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Attenuated secretion of glucose-dependent
insulinotropic polypeptide (GIP) does not
alleviate hyperphagic obesity and insulin
resistance in ob/ob mice
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ABSTRACT

Objective: Glucose-dependent insulinotropic polypeptide (GIP) is released during meals and promotes nutrient uptake and storage. GIP receptor
knockout mice are protected from diet induced weight gain and thus GIP antagonists have been proposed as a treatment for obesity. In this study,
we assessed the role of GIP in hyperphagia induced obesity and metabolic abnormalities in leptin deficient (Lepob/ob) mice.
Methods: We crossbred GIP-GFP knock-in homozygous mice (GIPgfp/gfp) that have complete GIP knockout, and mice heterozygous for the ob
mutation (Lepob/þ) mice to generate Lepob/þ/GIPþ/þ, Lepob/ob/GIPþ/þ, and Lepob/ob/GIPgfp/gfp mice. Male animals were weighed weekly and both
oral glucose and insulin tolerance testing were performed to assess glucose homeostasis and circulating profiles of GIP and insulin. Body
composition was evaluated by computerized tomography (CT) scan and analyses of indirect calorimetry and locomotor activity were performed.
Results: Postprandial GIP levels were markedly elevated in Lepob/ob/GIPþ/þmice compared to Lepob/þ/GIPþ/þ controls and were undetectable in
Lepob/ob/GIPgfp/gfp mice. Insulin levels were equivalently elevated in both Lepob/ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp mice compared to controls at 8
weeks of age but the hyperinsulinemia was marginally reduced in Lepob/ob/GIPgfp/gfp by 21 weeks, in association with amelioration of glucose
intolerance. Both Lepob/ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp mice remained equivalently insulin resistant. Body weight gain and subcutaneous and
visceral fat volume of both Lepob/ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp mice were significantly higher than that of Lepob/þ/GIPþ/þ mice, while no
significant differences were seen between Lepob/ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp mice. Locomotor activity and energy expenditure were
decreased in both Lepob/ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp mice compared to control Lepob/þ/GIPþ/þ mice, while no significant differences were
seen between Lepob/ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp mice. There was no significant difference in fat oxidation among the three groups. Fat
content in liver was significantly lower in Lepob/ob/GIPgfp/gfp compared to Lepob/ob/GIPþ/þ mice, while that of control Lepob/þ/GIPþ/þ mice was the
lowest.
Conclusions: Our results indicate that GIP knockout does not prevent excess weight gain and metabolic derangement in hyperphagic leptin
deficient mice.
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1. INTRODUCTION

