes.
DOI: 10.1371/journal.pbio.0020427.g004
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overall functional decline in old age. By contrast, functional
genomics is a powerful approach to study aging, because
many genes can be simultaneously scanned in parallel for
small changes in expression.

Although the cortex and medulla are comprised of differ-
ent types of cells and perform different physiological
functions, our results suggest that they share a common

mechanism for aging. Previous experiments have character-
ized changes in expression for human fibroblasts, muscle, and
the retina with age (Ly et al. 2000; Yoshida et al. 2002; Welle et
al. 2003, 2004). We plotted the expression levels of the 985
aging-regulated genes found in this work against the dataset
of aging in muscle (Welle et al. 2003), and found that these
genes did not show much age regulation in muscle.
Specifically, the Pearson correlation (r) of the regression
slopes for these 985 genes was only 0.085 between the kidney
and muscle aging experiments and hence accounts for only
0.0072 of the variance between these two tissues (Figure S3). It
is unclear whether this amount of correlation is biologically
relevant. The small sample size used in the study of aging in
human muscles might have limited our ability to detect
similarities in aging in the two organs. It will be important to
use a larger sample size of muscle tissues in future experi-
ments to discern common patterns of age regulation in the
kidney and the muscle with higher resolution.
Aging has been best studied in model organisms, and it is

thus of great interest to discern whether aging in these
species is similar to the aging process in humans. Previous
studies have reported gene expression changes associated
with old age for worms, flies, and several tissues from mice
(Lee et al. 1999, 2000; Hill et al. 2000; Zou et al. 2000; Lund et
al. 2002; Pletcher et al. 2002; Murphy et al. 2003). We found
no correlation between age regulation in human kidney and
age regulation in either worms or flies (Figure S4).
Although our analysis did not show evidence for evolu-

tionary conservation of age regulation, a previous study
suggested that there is a small overlap in age-regulated gene
expression between flies and worms (McCarroll et al. 2004).
However, most of the similarities occured in young or
middle-aged animals, rather than old animals. There is thus
little evidence for evolutionary conservation of changes in
gene expression in old age, emphasizing the need to elucidate
mechanisms of aging using human subjects themselves and
not model organisms.
Many of the age-regulated genes in the kidney may change

in response to declining kidney function. Functional decline
of the kidney with age varies between individuals, and these
genes could be used as diagnostic markers to evaluate levels
of kidney function in older patients. This could provide
invaluable information in understanding the clinical course
of kidney aging and the suitability of using older kidneys in
organ transplants. Other genes may be directly regulated by
aging per se, and these genes could pinpoint mechanisms that
play key roles in the aging process itself.

Materials and Methods

Samples. Normal kidney samples were obtained either from
biopsies of donor kidneys for transplantation or from nephrectromy
patients (with informed consent) in which the pathology was localized
and did not involve the part of the kidney sampled. Key factors from
the medical record for each patient used in this study are listed in
Table S1, and include sex, race, age, blood pressure, pathology,
medications, serum creatinine, and urinary protein concentrations.
Kidney tissue was harvested meticulously with the intention of
gathering normal tissue uninvolved in the tumor. Tissue was taken
from a point as far away from the tumor as possible. Any samples that
showed evidence of pathological involvement or in which there was
only tissue in close proximity to the tumor were discarded. Kidney
sections were immediately frozen on dry ice and stored at �80 8C
until use. The same harvesting sources and techniques have been used
previously to profile expression in normal kidney (Higgins et al. 2004)

Figure 5. Developmental Profile of the Age-Regulated Genes

Shown are the log2 of the expression levels for 227 age-regulated genes
in 26 human tissues, using data from Su et al. (2002). Rows correspond
to genes, columns correspond to human tissues. a, kidney; b,
cerebellum; c, whole brain; d, cerebral cortex; e, caudate nucleus; f,
amygdala; g, thalamus; h, corpus callosum; i, spinal cord; j, whole
blood; k, testis; l, pancreas; m, placenta; n, pituitary gland; o, thyroid
gland; p, prostate; q, ovary; r, uterus; s, salivary gland; t, trachea; u,
lung; v, thymus; w, spleen; x, adrenal gland; y, liver; z, heart. Scale
shows log2 of the expression level. A navigable version of this figure
can be found at http://cmgm.stanford.edu/;kimlab/aging_kidney/
explorer.html.
DOI: 10.1371/journal.pbio.0020427.g005

Figure 6. Chronicity Index of Kidney Samples

Histology from patient 40 is shown on the left, demonstrating a
normal glomerulus (G), tubules and interstitial space (T), and
arteriole (A), respectively (chronicity score of zero). Histology from
patient 62 is shown on the right, demonstrating glomerulosclerosis
(g), tubular atrophy and interstitial fibrosis (t), and arterial intimal
hyalinosis (a), respectively (chronicity score of ten). Hematoxylin and
eosin staining of paraffin-embedded sections.
DOI: 10.1371/journal.pbio.0020427.g006
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and to provide normal controls in a study on kidney cancer (Higgins
et al. 2003).

