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Human Olfactory Mesenchymal Stromal Cell
Transplants Promote Remyelination and

Earlier Improvement in Gait Co-ordination
after Spinal Cord Injury

Susan L. Lindsay ,1 Andrew Toft,2 Jacob Griffin,2 Ahmed M. M. Emraja,2

Susan Carol Barnett,1 and John S. Riddell2

Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair
potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of
incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for
P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution
in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in
white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional
outcome measures including end-point electrophysiological testing of dorsal column conduction and weekly behavioural test-
ing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis
revealed an earlier recovery of co-ordination between forelimb and hindlimb stepping in transplanted animals. This improve-
ment in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts impor-
tant for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore
be therapeutically beneficial in the treatment of spinal cord injury.
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Introduction

Spinal cord injury (SCI) is a devastating condition that can

lead to severe functional deficits which are usually perma-

nent because of the limited capacity of the adult central ner-

vous system (CNS) for repair. One promising strategy for

therapy is cell transplantation which has reached the stage of

clinical translation. The olfactory system has been a source of

cells for such studies (Feron et al., 2005; Lima et al., 2006,

2010; Lu et al., 2002; Mackay-Sim et al., 2008) because of

the presence of specialised glia called olfactory ensheathing

cells (OECs), with properties considered conducive to CNS

regeneration (Barnett et al., 1993; Mackay-Sim et al., 2008;

Raisman, 2007; Ramer et al., 2004; Ramon-Cueto and

Nieto-Sampedro, 1994). In addition, the olfactory mucosa

offers a relatively accessible source of cells for autologous

transplantation, which avoids the need for immunosuppres-

sion (Feron et al., 2005).

Graft composition has varied in different studies using

olfactory tissue. Some preclinical studies have investigated

purified populations of OECs (Ramer et al., 2004;

Ramon-Cueto and Nieto-Sampedro, 1994; Richter et al.,

2005; Riddell et al., 2004; Toft et al., 2007) while many

animal studies, and the majority of clinical studies, have

investigated mixtures of cell types (Chhabra et al., 2009;

View this article online at wileyonlinelibrary.com. DOI: 10.1002/glia.23117

Published online February 1, 2017 in Wiley Online Library (wileyonlinelibrary.com). Received Aug 20, 2016, Accepted for publication Dec 15, 2016.

Address correspondence to Dr John Riddell, Institute of Neuroscience and Psychology, R132 Level 1, West Medical Building, University of Glasgow, G12 8QQ,

United Kingdom. E-mail: John.Riddell@glasgow.ac.uk or Prof Sue Barnett, Institute of Infection, Inflammation and Immunity, Sir Graeme Davies Building,

120 University Place, University of Glasgow, Glasgow G12 8TA, United Kingdom. E-mail: Susan.Barnett@glasgow.ac.uk

From the 1Institute of Infection, College of Medical Veterinary and Life Sciences, Inflammation, and Immunity, University of Glasgow, Glasgow, G12 8TA, United

Kingdom; 2Institute of Neuroscience and Psychology, College of Medical Veterinary and Life Sciences, West Medical Building, University of Glasgow, G12 8QQ,

United Kingdom

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

VC 2017 The Authors GLIA Published by Wiley Periodicals, Inc. 639

http://orcid.org/0000-0003-4241-4933
http://creativecommons.org/licenses/by/4.0/


Lima et al., 2006, 2010). These have included OECs mixed

with fibroblast-like cells (Choi et al., 2008; Feron et al.,

2005; Tabakow et al., 2013), and undissociated pieces of

mucosa (Chhabra et al., 2009; Lima et al., 2006, 2010).

However, the precise cell types grafted into patients have rare-

ly been well characterised so that although clinical studies

suggest that the procedure of isolating olfactory mucosa and

transplantation itself are mostly safe (Chhabra et al., 2009;

Feron et al., 2005; Lima et al., 2006, 2010), the optimum

cell types for promoting repair remain unclear.

We have purified mesenchymal-like stromal cells (MSCs)

from the lamina propria of human olfactory mucosa which we

have termed hOM-MSCs (Lindsay et al., 2013). We have dem-

onstrated that conditioned media from these cells causes oligo-

dendrocyte precursor cells (OPCs) to proliferate and extend

processes, and importantly that it promotes CNS myelination

in vitro (Lindsay et al., 2013). MSCs have been extensively

investigated for transplant mediated repair of SCI. However,

attention has been focussed on MSCs derived from the bone

marrow (BM-MSCs) since these cells can be easily and repro-

ducibly isolated from aspirates and transplanted as autografts.

Preclinical studies suggest that MSCs reduce tissue damage,

decrease cyst and injury size, and modestly improve functional

outcomes in some models of SCI (Chopp et al., 2000; Himes

et al., 2006; Neuhuber et al., 2005). However, enhanced remye-

lination has not been reported and consistent with this, condi-

tioned media from BM-MSCs does not promote myelination

in vitro (Lindsay et al., 2013). MSCs obtained from the olfacto-

ry mucosa therefore represent an additional source of cells

which could be used in an autologous transplantation strategy

for SCI repair. They may be easier to obtain and expand in cul-

ture to the volumes required for transplantation into human

spinal cord injuries than other olfactory mucosa cell types, and

may have additional repair properties, such as the promotion of

myelination (Lindsay et al., 2013). We have therefore investi-

gated the repair properties of hOM-MSCs in a rodent model of

SCI. We found that although there was no long-term enhance-

ment of dorsal column long tract function, there was an earlier

recovery of co-ordinated stepping in transplanted animals and

this was correlated with enhanced peripheral type remyelination

of fibres in areas of white matter known to be important for

locomotion.