Obesity is a significant global problem that considerably increases risk
of cardiovascular disease, type 2 diabetes, insulin resistance and
hyperlipidemia [1]. High caloric intake, whether from consumption of
foods containing more fat or overeating, and inactive lifestyle, disrupt
the balance between energy intake and output and worsen obesity [2e
4]. Despite considerable efforts by both academia and industry, there
are presently few effective treatment options for obesity. Given the role
of the gut in the absorption of nutrients and production of potent
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regulatory peptides that coordinate nutrient disposal and satiety, it
represents an important target organ for therapeutic strategies to
combat both diabetes and obesity, particularly with members of the
glucagon receptor family [5].
Ingested nutrients are sensed and absorbed by the intestine, triggering
the release of hormones from enteroendocrine cells lining the gut
epithelium. Two such hormones are the incretins gastric inhibitory
polypeptide/glucose-dependent insulinotropic polypeptide (GIP) and
glucagon-like peptide-1 (GLP-1). Mice with knockout of either the GIP
receptor or GLP-1 receptor display glucose intolerance associated with
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blunted insulin secretion [6,7]. The ability of these hormones to act
directly on b-cells to augment insulin secretion during meals in a
glucose-dependent manner is the basis for the treatment of diabetes
by incretin mimics and inhibitors of the enzyme dipeptidyl-peptidase 4
(DPP-4) that rapidly degrades GIP and GLP-1 [8].
GIP is secreted by K-cells during meals, particularly when the cells
come in contact with fat or glucose [9]. In addition to stimulating brisk
release of insulin [10], GIP promotes adipogenesis and lipid accu-
mulation in adipocytes [11,12]. Therefore, there has been some debate
over whether GIP agonists used to improve glucose homeostasis may
increase adiposity while GIP antagonists could promote weight loss
[13]. Several studies have convincingly demonstrated glucose lowering
effects following long-term administration of DPP-4 resistant GIP an-
alogs in rodents [14e17]. Moreover, somewhat surprisingly, chronic
overexpression of GIP in mice reduced diet-induced obesity and
steatosis, in addition to improving glucose homeostasis [18]. Yet a
seminal study revealed that mice with knockout of the GIP receptor are
protected from high fat diet induced obesity and the development of
insulin resistance [12]. Moreover, inhibition of GIP signaling in this
model increases fat oxidation in peripheral tissues in associated with
increased adiponectin levels [19]. These findings are bolstered by
studies demonstrating that reducing circulating GIP levels with K-cell
ablation [20], disruption of GIP gene expression [21], immunoneu-
tralization [22], or vaccination against GIP [23] also reduced weight
gain in mice following high fat diet, without impairing glucose
homeostasis.
Here, we examined whether complete ablation of GIP production could
reduce weight gain in the absence of the adipocyte hormone leptin, a
condition that results in extreme hyperphagia, obesity, hyper-
insulinemia, and insulin resistance, in both mice [24] and humans [25].
We found that Lepob/ob mice became equally obese and insulin
resistant whether or not GIP was present, suggesting that GIP antag-
onism is unlikely to be effective at improving metabolism in extreme
obesity associated with defective leptin action.

2. MATERIALS AND METHODS

2.1. Animals
The insertion of a sequence encoding green fluorescent protein (GFP)
into preproGIP gene disrupts the expression of GIP, resulting in com-
plete GIP peptide knockout in homozygous animals; GIP-GFP knock-in
(GIP-GFP) mice were generated as described previously [21]. Leptin-
knockout heterozygous (Lepob/þ) mice were purchased from Charles
River Laboratories, Inc., Kanagawa, Japan. We first crossbred Lepob/þ

mice and GIP-GFP homozygous (GIPgfp/gfp) mice and generated Lepob/
þ/GIPgfp/þ mice. Next, we crossbred Lepob/þ/GIPgfp/þ mice to each
other to produce Lepob/þ/GIPþ/þ, Lepob/ob/GIPþ/þ, and Lepob/ob/GIPgfp/
gfp mice. All experiments were conducted with two cohorts of male
mice; oral glucose tolerance tests (OGTTs) and insulin tolerance tests
(ITTs) were performed on cohort 1, and computerized tomography (CT)
analysis, indirect calorimetry and locomotor activity were performed
with cohort 2. The mice were housed in groups (n ¼ 4 for Lepob/ob/
GIPþ/þ and Lepob/ob/GIPgfp/gfp, n ¼ 6 for Lepob/þGIPþ/þ) at 25 �C with
a 10:14-h darkelight cycle under free access to water and food. Diet
was purchased from Funabashi Farm Co., Ltd., Chiba, Japan (F2,
containing 11.6% fat, 22.4% protein, 66.0% carbohydrate, 3.73 kcal/
g). Mice were weighed weekly during experiments. Food intake was
measured in mice at 32e33 weeks of age (cohort 1). Animal care and
procedures were approved by the Kyoto University Animal Care
Committee.
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2.2. Oral glucose tolerance tests (OGTTs) and insulin tolerance
tests (ITTs)
OGTTs were performed with 8 and 21 week old mice after over-
night fasting. Glucose (1 g/kg body weight) was administered by
oral gavage and blood glucose levels were measured by gluc-
ometer (Sanwa Kagaku Kenkyusho, Nagoya, Japan). Plasma in-
sulin and total GIP levels were measured at 0, 15, 30, 60, and
120 min after glucose administration. Plasma insulin levels were
measured using a mouse insulin ELISA kit (Shibayagi, Gunma,
Japan) and plasma total GIP levels were measured using a GIP
ELISA kit (EMD Millipore Corporation, Billerica, MA, USA). ITTs
were performed on mice at 10 and 30 weeks old using 1.0 U/kg
and 3.0 U/kg human insulin (100 IU/ml, Eli Lilly, Hyogo, Japan),
respectively, by intraperitoneal injection after 4e5 h fasting. Blood
glucose levels were measured at 0, 30, 60, and 90 min after in-
sulin administration.