Histology. Frozen tissues were placed in cryomolds, embedded in
Cryo Tissue Tek O.C.T. Compound (Sakura Finetek, Torrance,
California, United States) and cut into 4-lm sections (Leica Micro-
systems, Wetzlar, Germany). Sections were stained with hematoxylin
and eosin, and then histologically evaluated to exclude samples
showing abnormal histology. Histology slides were also marked into
two main functional sections, the cortex and medulla, to help aid in
accurate dissection of these two areas. We reviewed radiological
findings for all tumors and histology for all slides. We excluded any
cases in which radiological imaging, gross examination at the time of
resection, or histological review of the removed tissue indicated that
there might be tumor involvement of the normal areas. Cases with
incomplete or unclear medical records were excluded from this study.

RNA isolation. Frozen kidney tissue samples were dissected into
cortex and medulla sections. Portions were weighed (0.05–0.75 g), cut
into small pieces on dry ice, and then placed in 1 ml of TRIzol
Reagent (Invitrogen, Carlsbad, California, United States) per 50–100
mg of tissue. The tissue was homogenized using a PowerGen700
homogenizer (Fisher Scientific, Pittsburgh, Pennsylvania, United
States), and the total RNA was isolated according to the TRIzol
Reagent protocol.

High-density oligonucleotide arrays. A standard protocol designed
by Affymetrix (Santa Clara, California, United States) for their HG-
U133A and HG-U133B high-density oligonucleotide arrays was
slightly modified by the Stanford Genome Technology Center
(Stanford, California, United States), and all samples were processed
in their facility (see Protocol S1). Eight micrograms of total RNA was
used to synthesize cRNA for each sample, and 15 lg of cRNA was
hybridized to each DNA chip. The samples were done in random
order with respect to tissue type and age.

Microarray data normalization and analysis. Using the dChip
program (Zhong et al. 2003), microarray data (.cel files) were
normalized according to the stable invariant set, and gene expression
values were calculated using a perfect match model. All arrays passed
the quality controls set by dChip. All of the Affymetrix data are
available at the Stanford Microarray Database ( http://genome-
www5.stanford.edu/) and at the Web site http://cmgm.stanford.edu/
approximately kimlab/aging_kidney/. The Affymetrix probe IDs and
the locus link IDs for the genes discussed in the paper are in Tables
S3–S5. The accession numbers for all genes on the Affymetrix arrays
can be obtained from the Stanford Microarray Database.

Regression models and p-values. The p-values we use are based on
t-tests from standard linear regression theory. Under the hypothesis

H0 that bkj¼ 0, the estimated coefficient b̂kj is a random variable. The
least squares value is a particular number, b̂

LS
kj
. The p-value measures

the extent to which the least squares value is surprisingly large
assuming H0 holds. Specifically, the two-tailed p-value is

pkj ¼ Prðjb̂kj j � jb̂
LS
kj j;H0Þ; ð4Þ

and the one-tailed p-value we use is

~pkj ¼ Prðb̂kj � b̂
LS
kj ;H0Þ: ð5Þ

Sometimes ~pkj is employed to test H0 against an alternative hypothesis
of bkj , 0. We use it because it distinguishes between significant
increasing and significant decreasing coefficients. Under H0, the
distribution of p is U(0,1), and so is that of ~p. Numerically, the
equation

p ¼ 2minð~p; 1� ~pÞ ð6Þ

holds.
The t-test is derived under an assumption of normally distributed

errors. The data showed estimated errors with heavier than normal
tails. The t-test is known to be robust against heavy-tailed errors.

A linear regression is more appropriate for these data than is an
analysis of variance (ANOVA) on age groups, because the latter is
aimed at piecewise constant expression patterns, and it is not
plausible that expression should change sharply at a given age. A
genome-wide ANOVA (data not shown) did, however, find a similar
group of age-related genes. Unlike ANOVA, regression summarizes
the age effect in one coefficient. This is advantageous for interpre-
tation and for statistical power when there is little nonlinearity.

