
Dear Editor,

Interactive vanKrevelen diagrams –Advanced visualisation
of mass spectrometry data of complex mixtures

The field of complex mixture analysis has advanced
significantly in the past two decades, although its history goes
much further back. When Dirk Willem van Krevelen
developed his now eponymous diagram in 1950 to represent
the chemical makeup of coals, he proposed that the chemical
nature of samples, including the presence of structural motifs
and chemical properties, could be inferred from the elemental
ratios of the sample.[1] While his work, limited by the
technology of the era, looked at whole samples characterised
by the ratio of elements present, i.e. number of carbons-
to-hydrogens within the sample, modern mass spectrometry
allows us to examine in a similar manner the individual
components of a complex mixture.
Since 2003,when themodern vanKrevelen diagramwasfirst

used to visualise complex MS datasets,[2] every significant
high-resolution mass spectrometric analysis of a complex
mixture has included one.[3–5] Today’s van Krevelen diagram
places every assigned unique chemical formula on a 2D scatter
plot of H/C ratio versus O/C ratio, although other elemental
ratios can also be used. Although this represents a break from
the original intentions of van Krevelen, themodified technique
has become auseful tool for the interpretation andvisualisation
of complex data. For example, regions of the van Krevelen plot
can be tentatively associated with certain compound
classes,[2,6,7] such as lipids (O/C < 0.2, H/C 2 – values quoted
are approximate), carbohydrates (H/C2,O/C1), or condensed
hydrocarbons (O/C < 0.2, H/C < 1).
In the field of complex mixture analysis, a number of

methods are available to the enterprising chemist; however,
Fourier transform ion cyclotron resonance mass spectrometry
(FTICR MS) reigns supreme as the ‘gold standard’
technique.[8,9] Likewise, there exist a number of well-studied
complex mixtures, including natural organic matter (NOM),
i.e. dissolved organic matter,[5,10,11] soil organic matter,[12]

and organic aerosols,[13–15] petroleum,[16,17] or beverages such
as wine[18] or Scotch whisky.[19,20] Amongst the most complex
of these, a component of NOM and the closest sample to a
universal standard, is Suwannee River Fulvic Acid (SRFA)
produced by the International Humic Substance Society.[21]

A typical electrospray ionisation (ESI)-FTICR mass spectrum
of SRFA will contain thousands of peaks across a range of
masses, predominantly between m/z 200 and 700. Due to its
ubiquity and complexity, SRFA was chosen to demonstrate
the capability of the visualisation tools described herein.

With the mass accuracy of FTICR MS spectra in
parts-per-billion,[22,23] routine and confident assignment of
thousands of unique chemical formulae to individual peaks
is now increasingly possible. The generation of this volume
of data represents a significant challenge in terms of data
visualisation, interrogation, and interpretation that has not
been addressed so far. Here, we present a handful of tools
aimed at filling this gap.

We have developed a version of the van Krevelen diagram,
which introduces interactivity, and allows the analyst, or
reviewer, to interrogate the data in an intuitive way. This
interactive van Krevelen, or i-van Krevelen for short, is
generated using the Bokeh Python plotting library.[24] The
developed tools are fully compatible with data assigned using
any software package, as the input for the i-van Krevelen
scripts are three text files containing (1) monoisotopic peak
assignments, (2) isotopologue peak assignments, (3)
remaining unassigned, but detected, peaks. Example input
files are included with the suite of presented tools. The Bokeh
API allows for the straightforward coding, in Python, of
complex JavaScript (JSON) plots as HTML5 Canvas objects.
The output from this tool is a standard HTML document
compatible with any modern web browser such as Google
Chrome, Firefox, or Internet Explorer.

The main feature of the i-van Krevelen software is the
generation of interactive diagrams including a centroid mass
spectrum, van Krevelen, DBE vs carbon number plot and the
modified Aromaticity Index vs carbon number plot.[25] The
plots are linked together, such that selecting any data points
in one plot highlights those same points – i.e. unique chemical
formula – in the other plots. In addition, these plots are
explorable, featuring zoom and pan tools, as well as a display
of the key information of each point in a hover-tool. Finally, the
data points can be used as hyperlinks – in our implementation,
they link to a ChemSpider (The Royal Society of Chemistry,
Cambridge, UK) search for their molecular formula.

The benefits of these featureswill be immediately obvious to
any analytical chemist who has tried tomake sense of complex
static van Krevelen diagrams of complex mixtures.

For example, in a standard van Krevelen plot, numerous
points may be superimposed if they share elemental ratios
but differ in molecular formulae. As a van Krevelen plot is a
specific type of scatter plot, it is susceptible to the same
problems as other any other scatter plot, and can be
misinterpreted when hundreds or thousands of points are
plotted. Whilst the addition of colour and transparency can
reduce these problems, they are not eliminated entirely.[26,27]

One alternative is to plot data density, not individual data
points – i.e. a histogram or kernel density plot in 1D, or a
hexagonally binned data plot in 2D.[28] This allows easier
visualisation of where the most (or largest, or most intense,
depending on the density variable) data points are;
however, this approach leads to a loss of information about
specific components and their molecular formulae. With
interactivity, however, a user can zoom to a region of
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Figure 1. Overview screenshot of the i-vanKrevelenMain Page. Four sub-plots are shown, from top left clockwise, vanKrevelen,
centroid mass spectrum, DBE vs C #, and AI(mod) vs C #. The scatter plots have points sized per their relative abundance, while
the colour scales represent eitherm/z range (van Krevelen) or oxygen number (DBE vs C# and AI(mod) vs C#). [Colour figure can
be viewed at wileyonlinelibrary.com]