2.3. Computerized tomography (CT) analysis
For CT analysis of body fat composition, mice were anesthetized at 36
weeks of age and scanned using a Latheta experimental animal CT
system (LCT-100M, Aloka, Tokyo, Japan). Contiguous 2 mm slice
images from shoulder to caudal region were used for quantitative
analysis by Latheta software (version 3.00).

2.4. Indirect calorimetry and locomotor activity
Indirect calorimetry and locomotor activity of mice were measured at
34e35 weeks of age (ARCO 2000, ARCO System, Chiba, Japan).
The mice were housed individually with free access to water and
food. Energy expenditure (kcal/min/kg), fat oxidation (mg/min/kg),
and locomotor activity (count/min) were measured every 5 min over
24 h.

2.5. Statistical analysis
Data represent mean � SEM. Statistical differences between groups
were assessed using one-way ANOVA with TukeyeKramer Multiplee
Comparison Test. P < 0.05 was considered statistically significant.
3. RESULTS

3.1. Body weight change, locomotor activity, energy expenditure,
and fat oxidation of Lepob/þ/GIPþ/þ, Lepob/ob/GIPþ/þ, and Lepob/ob/
GIPgfp/gfp mice
Body weight of Lepob/þ/GIPþ/þ, Lepob/ob/GIPþ/þ, and Lepob/ob/GIPgfp/
gfp mice was tracked in cohort 1 and cohort 2 (Figure 1A). Body weight
gain of Lepob/ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp mice was similar and
significantly higher than that of Lepob/þ/GIPþ/þ mice (maximum
weight; 68.0 � 1.8 g, 70.9 � 3.0 g, 35.8 � 0.8 g, respectively).
Locomotor activity was similarly decreased in both the dark and light
phases in Lepob/ob/GIPþ/þ mice (52%, 44%) and Lepob/ob/GIPgfp/gfp

mice (61%, 70%) compared to control Lepob/þ/GIPþ/þ mice
(Figure 1B). Likewise, energy expenditure was decreased in Lepob/ob/
GIPþ/þ mice (44%, 46%) and Lepob/ob/GIPgfp/gfp mice (49%, 48%)
compared to control Lepob/þ/GIPþ/þ mice in dark and light phases,
respectively, but did not differ between Lepob/ob mice with or without
GIP (Figure 1B). There was no significant difference in fat oxidation
among the three groups. There were no significant differences in food
intake among the three groups (data not shown), and aside from the
metabolic features indicated below, GIP knockout did not result in any
other obvious phenotype or behavioral changes.
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Figure 1: Body weight, locomotor activity, energy expenditure, and fat oxidation of Lepob/þ/GIPþ/þ, Lepob/ob/GIPþ/þ, and Lepob/ob/GIPgfp/gfp male mice. (A) Body weight tracking of
Lepob/þ/GIPþ/þ (white circles), Lepob/ob/GIPþ/þ (gray circles), and Lepob/ob/GIPgfp/gfp mice (black circles) in cohort 1 (n ¼ 5e8) and cohort 2 (n ¼ 4e6). (B) Locomotor activity,
energy expenditure and fat oxidation of Lepob/þ/GIPþ/þ (white bars), Lepob/ob/GIPþ/þ (gray bars), and Lepob/ob/GIPgfp/gfp mice (black bars) at 34e35 weeks of age in cohort 2
(n ¼ 3e6). *P < 0.05, **P < 0.01, ***P < 0.001 compared to Lepob/ob/GIPþ/þ. n.s; not significantly different. Data are mean � SEM.