The decision of whether to include a variable in model 1 was based
on the collection of p-values for all the genes. If the histogram of ~p
values differed sharply from uniform, and if the smallest p-values
were small compared to 1/44,928, then the coefficient was included.

Gene lists were made using a threshold p-value of 0.001. Such a
gene list can be expected to have about 44 genes in it by chance, even
if all of the coefficients are really zero. Thus, of the 985 age-related
genes, it is plausible that about 44 of them are false positives. We have
chosen to work with a fixed significance level, instead of attempting
to fix the false discovery rate, because our test statistics are strongly
correlated.

We were concerned that intra-subject correlations might have
affected our results. For each of 59 subjects with both cortex and
medulla samples, we subtracted log2 expression in the cortex from
that in the medulla, and fit a regression of the difference versus age
and sex. Such an analysis removes intra-subject correlations. There
was again no evidence of genes aging differently in the two tissue
types (data not shown).

Supporting Information

Figure S1. Age Distribution of Medical and Related Factors

Each row shows the presence of a medical or related factor. Age of
patients is shown on the y-axis. Only transitional cell carcinoma
showed a strong age bias. We have identified over 20 different factors
that might potentially confound our study on aging, such as race,
blood pressure, diabetes, and type and size of tumor adjacent to the
normal section (see Table S1).

Found at DOI: 10.1371/journal.pbio.0020427.sg001 (221 KB PDF).

Figure S2. Medical Factors Do Not Affect Age Regulation

We used regression models to directly test whether our aging studies
were affected by seven medical factors: renal cell carcinoma,
transitional cell carcinoma, size of tumor, hypertension, systolic
blood pressure, diastolic blood pressure, or diabetes mellitus.
Scatterplots show age-related slopes using a regression model that
includes a term for the medical factor compared to slopes from a
regression model that does not include that medical factor.
(A) Effect of renal cell carcinoma (RCC) on age-related expression.
We selected genes that showed statistically significant (p , 0.001) age
regulation using either a model with a renal cell carcinoma term or
without a renal cell carcinoma term. The vertical and horizontal axes
show the slope from a model with and without the renal cell
carcinoma term, respectively. The slopes change very little with and
without the renal cell carcinoma term. As one might expect, many of
the genes that are significant at the 0.001 level are just barely so.
There were 866 genes significant in both models, 119 significant only

Figure 7. Chronicity Index Increases with Age

Shown is the chronicity index versus age for most of the kidney
samples used in this study. The line shows the least squared fit
through the data points.
DOI: 10.1371/journal.pbio.0020427.g007
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when renal cell carcinoma was not in the model, and 86 significant
only when renal cell carcinoma was in the model. The overall picture
of age relationship changes very little whether a term for renal cell
carcinoma is included in the model or not.
We also used a regression model predicting expression from age, sex,
tissue type, and a zero/one variable indicating whether the sample
came from a patient with renal cell carcinoma or not. The result gave
a p-value for whether renal cell carcinoma affected each of the 44,928
genes present on the Affymetrix DNA chip. The smallest p-value we
saw was 0.00013. We would expect to see almost six such p-values by
chance alone. This result indicates that the presence of renal cell
carcinoma does not significantly affect the expression of any gene in
the normal tissue from the same kidney, compared to normal tissues
taken from kidneys without renal cell carcinoma.
(B) Effect of transitional cell carcinoma (TCC) on age-related
expression. Scatterplot showing age-related slopes with and without
a term for transitional cell carcinoma. Transitional cell carcinoma
was present in 13 patients, all of whom were old. Thus if transitional
cell carcinoma affected gene expression in adjacent normal tissue,
then it might bias our results on aging. (B) shows data for presence or
absence of transitional cell carcinoma in the model. The gene with
the smallest p-value for transitional cell carcinoma had a p-value of
8.8310�6. The expected number of p-values this small in 44,928 trials
is 0.4, so the presence of this gene is not particularly compelling
evidence that transitional cell carcinoma biased our results. The
histogram of p-values looks uniform, as we would expect if transi-
tional cell carcinoma were very weakly related, or not related, to
expression changes with age (data not shown). We have not used false
discovery rate techniques for this problem, because the age
coefficients for different genes are far from independent. The
scatterplot shows that transitional cell carcinoma does not affect
age-related slopes very much.
(C) Tumor size does not affect age regulation.
(D) Hypertension (HTN) does not affect age regulation.
(E) Systolic blood pressure (SBP) does not affect age regulation.
(F) Diastolic blood pressure (DPB) does not affect age regulation.
(G) Diabetes mellitus (DM) does not affect age regulation.

