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Abstract

Background: Accumulation of visceral adipose tissue (VAT) is clearly associated with an increased risk of obesity-related
diseases and all-cause mortality, whereas gluteal subcutaneous fat accumulation (g-SAT) is associated with a lower risk.
The relative contribution, in term of cardiovascular risk, of abdominal subcutaneous adipose tissue (a-SAT) is still
controversial with studies showing both a detrimental effect and a protective role.

Animal and in vitro studies demonstrated that adipocytes from visceral and subcutaneous depots have distinct
morphological, metabolic and functional characteristics. These regional differences have a key role in the
pathogenesis of obesity-related diseases. There is recent evidence that differentiation between upper-body
and lower-body adipose tissues might be under control of site-specific sets of developmental genes, such
as Homebox (HOX) genes, a group of related genes that control the body plan of an embryo along the
anterior-posterior axis. However, the possible heterogeneity between different subcutaneous regions has not
been extensively investigated.

Here we studied global mRNA expression in g-SAT and a-SAT with a microarray approach. RNA was isolated
from g-SAT and a-SAT biopsy, from eight healthy subjects, and hybridized on RNA microarray chips in order
to detect regional differences in gene expression.

Results: A total of 131 genes are significantly and differently (>1.5 fold change, p < 0.05) expressed in a-SAT
and g-SAT. Expression profiling reveals significant differences in expression of several HOX genes.
Interestingly, two molecular signature of visceral adipocyte lineage, homebox genes HOXA5 and NR2F1, are
up-regulated in a-SAT versus g-SAT by a 2.5 fold change.

Conclusions: Our study shows that g-SAT and a-SAT have distinct expression profiles. The finding of a
different expression of HOX genes, fundamental during the embryo development, suggests an early regional differentiation
of subcutaneous adipose depots. Moreover, the higher expression of HOXA5 and NR2F1, two molecular signatures of
visceral adipocytes, in a-SAT suggests that this subcutaneous adipose depot could be more similar to VAT than
g-SAT.

Our data suggest that we should look at SAT as composed of distinct depots with possibly different impact in
obesity associated metabolic complications.
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Background

Obesity, defined as abnormal or excessive fat accumula-
tion, increases risks for multiple metabolic diseases, such
as type 2 diabetes (T2DM) and cardiovascular disease
(CVD) [1].

Adipose tissue is a highly specialized loose connective
tissue able to store large quantities of triacylglycerol
(triglycerides) and fat-soluble substances. On a cyto-
logical level, adipose tissue is heterogeneous: the main
parenchymal cells are the white adipocytes. White adipo-
cytes are characterized by a unilocular lipid droplet occu-
pying 95% of the cell volume, and a ‘squeezed’ nucleus.
Despite adipocytes represent ~90% of the tissue volume,
other cells type are present in adipose tissue such as
preadipocytes, endothelial cells, pericytes, multipotent
stem cells and immune system cells (macrophages, T-
cells, neutrophils, lymphocytes).

It is generally regarded as a tissue without a specific
anatomy. However, there are increasing data supporting
the idea that adipose depots are organized to form a
large organ with discrete anatomy, specific vascular and
nerve supplies, complex cytology, and high physiological
plasticity [2]. This organ is made up of several depots
located in two main compartments of the body: subcuta-
neous adipose tissue (SAT) and visceral adipose tissues
(VAT). SAT represents over 80% of total body fat and is
most commonly distinguished in abdominal (a-SAT),
gluteal-femoral depots (g-SAT). VAT, which is mostly
associated with digestive organs, includes omental, mesen-
teric and epiploic adipose tissue depots. The adipose organ
contributes to many fundamental biological functions:
thermogenesis, lactation, immune responses and obviously
energy balance and energy substrates partitioning.

More than 50 years ago J. Vague observed that not only
fat mass but also adipose tissue distribution is clearly
linked to CVD risk. Central obesity, characterized by an in-
crease in VAT and abdominal SAT, confers increased risk
of CVD, insulin resistance, T2DM and even all-cause mor-
tality. On the other hand peripheral obesity, characherized
by preferential accumulation of gluteo-femoral fat is associ-
ated with lower risk and may be protective [3—6].

At an anatomical level, different depots differ in cellular
composition, microvasculature, innervation, metabolic
characteristics, extracellular matrix composition [7].
Moreover different studies showed a different pattern
of adipokines secretion and endocrine function between
abdominal and lower-body adipose [8-14]. However,
the relative contribution of abdominal subcutaneous
adipose depot to increased cardiovascular is still con-
troversial [15, 16].