Brief Communication
3.2. CT scan analysis of fat and liver in Lepob/þ/GIPþ/þ, Lepob/ob/
GIPþ/þ, and Lepob/ob/GIPgfp/gfp mice
Subcutaneous and visceral fat volumes were similarly increased in
Lepob/ob/GIPþ/þ mice (w13-fold, w10-fold) and in Lepob/ob/GIPgfp/gfp

mice (w17-fold, w15-fold) relative to Lepob/þ/GIPþ/þ mice
(Figure 2A). Fat volumes were not significant different between Lepob/
ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp animals. Liver volume and fat content
in liver were significantly increased in Lepob/ob/GIPþ/þ and Lepob/ob/
GIPgfp/gfp mice compared to Lepob/þ/GIPþ/þ mice (Figure 2B). Fat
Figure 2: CT scan analysis of fat and liver in Lepob/þ/GIPþ/þ, Lepob/ob/GIPþ/þ, and Lepob/ob

bars), Lepob/ob/GIPþ/þ (gray bars), and Lepob/ob/GIPgfp/gfp mice (black bars) at 36 weeks
subcutaneous fat, and lean body mass, respectively. (B) Liver volume and liver fat contents
(black bars) at 36 weeks of age in cohort 2 (n ¼ 3e6). n.s; not significantly different. D
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content in liver was significantly lower in Lepob/ob/GIPgfp/gfp mice
compared to Lepob/ob/GIPþ/þ mice, although liver volume was not
significantly different between the two groups (P ¼ 0.05).

3.3. OGTTs and ITTs in Lepob/þ/GIPþ/þ, Lepob/ob/GIPþ/þ, and
Lepob/ob/GIPgfp/gfp mice
During the OGTTs, plasma GIP levels and area under the curve (AUC) of
GIP were significantly higher in Lepob/ob/GIPþ/þ mice than in Lepob/
þ/GIPþ/þ mice at both 8 weeks of age (peak values: 647 � 42 vs.
/GIPgfp/gfp male mice. (A) Subcutaneous and visceral fat volume of Lepob/þ/GIPþ/þ (white
of age in cohort 2 (n ¼ 3e6). Pink, yellow, and blue areas represent visceral fat,
of Lepob/þ/GIPþ/þ (white bars), Lepob/ob/GIPþ/þ (gray bars), and Lepob/ob/GIPgfp/gfp mice
ata are mean � SEM.
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Figure 3: OGTT and ITT in Lepob/þ/GIPþ/þ, Lepob/ob/GIPþ/þ, Lepob/ob/GIPgfp/gfp male mice. OGTTs and ITTs were performed with Lepob/þ/GIPþ/þ (white circles and bars), Lepob/ob/
GIPþ/þ (gray circles and bars), and Lepob/ob/GIPgfp/gfp mice (black circles and bars) in cohort 1 (n ¼ 5e6). OGTTs were performed with 8 week (A, B, C) and 21 week (B, D, E) old
mice using 1 g/kg glucose. ITTs were performed with 10 week (G) and 30 week (H) old mice using 1 U/kg and 3 U/kg regular insulin, respectively. The glucose levels during ITTs
represent the percentage change from fasting glucose levels. Three Lepob/þ/GIPþ/þ mice (10 weeks old) exhibited symptoms of severe hypoglycemia 60 min after insulin injection
and were rescued by oral glucose administration. Thus, the data of these mice at 90 min during the ITT were excluded. Glucose levels during ITTs were not evaluated in 30 week
old Lepob/þ/GIPþ/þ mice because of severe hypoglycemia. (A, B) Plasma total GIP levels, (C, D) blood glucose levels, and (E, F) plasma insulin levels during the OGTT. (G, H) Glucose
levels (%) during ITT. #P < 0.05, ##P < 0.01 vs. Lepob/þ/GIPþ/þ. yP < 0.05, yyP < 0.01, yyP < 0.01. n.s; not significantly different. Data are mean � SEM.
168 � 32 pg/ml) and 21 weeks of age (peak values: 902 � 55 vs.
254 � 19 pg/ml) (Figure 3A and B). As expected, GIP levels were
below detection in Lepob/ob/GIPgfp/gfp mice. Blood glucose levels and
glucose AUC were similar in Lepob/ob/GIPgfp/gfp and Lepob/ob/GIPþ/þ