Found at DOI: 10.1371/journal.pbio.0020427.sg002 (307 KB TIF).

Figure S3. Comparison of Age Regulation of Gene Expression
between Kidney and Muscle Tissue in Humans

We obtained the muscle dataset from the GEO database (Welle et al.
2003). To compare age regulation in the kidney and muscle, we
queried whether the 447 genes identified as age-regulated in the
kidney were similarly age-regulated in the muscle. We determined
regression coefficients for the 447 genes in the muscle dataset using
multiple regression, in a manner similar to the kidney dataset. For
each of the 447 genes, we plotted regression slope in kidney against
regression slope in muscle, and found an overall weak Pearson
correlation of 0.085 (p , 0.004). A Pearson correlation value of 0.085
implies that 0.72% of the variance in the muscle regression
coefficients is due to variance in the associated kidney regression
coefficients. We note that the muscle dataset had a small sample size
(n ¼ 16), which may not be large enough to sufficiently detect
similarity in age regulation with the kidney.

Found at DOI: 10.1371/journal.pbio.0020427.sg003 (59 KB PDF).

Figure S4. Comparison of Age Regulation of Gene Expression
between Humans, Flies, and Worms Reveals No Correlation

We compared patterns of gene expression in the aging time course
data from C. elegans (Lund et al. 2002) and D. melanogaster (Pletcher et
al. 2002) to those in the data for the human kidney. We identified
orthologous genes using the criterion that they exhibit best
reciprocal BLAST hits between species. Beginning with the set of

447 age-regulated genes in the human kidney, we identified 119 worm
and 142 fly orthologs. From the set of 167 age-regulated genes in the
worm, we identified 60 human orthologs. From 1,264 age-regulated
genes in the fly, we identified 465 human orthologs.
(A) Regression slopes of age-regulated genes from human kidney and
D. melanogaster. Open triangles denote age-regulated genes in humans
and their orthologs in flies. Open circles denote age-regulated genes
in flies and their orthologs in humans. The scatterplot shows the
regression slopes from the human kidney and the fly aging datasets
(Pletcher et al. 2002). Specifically, the age-regulated human genes
paired with fly orthologs show a Pearson correlation r =�0.05 (p =
0.27) for human and fly, while the age-regulated fly genes paired with
human orthologs show a Pearson correlation r =�0.05 (p = 0.12).
(B) Regression slopes of age-regulated genes from human kidney and
C. elegans. Open circles denote age-regulated genes in humans and
their orthologs in worms. Open triangles denote age-regulated genes
in worms and their orthologs in humans. The scatterplot shows the
regression slopes from the human kidney and C. elegans aging datasets
(Lund et al. 2002). The age-regulated human genes paired with worm
orthologs show a Pearson correlation r = 0.05 (p = 0.54). The age-
regulated worm genes paired with human orthologs show a Pearson
correlation r =�0.01 (p = 0.08).
These results show no evidence for overlap in the aging process
between different species.

Found at DOI: 10.1371/journal.pbio.0020427.sg004 (509 KB PDF).

Protocol S1. Affymetrix HG-U133 Set Gene Chip Protocol

Found at DOI: 10.1371/journal.pbio.0020427.sd001 (40 KB DOC).

Table S1. Medical History of Patients

Found at DOI: 10.1371/journal.pbio.0020427.st001 (33 KB XLS).

Table S2. Patients Recruited by Age Group

Found at DOI: 10.1371/journal.pbio.0020427.st002 (13 KB XLS).

Table S3. Age-Related Genes (p , 0.001) Arranged by p-Value
Found at DOI: 10.1371/journal.pbio.0020427.st003 (135 KB XLS).

Table S4. Age-Related Genes (p , 0.001) Excluding Those with Higher
Expression Levels in Blood than in Kidney, Arranged by Fold Change

Found at DOI: 10.1371/journal.pbio.0020427.st004 (75 KB XLS).

Table S5. Age-Related Genes by Location within the Kidney

Found at DOI: 10.1371/journal.pbio.0020427.st005 (53 KB XLS).
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