The heterogeneity between different subcutaneous
depots has also been investigated: abdominal subcuta-
neous adypocytes differ from femoral ones in term of
proliferation [17], differentiation [18] and fatty acid
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release and accumulation capacity [19, 20]. Different
adrenergic stimulation response [21, 22] and sexual
hormones influence [19, 23] have also been reported,
while data on possible differences in insulin effect among
different subcutaneous depots are inconclusive [24].

Several studies suggest that different fat depots could
arise from distinct precursors, derived from mesenchymal
stem cells, with inherently different proliferative and
adipogenic properties [25]. Gene expression profiling
has identified different molecular signature of adipo-
cyte lineage commitment. These genes, such as nuclear
transcriptional receptor protein coding gene NR2F1
(Nuclear Receptor subfamily 2 group F member 1 or
Coup-TF1), seem to play a major role in early cell-fate
determination [26]. Similarly, another study underpinned
that the profound functional differences between the
upper-body and lower-body adipose tissues might be
under control of site-specific sets of developmental genes,
such as Homebox (HOX) genes, a group of related
genes that control the body plan of an embryo along
the anterior-posterior axis [27].

Here we studied global mRNA expression in gluteal
and abdominal adipose tissues from eight healthy sub-
jects, with a microarray approach, in order to detect
regional differences in gene expression.

Results
The anthropometric and metabolic characteristics of
participants are shown in Table 1.

In the microarray analysis, 42.405 probes were detected
in abdominal and gluteal adipose tissues. Considering 1.5
fold change as lower limit, a total of 181 probes were
differentially expressed between the abdominal and glu-
teal depot, corresponding for a total of 131 coding
genes; 49 genes were up-regulated in abdominal versus
gluteal adipose tissue (Table 2). Most of the expression
differences were modest, >80% in 1.5-3 fold change
range. Hierarchical clustering analysis of gene expres-
sion profiles in subcutaneous abdominal and gluteal
adipose tissues of these 8 healthy subjects is repre-
sented in Fig. 1.

Table 1 Characteristics of all participants

Characteristic Mean + SD
Age (years) 60+3

BMI (Kg/maq) 25030
FM (%) 214+6.5
Total-C (mg/dl) 2186+242
Triglycerides (mg/dl) 1479+72
HDL-C (mg/dl) 437+58
LDL-C (mg/dl) 1453 +252
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Fig. 1 Gene clustering in abdominal and gluteal adipose tissue
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We identified several HOX genes expression differences
between gluteal and abdominal depots (bold in Table 2).
Mean fold change for HOX gene group was 8.88 (range
from 1.88 to 45.90), compared to 2.84 mean fold change
of entire group of differentially expressed genes. HOXA3,
HOXA5, HOXB7, HOXBS, were up-regulated in the
abdominal depot, while HOXA11, HOXA13, HOXCI10,
HOXC12 were up-regulated in gluteal adipose tissue, with
HOXC12 expression being almost 50 times overexpressed
in gluteal vs abdominal adipose tissue.

NR2F1 was up-regulated in abdominal vs gluteal
adipose tissue (FC 2.67).

In silico analysis with bioinformatics database support
(DAVID gene functional classification tool) showed that
18 out of 131 coding genes have been previously involved
in type 2 diabetes pathogenesis (underlined in Table 2):
TBX5, COL4A5, PITX2, FOXP2, SKAP2, ADRBI, VEGFC,
PCDH9 were up-regulated in the abdominal depot, while
CYP19A1, IGF2, PCK1, TNNT3, TBC1D1, BDKRB2,
TAGLN, DES, TGFBI, NMT2 were up-regulated in
gluteal adipose tissue.

Discussion

Adipose tissue is considered as the largest endocrine
organ in humans, and includes numerous discrete
anatomical depots. There is evidence that different
adipose tissue depots have different morphology, physi-
ology and adipokine profiles. Although depot differ-
ences in adipocyte metabolism and endocrine function
are clearly important in etiology of obesity related dis-
eases, the relative contribution of VAT compared to ab-
dominal subcutaneous is still controversial. Moreover,
there is little evidence of in vivo or in vitro differences
between different subcutaneous adipose depot.

The advent of new technology that allows the
characterization of entire transcriptomes has permitted to
look from another perspective to adipose tissue depots
heterogeneity and led to the hope that the properties of
adipose tissue and differences between adipose tissue
depots might be revealed to help discover new thera-
peutic avenues.