Materials and Methods

Experimental Design
Figure 1A summarises the experimental design. Animals were subjected

to low thoracic contusion injuries and after 3 weeks, were either trans-

planted with cells or injected with media. All animals were started on

daily immunosuppression prior to transplantation/media injection,

which continued for the study duration. Functional outcome was

assessed using behavioural and electrophysiological tests.

Acclimatisation started 2 weeks before injury and behavioural testing

was performed prior to injury and at regular intervals for 9 weeks there-

after. Electrophysiological testing was performed at the end of the

experiment and animals perfusion fixed for anatomical analysis. Ani-

mals were set up in batches and randomly assigned to transplant or

control groups at the time of injury with similar numbers of animals in

each group. Behavioural tests and analysis of results were carried out

blind. Sample size calculations were performed using a conventional

protocol as previously detailed (Chow et al., 2008). This calculation

assumed that there were no differences in standard deviations between

groups and that detection of 20% change is derived with 80% power at

a 5% level of significance, for two-sided significance tests. Animal

numbers were set up accordingly to ensure that for each outcome mea-

sure the group size from which data was obtained was appropriate

(n 5 10–15 control or transplanted animals, see Animals and Table 1).

Human Olfactory Mucosa Biopsies
Four olfactory mucosa biopsies were obtained with WoSRES approval

(07/s0710/24) and informed patient consent from two males, one

female, and one patient of undisclosed sex undergoing nasal septo-

plasty/polypectomy surgery (Table 1). Patients were aged 40, 43, 50,

and 53 (average age 46.5 years). Biopsies were taken from superior

regions known to contain olfactory mucosa (Morrison and Costanzo,

1990). Biopsies were collected, purified and grown as previously

described (Lindsay et al., 2013). After purification, cells (termed

hOM-MSCs) were lentivirally infected using a MOI of 10 (Amsbio

UK, LVP001) to produce GFP expressing cells. Lentiviral GFP infec-

tion was >98% in all preparations. Conditioned media was harvested

from each donor’ cells and independently assessed for its potential to

promote in vitro CNS myelination using previously described methods

(Lindsay et al., 2013). Media from all donors was shown to enhance

myelination (Table 1).

Animals
A total of thirty-seven adult male Sprague Dawley rats were used in the

study (200–250 g; Harlan Laboratories, Loughborough, UK). Table 1

details how animals were distributed throughout the study. Twenty-

nine were set up for the behavioural study. One animal failed to recover

normally from the contusion injury and was therefore removed. An

additional three rats were used for investigation of cell survival and

distribution at early time points (10 days and 4 weeks). Five further

rats were set up specifically to assess P0 localisation throughout the

cord. Animals were housed under a 12 h light/dark cycle with ad

libitum access to food and water. All experimental procedures were

performed in accordance with the UK Animals (Scientific Procedures)

Act 1986.

Contusion Injury Surgery and Postoperative Care
Contusion injuries were performed on thirty-seven animals using an

Infinite Horizon impactor (Precision Systems Instrumentation).

Animals were anesthetised with isoflurane and a laminectomy per-

formed to expose the spinal cord at the T9 segmental level. The ver-

tebral column was stabilized using Adson forceps and a midline

impact delivered (force 150 kdyn). A 10-0 ethicon suture was placed

in the dura to facilitate identification of the injury site at subsequent
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transplantation/media injection surgery. The wound was closed and

animals recovered in warmed cabinets overnight. Animals received

analgesia (buprenorphine, 0.05 mg kg21 and carprofen, 5 mg kg21,

s.c., at induction of anaesthesia and the morning after surgery).

Saline (3–5 mL) and enrofloxacin (5 mg kg21) were given s.c. for 3

and 7 days, respectively, after injury. Bladders were manually

expressed twice daily until reflexive emptying returned (typically 6–7

days after injury).

Cell Transplantation
Cell/media injection was performed 3 weeks post-injury. All animals

received immunosuppression (cyclosporine, 20 mg kg21, daily, s.c.

Novartis, UK) from 2 days before surgery, until the end of the study.

Prior to surgery, cells were detached using 0.25% trypsin-EDTA

(Sigma, UK), passed through a 40 lm cell strainer and centrifuged.

Pelleted cells were re-suspended in 50 lL aMEM:10%:EDTA (10%

serum:2 mM EDTA) and kept on ice. Animals were anaesthetised

with isoflurane and the injury site re-exposed. A glass micropipette

(internal diameter 50–70 lm) was loaded with cells (�100,000–

200,000 cells lL21). The pipette was inserted into the lesion

through a slit in the dura to a depth of 1200 lm. Cells were

injected by brief (40 ms) pressure pulses (Picoinjector, WPI, Sarasota

FL), as the pipette was slowly raised to around 200 lm or until cells

overflowed (typically 30–40 lL/animal). Media control animals were

injected with similar volumes of aMEM:10%:EDTA. Wounds were

closed and animals recovered in a warm environment.