Figure 2. Screenshots of the van Krevelen and centroid mass spectrum plots with two different selections of data points. The top
frame shows that the selection of the most abundant ions only represents a small range of chemical diversity on the van Krevelen
plots, whilst the bottom frame shows that the least abundant ions, “the grass”, represent the true chemical diversity of the
spectrum. [Colour figure can be viewed at wileyonlinelibrary.com]
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interest in the plot, and use the hover-tools to identify every
component contributing to a particular point, thus removing
the ambiguity caused by the overlap. Furthermore, we
encode the relative abundance of a species by the size of
the glyph on the plot. The colour can then be used to
indicate mass, as in our van Krevelen plots, or oxygen
number, as in our DBE and AI plots. This approach is
illustrated in our recent paper on Scotch whisky.[20]

Reducing complex data down to a two-variable van
Krevelen plot inevitably represents a loss of information. In
our tool, we have therefore created several 2D plots that are
linked together. An example of this layout is shown in Fig. 1.
This allows for the relation of multiple variables to a single
molecular formula in order to better understand the sample.
For example, as shown in Fig. 2, we can select only the most
intense signals in the spectrum. Here we can see that these
species, whilst the dominant compounds in the mass

spectrum, represent only a fraction of the diversity present
in the sample as revealed by their position on the vanKrevelen
plot. This means that if we were to consider only the n most
abundant ions – an approach utilised in some previous
statistical analyses of complex spectra[19] –wewould be losing
the vast majority of the chemical diversity of the sample. On
the contrary, by selecting only the low-abundance peaks, i.e.
the “grass”, we can see that these signals do describe the
chemical diversity of the samplemore fully. Such information,
which is lost in static van Krevelen plots, will be important for
comparative studies aiming to characterise multiple samples
by different ionisation techniques; for example, comparing
ESI with MALDI (matrix-assisted laser desorption/
ionization) mass spectra, where the abundance of a species is
a function of both concentration and ionisation energy.
Likewise, this interactive selection of points can be used to
easily link outliers on any plots to their positions on the mass

Figure 3. Screenshots of the centroidmass spectrum showing an overlay of peakswhich represent isotopomers (green) and peaks
which could not be assigned a molecular formula (red). The bottom frame shows a zoomed in region of m/z 397–400, clearly
showing the monoisotopic peaks and their associated 13C isotopomers. Those peaks not assigned may be secondary isotope
peaks, e.g. with two 13C atoms or a single 18O atom. [Colour figure can be viewed at wileyonlinelibrary.com]
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spectrum, or understand where specific regions of these plots
originate from in the mass spectra.
On a second tab of the HTML page, the centroid mass

spectrum is plotted with the identified isotopomers, as well
as the remaining unassigned peaks. An example of this is
shown in Fig. 3. This gives the analyst, and more importantly
the reader or reviewer, a straightforward means to see how
well the spectrum was assigned, thus validating or otherwise
the assignment methodologies.
Finally, on a third tab, the data table is presented that is

required to generate the plots, and it is also interactively linked
to the plots, meaning that selections made on any plot are
highlighted in the data table, and vice versa. This data table
is downloadable as a text file.
The developed code also includes a number of related

Python scripts for: (i) automated batch plotting of publication
quality van Krevelen and DBE vs Carbon Number plots; (ii)
heteroatomic class distribution calculation and plotting; (iii)
an “all-possible-formula-generator”, which calculates a list
of possible, logical, chemical formulae as based on work done
by Kind et al.;[29] (iv) a tool to batch perform automated exact
mass-to-formula assignment based on Kendrick mass defect
analysis and z* by looking for homologous series of
compounds;[30] and (v) a tool for reformatting of PetroOrg
(Florida State University, Tallahassee, FL, USA) output CSV
files. Assignment files generated by the latter two tools
produce, as outputs, inputs for the i-van Krevelen software
and other included scripts. The included formula generator
is especially useful for determining assignment error
thresholds, for example by allowing the user to determine
the minimum distance between possible compounds at a
given m/z, and thus adding confidence to the assignment.
Overall, these interactive plots, and their combination,

represent a step forward in the analysis of complex mixtures
by high-resolution mass spectrometry. The tools are
open-source and available freely through GitHub with a
GNU General Public License v3.0, encouraging others to
experiment with and build upon them. The GitHub
repository[31] can be found online.[32] An online tool allowing
the use of some of these tools without the need to install any
specialist software has also been developed, and can be found
through the GitHub repository. An example of the interactive
plots enabled by this initial i-van Krevelen package based on
the SRFA FTICR MS data can also be found online.[33]

Future work could incorporate the Datashader[34] package,
which would allow the visualisation of the raw profile spectra
in a web browser without the need for the end user to
download large data files or install proprietary mass
spectrometry software, as well as the Bokeh Server tool,
allowing the user to dynamically select which variables to plot
on each axis, or to choose a specific colour or size scale.
Examples of code for the Datashader functionality are
included as a Jupyter Notebook in the GitHub repository.
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