Indeed, expression profiling has revealed significant
differences in expression of hundreds of genes between
different depots of adipose tissue in both rodents and
humans [28-30], particularly developmental and pattern-
ing genes involved in cell differentiation, organogenesis,
antero-posterior or dorso-ventral patterning. These find-
ings not only have contributed to help explain the distinct
impact of these depots on the development of metabolic
complications but also have suggested possible differences
in developmental origin of these fat cells [31].

Adipose tissue has a mesodermal origin. A layer of
cells between the primitive endoderm and ectoderm
migrates and spreads along the antero-posterior and
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dorso-ventral axes of the developing embryo generating
the axial, intermediate, lateral plate, and paraxial meso-
derm. Each of these embryologic tissues eventually
gives rise to local adipose tissue. Vertebrate embryonic
patterning and evolution of mesodermal tissues such as
fat are controlled by several conserved developmental
signaling systems. The mesenchimal stem cell gives origin
to an early precursor, the adipoblast, which develops into
committed preadipocytes that under appropriate stimuli
differentiate into mature adipocytes of different types.

In more recent studies, the differences in gene expression
pattern have been shown to persist even after in vitro differ-
entiation of preadipocytes, suggesting that the differences
are independent of extrinsic factors and that different
adipocyte progenitors are programmed through epigenetic
modulation during early development, participating in
determining functional differences observed between
different adipose tissue depots [27].

The most frequently observed differences in gene expres-
sion involve HOX genes, a subset of Homeobox genes. A
Homeobox is a DNA sequence, around 180 base pairs long,
found within genes that are involved in the regulation of
patterns of anatomical development (morphogenesis) in an-
imals, fungi and plants. These genes encode Homeodomain
protein products that are transcription factors sharing a
characteristic protein fold structure that binds DNA.
Through the DNA-recognition properties of the Home-
odomain, Homeoproteins are believed to regulate the
expression of targeted genes and direct the formation
of many body structures during early embryonic devel-
opment. Many Homeodomain proteins induce cellular
differentiation by initiating the cascades of coregulated
genes required to produce individual tissues and organs.
Thus, Homeobox genes are critical in the establishment of
body axes during embryogenesis. The HOX genes in
humans are organized in four chromosomal clusters:
HOXA, HOXB, HOXC and HOXD.

In a 2006 study from Gesta et al,, gene expression profil-
ing has revealed that intraabdominal (visceral) adipocytes
express higher levels of HOXA5, HOXA4, HOXC8 and
NR2F1, whereas subcutaneous fat has higher levels of
HOXA10, and HOXC9, and in most cases, these differ-
ences are observed in both rodents and humans. Similar
differences in development gene expression are observed
in preadipocytes isolated from different adipose depots of
rodents. These differences in gene expression are large in
magnitude (up to 1000-fold), appear to be intrinsic, and
persist during in vitro culture and differentiation, indicat-
ing that they are cell autonomous and independent of the
tissue microenvironment. In addition, the authors have
shown that one of these developmental genes (HOXA5)
exhibit changes in expression that closely correlate with
the extent of obesity (BMI) and the pattern of fat distribu-
tion (WHR).
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In recent study from Karastergiou et al. substantial
differences in HOX genes expression have been found
between two different subcutaneous adipose tissue de-
pots, gluteal and abdominal. In our study, we confirm
significant gene expression differences between abdom-
inal and gluteal SAT, as well seen in the hierarchical
clustering analysis. We underline differences in expression
of developmental and patterning genes such as HOX
genes (HOXA3, HOXA5, HOXB7, HOXB8, HOXA11,
HOXA13, HOXC10, HOXC12), as previously observed.

We have also noticed as some genes, that in previous
studies have been proposed as moleculare signatures
of VAT, such as HOXA5 and NR2F1 appear to be
up-regulated in abdominal compared to gluteal SAT
(g-SAT), suggesting a similarity between VAT and
abdominal SAT (a-SAT).

Furthermore, the finding that a consistent number of
genes differentially expressed between gluteal and abdom-
inal adipose depots have been previously correlated to
pathogenesys of type 2 diabetes enforces our hypotesis that
these depots may have a different impact in obesity associ-
ated metabolic complications.

Limitations of the study
Some limitations of the study must be underlined.

First, this research was conducted on a small sample
of single sex subjects: males with an average age of 60 years
old. Therefore our findings apply only to men in this
specific age group.

Secondly, we adopted >1.5 fold change as significant
threshold of differences between the two groups, as pre-
viously seen in similar researches, however this increases
the possibility of false positive.