Basso, Beattie, and Bresnahan Locomotor Scoring
Open field locomotor function was assessed using the Basso, Beattie,

and Bresnahan (BBB) locomotor rating scale (Basso et al., 1995) and a

subscore (Lankhorst and Hamers, 1999). Animals were placed in a cir-

cular pen (diameter of 1.5 m) and both hindlimbs were assessed over

5 min. An average of the scores for both limbs was determined for

each animal at 5 days after injury and weekly thereafter for 10 weeks.

DigiGaitTM Analysis
Gait analysis was performed using the DigiGaitTM system (Mouse

Specifics; Quincy, MA). Animals were placed in a Plexi-glass

FIGURE 1: Experimental design and injury parameters. (A) Schematic diagram summarizing the experimental time-line. (B) Injury force
and (C) displacement were similarly distributed for transplant and control groups and showed no significant difference (Student’s t test).
(D) Body weights were similarly distributed within each group throughout the study with no significant differences (Student’s unpaired t
test). In plots B–C horizontal bars represent mean values.
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chamber on a transparent treadmill and videoed from beneath using

a high speed camera (80 Hz). Rats were acclimatized to run at 22

cm sec21. At least five, 2- to 3-sec long runs were collected at each

test. Testing was performed pre-injury and weekly from 2 weeks

post-injury until the end of the study. Nine animals did not com-

plete sufficient runs to allow reliable data to be obtained at all post-

injury test sessions. This was mainly due to reduced motivation rath-

er than physical inability to run, since most of the animals (6/9) ran

at the first post-injury test. The loss of animals was similar in trans-

planted and medium injected groups (three per group). These ani-

mals were completely removed from the analysis since their inclusion

would have precluded proper statistical analysis. Final gait data was

therefore obtained from 9 transplanted and 10 control animals, all

of which ran in every test session (summarised in Table 1). Video

files were individually reviewed and any steps that were erroneously

represented as being in contact with the treadmill were corrected.

Videos containing errors which could not be corrected were rejected.

Corrected videos were analyzed to obtain a range of gait parameters

(Dorman et al., 2014).

Sensory Testing
Tests of changes in tactile sensitivity were performed on the forepaws

(avoiding injury induced hyperreflexia of the hindpaws) and over the

back.

Forepaw plantar von frey testing. Forepaw withdrawal thresh-

olds to von Frey hairs were determined using the up down method

(Dixon, 1980). Rats were placed in a plexiglass chamber set over a

mesh platform and tested after 15-min habituation. Filaments were

applied to the plantar surface of a forepaw when animals were sta-

tionary, until bending occurred and then pressure maintained for �2

sec. A 50% withdrawal thresholds were determined (Chaplan et al.,

1994) for each paw on three occasions (5 min between tests) and an

average threshold for each paw calculated.

Girdle von Frey hair testing. Development of at level pain in

response to mechanical stimulation was tested using a 2.44g von

Frey hair applied to the animal’s back 2 cm caudal and 2 cm lateral

to the injury site. Animals were acclimatised in an empty cage for

5–10 min. The von Frey filament was applied for 2–3 sec and held

against the skin so that the filament bent. This was repeated 10

times on each side of the animal, with at least 30 sec between appli-

cations. The number of applications resulting in one of the following

avoidance responses was recorded and averaged for each side: head

turning, biting, avoidance (whole body movement) or jumping/

flinching. Results for each side were averaged.

Dynamic Weight Bearing
The distribution of weight between paws was measured using a

Dynamic weight bearing device (BIOSEB, France). Animals were

placed in a Plexiglas chamber with an array of pressure transducers

covering the floor. Information on the force generated by each paw

contact was recorded (sampling frequency 10 Hz) together with a

synchronised video image of the animal. Off-line analysis was per-

formed semi-automatically after operator confirmation of correct

paw identification from the video. Animals were tested at 6 weeks

post-injury for a period of 5 min each.

TABLE 1: Batch Information for Donor Cells, Animal Numbers, and Outcome Measures

Fold increase
for in vitro
myelination

Total number
of animals

Number of
animals for
electro-
physiology and
sensorimotortests

Number of
animals for
gait analysis

Number of
animals
assessed
for P0

Cells Media Cells Media Cells Media Cells Media

Donor 1/
Batch 1

1.83 4 3 3 3 2 1 0 0

Donor 2/
Batch 2

1.80 5 5 5 5 3 5 1 1

Donor 3/
Batch 3

2.46 5 7 5 7 4 4 2 2

Donor 4/
Batch 4

2.01 1 4 0 0 0 0 1 4

Total 15 19 13 15 9 10 4 7

Table shows the degree of in vitro myelination produced by conditioned media collected from hOM-MSCs obtained from each donor.
Myelination is shown as a fold increase relative to control cultures and is similar to that reported previously (Lindsay et al., 2013). The
number of animals transplanted with cells from each donor and the corresponding media injected animals set up within each batch are
shown. Table also details the number of animals from which sensorimotor and electrophysiological data was obtained and the final number
of animals that were included for gait analysis (animals which could not complete one or more tests were omitted). Final column shows the
numbers of animals used for analysis of P0 immunolabelling.
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Electrophysiology
To assess the function of ascending pathways projecting along the