mice at 8 weeks of age and both were significantly higher than in
control Lepob/þ/GIPþ/þ mice (Figure 3C). These findings paralleled
plasma insulin levels, which were similarly increased in Lepob/ob/GIPþ/

þ and Lepob/ob/GIPgfp/gfp mice relative to control Lepob/þ/GIPþ/þ mice
(Figure 3E). Blood glucose levels were significantly elevated in Lepob/
ob/GIPgfp/gfp mice relative to the others at 21 weeks old (Figure 3D), and
this was associated with significantly lower plasma insulin levels at
0 and 15 min during the OGTT in Lepob/ob/GIPgfp/gfp compared to Lepob/
MOLECULAR METABOLISM 6 (2017) 288e294 � 2017 The Authors. Published by Elsevier GmbH. This is an ope
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ob/GIPþ/þ animals (Figure 3F). The AUC-insulin tended to be lower in
Lepob/ob/GIPgfp/gfp mice than in Lepob/ob/GIPþ/þ, but it did not reach
statistical significance (P ¼ 0.08); insulin levels in Lepob/ob/GIPgfp/gfp

and Lepob/ob/GIPþ/þ mice were markedly elevated compared to levels
in Lepob/þ/GIPþ/þ mice (AUC-insulin: 43-fold, 89-fold increase,
respectively). During ITTs in 10 week old mice, blood glucose levels
were not decreased in Lepob/ob/GIPþ/þ and Lepob/ob/GIPgfp/gfp animals,
while blood glucose levels were reduced by 67% in Lepob/þ/GIPþ/þ

given the same 1 U/kg dose of insulin (Figure 3G). When given a higher
dose of insulin (3 U/kg) at 30 weeks of age, blood glucose was
maximally reduced by 35% similarly in both Lepob/ob/GIPgfp/gfp and
Lepob/ob/GIPþ/þ mice (Figure 3H).
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4. DISCUSSION