Conclusions
Our study demonstrates that subcutaneous gluteal and
abdominal adipose tissue depots have distinct expression
profiles. The finding of a different expression of HOX
genes, fundamental during the embryo development, sug-
gests an early regional differentiation of SAT, while the
higher expression of HOXA5 and NR2F1, two molecular
signatures of visceral adipocytes, in a-SAT suggests that
this subcutaneous adipose depot could be more similar to
VAT compared to g-SAT.

In conclusion we suggest that we should look at SAT
as composed of distinct depots with possibly different
impact in obesity associated metabolic complications.

Methods

Subjects enrolled in the study were partecipants the
project PANGeA (Physical Activity and Nutrition for
Good quality Ageing). Eight healthy middle aged men
[age 60 * 3 years, (57-65)] underwent subcutaneous tissue
biopsy from abdomen and gluteus subcutaneous adipose
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tissue. Adipose tissue samples were obtained from each
participant from both abdomen and gluteus. Briefly, the
subject was instructed to hold in tension the muscles, so
that the muscle and the fat pad were clearly recognizable.
A fold from the upper outer quadrant of the buttock and
from the abdomen was held between two fingers of one
hand; subsequently a needle (16—17 gauge), connected to a
vacutainer system, was inserted with an angle of about 45°
in the fat pad. After the insertion of the needle, the vacutai-
ner tube was pressed forward to connect the vacuum with
the needle. The needle was then carefully pushed back and
forth 2-3 times within the fat pad to gather the adipose
tissue biopsy. Subsequently the needle was immediately
introduced in a sterile tube and frozen in liquid nitrogen.
Adipose tissue was extracted from the needle with lysis
solution (Purezool, Bio Rad, Milan, Italy) and then dis-
rupted and homogenized using a tissue ruptor (Qiagen,
Milan, Italy). RNA was isolated using Aurum Total
RNA Mini kit (Bio Rad) and stored at -80 °C until use.
All participants were medically examined prior study
inclusion with an interview, routine blood analysis, and
fitness battery tests. Exclusion criteria were: smoking;
regular alcohol consumption; acute or chronic skeletal,
neuromuscular, respiratory, metabolic and cardiovascular
disease conditions. Participants were informed of the pur-
pose, procedures and potential risk of the study before
signing the informed consent. Anthropometric data were
presented by body mass index and fat mass that was mea-
sured using bio impedance with a tetra-polar impedance-
meter (BIA101, Akern, Florence, Italy). Blood samples
were collected after an overnight fasting. Adipose tissue
samples were collected by biopsy from abdomen and glu-
teus and immediately frozen in liquid nitrogen. Total
RNA was obtained from frozen tissue samples by using
the a lysis solution (Purezool, Bio Rad, Milan Italy) and
successively disrupted and homogenizated using a tissue
ruptor. RNA was isolated (Aurum Total RNA Mini kit,
Bio Rad) and stored at —80 °C until use. RNA labeling and
hybridization on microRNA microarray chips was per-
formed as previously described [32]. Microarray results
were analysed using GeneSpring GX software 7.3 (Agilent
Technologies). Data files were pre-processed using the
GeneSpring plug-in for Agilent Feature Extraction soft-
ware results. Data transformation was applied to set all
the negative raw values at 5.0, followed by on-chip and
on-gene median normalization. Filtering on gene expres-
sion was applied so that probes expressed (flagged as
Present) in at least one sample were kept and probes that
did not change across all samples, identified as having a
normalized expression always between median + 1.5, were
removed. Then, samples were grouped in accordance to
their status and compared. Differentially expressed genes
were selected as having a 1.5-fold difference between their
geometrical mean expression in the two adipose tissue
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and a statistically significant p value (<0.05) by ANOVA
(analysis of variance), followed by application of the
Benjamini and Hoechberg correction for false-positive
reduction. Differentially expressed genes were employed
for the cluster analysis of samples, using the standard
correlation as a measure of similarity.

Finally, the list of genes differently expressed was an-
alyzed with bioinformatics database support (DAVID gene
functional classification tool) to find potential functional-
related gene groups and gene-disease associations.

RNA quality was assessed by the use of Agilent 2100
Bioanalyzer (Agilent Technologies). Low quality RNAs
(RNA integrity number below 7) were excluded from
microarray analyses. Labeled cRNA was synthesized
from 500 ng of total RNA using the Low RNA Input
Linear Amplification Kit (Agilent Technologies) in the
presence of cyanine 3-CTP (Perkin-Elmer Life Sciences,
Boston, MA). Hybridizations was performed at 65 °C for
17 h in a rotating oven. Full dataset is available to down-
load as Additional file 1.

Additional file

[ Additional file 1: Microarray complete dataset (normalized). (XLSX 7797 kb) ]
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