dorsal columns, sensory evoked potentials (SEPs) were recorded in

acute experiments. Methods were similar to those described previous-

ly (Toft et al., 2007). Animals were anaesthetized, with 5% isoflur-

ane and subsequently with doses of sodium pentobarbital (10

mg kg21 i.v.). During recording, when the animals were paralyzed

with pancuronium (Sigma, UK; 0.1 mg i.v. at 40-min intervals) and

artificially ventilated, anaesthetic was given at a frequency commen-

surate with that required before paralysis and monitored by continu-

ously recording blood pressure and its response to noxious stimuli

and observing pupil diameter. Core temperature, blood pressure, and

end-tidal pCO2 were maintained within physiological limits. The

left radial and sciatic nerves were dissected for electrical stimulation

and a small laminectomy was performed at the lumbar level to allow

recording of the sciatic afferent volley. The animal was stabilised in a

frame and a craniotomy performed to expose the right sensorimotor

cortex. The dura over the brain and spinal cord was opened and

exposed tissues covered with warmed liquid paraffin.

A diagrammatic representation of the electrophysiological

recording set up is shown in Fig. 4A and example SEP recordings in

Fig. 4B. SEPs were recorded using a monopolar silver-ball electrode

placed on the surface of the sensorimotor cortex while supramaximal

shocks (0.5 Hz, 0.2 ms, <500 mA) were applied alternately to radial

and sciatic nerves. Recordings with 1 mm spacing were made accord-

ing to a grid extending 4-mm rostral and caudal to Bregma and up

to 5 mm laterally (see Fig. 4C,D). Up to 40–60 records (without fil-

tering, 20 kHz sampling rate) were averaged using a digital interface

and Signal software (Cambridge Electronic Design, Cambridge,

UK). Latencies and amplitudes of SEPs were measured and isopoten-

tial plots created using 3D field contour plotting software (Version

3.0.9.0, Copyright 1998–2007, Vladimir Galouchko).

Histology

Tissue preparation and immunohistochemistry. Animals

were deeply anaesthetized with intraperitoneal sodium pentobarbital

(Euthatal, Vericore, UK; 200 mg mL21) and perfused with mammali-

an Ringer’s solution (containing 0.1% lidocaine) followed by depoly-

merized 4% paraformaldehyde in 0.1 M PB, pH 7.4. A block of tissue

encompassing the lesion/transplant or injection sites was removed and

post-fixed overnight in PFA containing 30% sucrose. Sixty micrometer

sagittal sections encompassing the injury site were cut on a cryostat and

incubated free-floating for 30 min in 50% ethanol then washed for 10

min in 0.3 M phosphate-buffered saline (PBS). Sections were then

incubated for 72 h at 48C in different combinations of the following

primary antibodies: sheep or chicken anti-GFP (Abcam; 1:1,000),

mouse anti-GFAP (Sigma, UK; 1:1,000), rabbit anti-GFAP (DAKO;

1:1,000), mouse/rabbit anti-NF200 (1:1,000, Sigma), chicken anti-P0

(1:100 Santa-Cruz), rabbit anti-laminin (Sigma, 1:400), rabbit

anti-Caspr (Abcam, 1:500). Sections were subsequently incubated in

fluorophore-conjugated species-specific donkey IgG secondary

antibodies for 4 h at room temperature. Secondary antibodies were

conjugated to Alexa-488 (1:500), Alexa-647 (1:500) or Rhodamine

Red (1:200), all from Jackson ImmunoResearch Laboratories. In four

colour reactions, Caspr was revealed using anti-rabbit biotinylated sec-

ondary antibody (1:500, Jackson ImmunoResearch Laboratories) fol-

lowed by avidin-Pacific Blue (1:100, Invitrogen). All antibodies were

diluted in PBS with 0.3% triton X-100. Sections were mounted onto

plain glass slides using VectaShield (Vector laboratories) and stored at

2208C.

Microscopy. Sections were viewed using an epifluorescence

microscope (Zeiss, Axioplan) and illustrative material scanned using

a confocal microscope (Zeiss LSM 710). Projections of tiled scans

were formed from low power (X20, 11–13 optical sections at 2 lm

z-separation) or high power (403 or 633 oil immersion between

9 and 13 optical sections at 0.5 or 0.3 lm z-separation) scans.

Measurement of injury site width and length. Sagittal sec-

tions from each injury block were viewed under an epifluorescence

microscope and rostral and caudal limits of the injury identified

from cavity rims or the boundary between extracellular matrix and

glial scar. Four sections containing the most extensive sites were

selected for confocal imaging and the maximal injury length

measured using ZEN lite 2010 software (Zeiss). Injury site width

was quantified by counting the number of sections containing the

injury and multiplying by section thickness.