Currently, the only therapy leading to substantial and sustained body
weight is bariatric surgery. These procedures can also produce a
remarkable resolution of type 2 diabetes within days after surgery,
long before any significant weight loss takes place, leading some to
perform bariatric surgery to treat diabetes even in non-obese in-
dividuals [26e28]. The altered flow of nutrients in the gut following
bariatric surgery may be associated with adaptive changes in the
enteroendocrine cell populations [29e31] and altered production of
gastrointestinal hormones, including increases in plasma GIP and GLP-
1 levels post surgery [28,32,33]. Changes in basal and/or postprandial
release of gut hormones are among the potential mechanisms of
improved glucose homeostasis and weight loss following bariatric
surgery [34,35]. Therefore, it may be possible to mimic the effects of
surgery by gut hormone delivery and single-molecule peptides inte-
grating the complementary actions of multiple hormones have
demonstrated promising results [5]. A unimolecular dual incretin
derived from intermixed sequences of GLP-1 and GIP demonstrated
enhanced anti-hyperglycemic efficacy relative to selective GLP-1 ag-
onists in rodents, monkeys, and humans [36]. Furthermore, while a
selective GIP agonist did not alter body weight in high fat fed mice, the
co-agonist treatment produced significant weight loss [36]. Even
greater efficacy was obtained in high fat fed mice with a tritagonist
incorporating a glucagon sequence for the synergistic action of
glucagon to increase energy expenditure [37]. Therefore, activation of
GIP receptors could be part of an effective strategy to treat diabetes
and obesity.
Shortly after its discovery, endogenous GIP was implicated in linking
over-nutrition to the development of obesity [38,39], in part because
the expression of GIP appears to be coordinated with nutritional status.
Oral fat is a potent stimulator of GIP release that is augmented by bile,
and mediated through direct actions on K-cells via fatty acid-binding
protein 5 and G protein-coupled receptor 120 [40,41]. Diets rich in
fat increase intestinal K-cell number [42], GIP expression and circu-
lating GIP levels [43], and the GIP response to oral glucose is enhanced
by prior exposure to a high-fat diet [44]. Obese individuals have
elevated plasma GIP levels that are associated with reduced post-
prandial plasma triglycerides, suggesting a role for GIP in triglyceride
uptake [39,45]. GIP reduces plasma triglyceride increments following
meals [46], an effect that could be mediated in part by increasing the
activity of lipoprotein lipase, by direct actions of GIP on adipocytes
[47,48]. In some rodent models of obesity, the insulinotropic action of
GIP is no longer restrained at basal glucose levels and thus can
contribute to hyperinsulinemia [44]. We observed marked elevations of
both GIP and insulin in Lepob/ob mice and perhaps their combined
anabolic activity contributed to the excessive fat mass.
Consistent with a role of GIP in fat accumulation, GIP receptor knockout
mice were protected from weight gain and hepatic steatosis when
placed on a high fat diet [12,49]. Moreover, when crossed onto mice
with the ob mutation, the severity of obesity in homozygous offspring
was reduced by 23%, although these mice remained almost twice the
weight of control mice [12]. These findings contrast our observations in
which complete ablation of GIP in homozygous ob/ob mice had no
impact on weight gain, while hepatic fat content was modestly
reduced. It is difficult to reconcile these differences resulting from
knockout of GIP versus its receptor, particularly as alternate endoge-
nous ligands for the GIP receptor have not been reported. Perhaps
variations in diets, housing conditions or mouse microbiomes
contributed to the differences. In our studies, Lepob/ob/GIPgfp/gfp mice
had insulin levels equivalent to Lepob/ob/GIPþ/þ mice at 8 weeks of age
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and lower insulin levels at 21 weeks, yet they still remained severely
hyperinsulinemic. In contrast, we previously observed a complete
normalization of insulin levels in GIP knockout mice on high fat diet,
associated with a significant reduction in weight gain relative to wild
type controls [21]. A reduction in insulin production has been
demonstrated to dramatically reduce weight gain in both ob/ob mice
[50] and mice on a high fat diet [51]. We speculate that the reduction in
insulin achieved in the Lepob/ob/GIPgfp/gfp animals in our current study
was insufficient to promote weight loss.
It is possible that regulation of adiposity and glucose homeostasis by
GIP are in part mediated by altering leptin levels and/or leptin signaling.
However, we are unaware of reports that support this mechanism of
action of GIP. In addition, leptin levels in GIP receptor knockout mice
[12,52] and mice with ablation of K-cells [20] remained proportional to
fat mass, suggesting that GIP action does not directly regulate leptin
production. The concept of an adipoeenteroendocrine axis has been
proposed, based upon observations that leptin directly stimulates GLP-
1 secretion from rodent and human intestinal L cells [53], but whether
leptin regulates GIP secretion from K-cells is unknown. Our mouse
model enabled us to investigate the impact of GIP deficiency inde-
pendent of leptin signaling. Collectively, our findings suggest that
endogenous GIP is not involved in the development of obesity in mice
with complete absence of leptin.
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