Semi-Quantification of Protein-Zero
Immunohistochemistry
All sections from the entire width of the injury site tissue block of

media injected and hOM-MSC transplanted animals used for assess-

ment of peripheral type remyelination were reacted for P0. All

sections were then examined by epifluorescence microscopy and P0

expression noted (Fig. 6A). Each section was scored in a categorical

manner that is, scored positive or negative for the presence or

absence of P0 immunolabelling, irrespective of the amount of immu-

nolabelling. This scoring was performed for three regions of the

spared white matter surrounding the injury site: (1) dorsal columns,

(2) lateral funiculi and (3) ventral funiculi as shown in Fig. 6A. The

number of sections in which P0 immunolabelling was scored as posi-

tive was then expressed as a percentage of all sections. This categori-

cal data was then statistically analyzed using Fisher’s exact test with

P< 0.05 taken to be significant. Because there was no significant

difference between the numbers of sections obtained from trans-

planted and media control animals (Student’s t test), this approach

was not affected by differences in the widths of cords.

Statistical Analysis
Numerical data were statistically analyzed using Prism software ver-

sion 5.0 (Graphpad Software, USA). All parametric data is presented

as the mean 6 SEM and analyzed using Student’s t test or ANOVA

with Bonferroni’s post-test adjustment for multiple comparisons

where appropriate. Differences were considered significant at

P< 0.05. Recovery of gait was analyzed using a summary measures

approach for weekly repeated measurements on each animal. For

each individual animal, measurements of gait symmetry, stride length

and stride frequency for weeks 4–8 (period of accelerated recovery

after cell transplantation) were analyzed in Minitab using linear

regression analysis to generate a linear coefficient value. The linear
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coefficient values were compared using the Mann-Whitney test to

assess the equality of the slopes between control and transplanted

groups for each gait parameter (Matthews, 1993; Vossoughi et al.,

2012).

Results

Injury and Transplantation
Because in vitro findings suggest remyelination is a potential

repair mechanism of hOM-MSCs, we used a contusion injury

model known to result in demyelination of spared fibres

(James et al., 2011; Totoiu and Keirstead, 2005). A T9 level

injury was chosen to allow outcome measures focused on func-

tions involving long white matter tracts and a force of 150

kdyn selected based on its suitability for the proposed func-

tional assessments. The actual force and displacement produced

at injury did not differ between the groups of animals subse-

quently transplanted or injected with media (Fig. 1B,C). Fur-

thermore, body weights of animals did not differ between

transplanted or media injected animals pre- or post-injury, or

at the time of cell transplantation/media injection (Fig. 1D).

Transplants of cells or injections of media were made 3 weeks

after injury. Similar numbers of animals were transplanted with

cells from each of the three donors and animals were set up in

batches in which transplanted and controlled animals were

studied side by side. Each batch of cells was verified to pro-

mote CNS myelination in vitro (Table 1).

BBB Open Field Locomotor Score
Locomotor recovery was assessed using the BBB open field

score and by a subscore method designed to overcome anom-

alies that can affect the upper end of this scale when used

with milder injuries (Lankhorst and Hamers, 1999); the

results are shown in Fig. 2A. Five days after injury the mean

BBB score was just above 6. This improved progressively over

the remainder of the study with the majority of improvement

occurring within the first 3 weeks. The second operation to

transplant cells or inject media at week 3 post-injury had

little effect and there were also no differences at any later

time point.

Weight Bearing
To assess postural changes, a dynamic weight bearing test was

used to measure the percentage of body weight born on each

paw. Figure 2B shows the distribution of weight for trans-

planted and medium injected groups tested 6 weeks after

transplantation. In normal animals, when all four paws are in

contact with the floor, animals bear more weight on the hind-

paws than forepaws (dashed lines in Fig. 2B). Following inju-

ry there is a redistribution of weight from the hindpaws to

the forepaws. This re-distribution does not differ between

transplanted and control animals so that transplants do not

alter this postural change.

Pain Assessment
The effect of hOM-MSC transplants on post-SCI pain was

evaluated by assessing sensitivity of the forepaws and skin of

the back at the injury level. There was a nonsignificant trend

for less sensitivity to tactile stimuli in transplanted compared

with control animals, both for forepaws tested at 6 weeks after

transplant/media injections (Fig. 2C left) and for the back test-

ed at various, but particularly later, time points (Fig. 2C right).

This indicates that transplants of hOM-MSCs do not exacer-

bate pain and may even have some effect in preventing it.

Gait Analysis
Treadmill based analysis of gait showed progressive locomotor

recovery following injury, with transplanted animals showing

faster recovery of co-ordinated stepping than control animals

(Fig. 3). In normal animals, locomotion involves full co-

ordination between forelimbs and hindlimbs so that every fore-

limb step is accompanied by a hindlimb step. Therefore, before

injury, the ratio of forelimb to hindlimb step frequency

(termed gait symmetry) is 1 and deviation from this ratio indi-

cates loss of co-ordination. The plots in Fig. 3A,D show that

this ratio changes after injury but then gradually recovers.

However, the recovery appears to be faster and more complete

in the transplanted animals compared with controls.

The plots in Fig. 3B,E showing changes in stride frequen-

cy (number of steps per unit time) and in Fig. 3C,F showing

stride length, reveal the mechanism underlying these changes in

co-ordination. Following injury, there is an increase in the

frequency of forelimb stepping, and since the animals are on a

treadmill and therefore always run at the same speed, a corre-

sponding reduction in stride length. In comparison, the

frequency and stride length of the hindlimbs are initially

unchanged after injury, so that the forelimbs and hindlimbs

become dis-coordinated. This may reflect a compensatory

mechanism to provide greater stability and propulsion for loco-

motion when the hindlimbs are weakened. Furthermore, the

gradual recovery of co-ordination is explained by changes in the

stride frequency of both the forelimbs and hindlimbs over time:

the forelimbs progressively slow down while the hindlimbs

speed up. Thus, closer co-ordination is achieved by adaptation

to a new common stride frequency, rather than normalisation of

the stride frequency to that before the injury.

Because the plots in Fig. 3A–F suggest a more rapid

improvement in co-ordinated stepping in the transplanted ani-

mals, particularly in the first 5 weeks after cell injection, further

analysis of gait symmetry, stride frequency and stride length

parameters was performed using linear regression analysis. Indi-

vidual linear regression lines were fitted through the values for

each gait parameter at weeks 4 to 8 for all animals in the control

and transplanted groups (Fig. 3G–I). The regression lines for all

transplanted animals consistently show steep slopes
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corresponding to improved gait. In contrast, the slopes for con-

trol animals are much more variable and some even show an

opposite slope indicating a deterioration of gait.

To test the statistical significance of these differences,

linear regression coefficients were calculated (for gait symme-

try, stride frequency and stride length parameters) using the

slopes of the regression lines for each animal (Fig. 3G–I).

Comparison of these linear regression coefficients for each

parameter confirms a significantly faster improvement in the

gait of transplanted animals compared with control (Fig. 3J–

L, P< 0.05 for all, Mann–Whitney test).

Electrophysiological Assessment
The effect of transplants on conduction along the dorsal

column pathway and past the injury site (Fig. 4A) was

assessed electrophysiologically at the end of the study by

recording SEPs (Fig. 4B) evoked by the sciatic nerve. T9

contusion injuries of 150 kdynes reduce the SEP amplitude

to about half of that seen in normal animals (data not

shown). However, when recordings from transplanted and

control animals were compared, there was no difference in

the maximal amplitudes (Fig. 4E), distribution over the cor-

tical surface (isopotential area, Fig. 4G) or onset latency

(Fig. 4I) in the two groups. As would be expected, radial-

evoked SEPs, recorded as an internal control which were

used to normalise the radial evoked SEPs, were also

unchanged (Fig. 4F,H,J). This suggests that transplants have

little effect on function in the injured dorsal column path-

way, at least at the relatively chronic time point

investigated.

FIGURE 2: Assessment of long tract functionality. (A) BBB locomotor scores and subscores for hOM-MSC transplanted and media
injected animals 5 days post-operatively and weekly intervals thereafter. Media injected animals, n 5 15; hOM-MSC transplanted animals,
n 5 13 (mean 6 SEM). There is no significant difference between groups, for either score, at any time point (Repeated measures two-way
ANOVA with Bonferroni’s multiple comparison). (B) Distribution of body weight between paws 6 weeks after treatment. Mean 1 SEM,
dotted lines indicate normal weight distribution values obtained from un-operated animals (Emraja and Riddell, unpublished observa-
tions). There was no significant difference between groups (Student’s unpaired t test). (C) Assessment of forepaw tactile allodynia 10
weeks after injury using 50% withdrawal thresholds to Von Frey filaments (mean 1 SEM). hOM-MSC, n 5 13; media control n 5 15. There
was a trend towards less allodynia (less lowering in threshold) in transplanted animals however not significant (Student’s t test). Assess-
ment of tactile allodynia over the back at level. Response to Von Frey hair (0.04 g) applied to skin 2-cm caudal and 2-cm lateral to the
injury (Mean 6 SEM). Animals in both groups developed similar levels of allodynia by 3 weeks after injury. Transplanted animals showed
a trend towards less sensitivity, however not significant (Repeated measures two-way ANOVA with Bonferroni’s multiple comparison).
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FIGURE 3: Gait parameters obtained by analysis of treadmill walking. (A–F) Changes in gait symmetry (ratio of forelimb (FL) to hindlimb
(HL) steps), stride frequency and stride length. (A–C) Plots of mean ratios for pre-injury and weekly post-injury runs. (D–F) Bar graphs of
mean ratios values (1 SEM) obtained pre-injury and at 4, 5, 6, 7, and 8 weeks post-injury. In (B) and (C), dotted lines represent forelimbs
and solid lines hindlimbs. (G–I) Individual linear regression lines fitted through the values for gait symmetry (G), stride frequency differ-
ence (H) and stride length difference (I) at weeks 4–8 for all animals. (J–L) Linear regression coefficients were significantly more negative
in the transplanted animals compared with media controls for gait symmetry (J), stride frequency (K) and stride length (L) revealing
faster recovery of co-ordinated stepping in hOM-MSC transplanted group (*P < 0.05, all comparisons, Mann–Whitney test). A-L, hOM-
MSC group n 5 9, media group n 5 10, at all time points. J, K, L, displayed as box and whisker plots. [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4: Electrophysiological assessment of transmission along the ascending dorsal column pathway. (A) Schematic diagram of the elec-
trophysiological assessment showing position of stimulating and recording electrodes in relation to pathways originating in the forelimb
(radial nerve afferents) and hindlimb (sciatic nerve afferents, red lines). (B) Example of SEP evoked by stimulation of the sciatic nerve and
recorded from the sensorimotor cortex (average of 30 responses). Measurements of amplitude (A) and latency (L) at each recording loca-
tion. (C and D) SEP isopotential contour plots for (C) radial nerve-evoked potentials (80% of maximum) and (D) sciatic nerve-evoked poten-
tials (15% of maximum). Contours represent the means constructed from isopotential plots for hOM-MSC transplanted (red; n 5 13) and
medium injected (black; n 5 15) animal groups. Numbers on the isopotential grids represent distances in mm relative to Bregma (B). Com-
parison of SEP parameters. (E and F) Maximum amplitudes of sciatic-evoked (E), radial-evoked (F) and SEPs expressed as a percentage of
the maximum radial SEP recorded in each animal (mean 1 SEM). (G and H) Mean areas of isopotential contour plots encompassing areas of
sensorimotor cortex within which radial and sciatic SEP amplitudes were at least 80% and 15% of the maximal radial SEP amplitude
recorded in each animal, respectively. (I and J) Latency to SEP onset for sciatic-evoked (I) and radial-evoked (J) potentials (mean 1 SEM).
hOM-MSC transplanted, n 5 13; medium injected controls, n 5 15. There were no significant differences in SEP amplitude, area or latency
between groups (Student’s unpaired t tests). [Color figure can be viewed at wileyonlinelibrary.com]
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Injury Site Histology
The histological appearance of the injury site in media

injected and cell transplanted animals was classified as fully

matrix filled, part matrix filled or an empty cavity (Fig. 5A–

C). Transplanted animals tended to have more matrix filled

cavities (57%) than media controls (20%) (Fig. 5H). Further-

more, the injury sites of transplanted animals were significant-

ly less extensive in both length and width compared with

media controls (Fig. 5I,J). In both groups of animals, where

matrix filled or part filled the injury site it was rich in lami-

nin and often contained numerous regenerating NF200

immunolabelled fibres (Fig. 5D–G).

Peripheral Myelin Protein Zero (P0) Distribution
Systematic observations of the distribution of P0 (a marker of

peripheral type myelin) were made in the spared white matter

surrounding the area of damage produced by the contusion

where demyelination has been reported to occur in this model

(James et al., 2011; Totoiu and Keirstead, 2005). These areas

are divisible by anatomical location into the dorsal columns,

the lateral funiculi and the ventral funiculi as depicted

diagrammatically in Fig. 6A.

In the dorsal column white matter, P0 immunolabelling

was detected in all of the animals investigated, both transplanted

and control. The heaviest labelling was seen immediately dorsal

to the contusion injury at the impact site (Fig. 7A) and this was

common to all animals. In some animals, occasional P0 immu-

nolabelled axons could also be seen scattered along the length of

the section. High magnification confocal imaging of the main

central area of P0 immunolabelling (Fig. 7B–E) revealed that

nearly all neurofilament positive fibres in this area were associated

with P0, suggesting extensive remyelination by Schwann cells

FIGURE 5: Characterisation of injury site animals following delayed transplantation into the contused spinal cord. (A–C) Confocal micro-
scope images illustrating degrees of cavitation and extracellular matrix infilling of the injury site at 10 weeks post-injury. Injury sites
were classified as (A) filled (B) part-filled or (C) cavity (GFAP 5 blue, Laminin 5 red). (G–J) Confocal images illustrating axonal regenera-
tion within the cavity of (D) media injected or (E) hOM-MSC transplanted animals (GFAP 5 blue, NF200 5 red). F and G are higher magni-
fication confocal images of the boxed areas in D and E, respectively. (H) Table showing incidence of each type of injury site in hOM-
MSC transplanted (n 5 13) and medium injected animals (n 5 15). (I) Injury site width and (J) injury site length (mean 6 SEM). Injury sites
were significantly less extensive in width and length in hOM-MSC transplanted animals compared with media controls (Student’s
unpaired t test, **P < 0.01, *P < 0.05). [Color figure can be viewed at wileyonlinelibrary.com]

648 Volume 65, No. 4

http://wileyonlinelibrary.com


FIGURE 6: Peripheral myelin protein zero (P0) distribution within the injured spinal cord. (A) Schematic diagram of T9 transverse section
through an injury site (represented by the dashed red line), illustrating regions where P0 immunolabelling was observed (grey shaded
boxes in (1) dorsal columns, (2) lateral white matter and (3) ventral white matter). Black lines illustrate planes of sections passing through
these regions at the midline (M) or lateral aspect (L) of the spinal cord. (B) Proportion of sections passing through each region depicted
in (A) where P0 immunolabelled axons could be detected (percentage for all sections from all animals examined; hOM-MSC, n 5 4; media
controls, n 5 7). P0 immunolabelling occurred in significantly more sections from transplanted than control animals in lateral and ventral
regions of the white matter (Non-parametric fisher exact test of independence, ***P < 0.001), but in similar numbers of sections contain-
ing dorsal columns. (C, D) Scatter plots depicting percentage of lateral (C) and ventral (D) sections positive for P0 within each animal.
The distribution between groups is significantly different. The majority of control animals have no P0 within lateral or ventral regions,
compared with all transplanted animals which consistently have immunolabelling. (E) and (F) Bar graphs showing % sections with P0
immunolabelling from spinal cords of animals transplanted with each batch of donor cells. P0 remyelination is significantly increased in
lateral (E) and ventral (F) regions, after transplantation with each donor cell batch compared with media injected controls (Control levels
depicted by dashed lines. Non-parametric fisher exact test of independence, *P < 0.05, **P < 0.01, ***P < 0.001). [Color figure can be
viewed at wileyonlinelibrary.com]
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forming peripheral type myelin. In addition, immunolabelling

for the paranodal membrane protein Caspr, suggested the pres-

ence of normal nodal architecture. The appearance of these areas

of dorsal column remyelination was similar in control and trans-

planted animals (cf, Fig. 7B,D and Fig. 7C,E). The remyelina-

tion was also similar in extent as the total number of sections in

which P0 could be observed in the dorsal columns was closely

similar in transplanted and control animals (Fig. 6B).

In contrast to the similar pattern of P0 immunolabelling

in the dorsal columns, its distribution in the lateral and

ventral areas of white matter (Fig. 6A) differed markedly

between control and transplanted animals. In all 4 of the

transplanted animals examined, a region of dense P0 immu-

nolabelling was found in the white matter immediately lateral

to the injury (Fig. 8C,D). This was typically restricted longi-

tudinally to the impact site that is, an area adjacent to the

center of the injury. In comparison, P0 immunolabelling in

this area was not consistently seen in control animals and

where detected, was very sparse. Semi-quantitative analysis

showed that, compared with transplanted animals,

FIGURE 7: Peripheral myelin protein zero (P0) distribution within the dorsal columns of the injured spinal cord. (A) Confocal image show-
ing typical region of dorsal columns at injury site center where P0 immunolabelling was seen in both medium injected and transplanted
animals. The example is a control animal, 10 weeks post-injury (P0 5 red, NF200 5 blue). (B, C) High power confocal images of P0 immu-
noreactivity within the dorsal columns of (B) medium injected and (C) transplanted animals, respectively. Boxed areas in (B) and (C) are
shown at greater magnification in (D) and (E), respectively. (D) and (E) illustrate clear association of P0 with nerve fibres and Caspr (B–E,
P0 5 red, NF200 5 blue, Caspr 5 green). [Color figure can be viewed at wileyonlinelibrary.com]
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significantly fewer sections from control animals contained P0

immunolabelling in the lateral white mater (Fig. 6B). In fact,

only 3 of the 7 control animals investigated showed any evi-

dence of laterally located P0 (despite clear P0 immunolabel-

ling in the dorsal columns of the same animals; Fig. 6C) and

in 2 of these animals this amounted to only one or two iso-

lated lengths of axon (Fig. 8A,B).

A similar picture was seen when the ventral white matter

was examined. For all 4 transplanted animals P0 immunolabel-

ling was observed in a region immediately below the injury in

the ventral columns (Fig. 8E–G). The immunolabelling in this

region was restricted longitudinally to the level of the impact

in two animals but in the remaining two animals there was a

more extensive longitudinal distribution, as in the dorsal

FIGURE 8: P0 distribution within lateral and ventral areas of the spinal cord. (A–D) Confocal images of P0 immunolabelling within lateral
regions of medium injected (A, B) and hOM-MSC transplanted (C, D) animals, respectively (P0 5 red, NF200 5 blue). (B) and (D) show
high power images of boxed areas in (A) and (C), respectively. (E–G) Confocal images of P0 immunolabelling within ventral regions of
hOM-MSC transplanted animal (P0 5 red, NF200 5 blue, Caspr 5 green). (E) Low power view of the injury site. The asterisks indicate mac-
rophages immunolabelled by cross-reactivity with P0 antibody. Boxed area (E) contains P0 immunolabelling. High power image illustrat-
ing the distribution shown in (F). Boxed area in (F) is magnified in (G) showing association of P0 immunolabelling with nerve fibres and
Caspr. [Color figure can be viewed at wileyonlinelibrary.com]
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columns. Semi-quantitative analysis showed that, compared

with transplanted animals, significantly fewer sections from

control animals contained P0 immunolabelling in the ventral

white mater (Fig. 6B). In fact, ventral P0 immunolabelling was

seen in only 1 of the 7 media control animals and even in this

one example, it was tightly restricted to a small region directly

ventral to the injury center. In the remaining six control ani-

mals it was completely absent (Fig. 6D).

There were no obvious differences in the effect of the donor

cell batches as each significantly increased P0 myelination within

the ventral and lateral white matter when compared with control

animals, (Fig. 6E,F).

hOM-MSC Survival and Distribution
hOM-MSC distribution and survival was assessed at 10 days,

4 weeks and 7 weeks post-transplantation. At the early time

points hOM-MSCs were numerous and distributed through-

out the injury site (Fig. 9A,B). However, by the end point of

the main investigation (7 weeks) although GFP labelled cells

were detected in all 15 transplanted animals, there were far

fewer surviving cells (Fig. 9C). The distribution of hOM-

MSCs was assessed in relation to P0 and NF200 immunolab-

elling of axons at 4 weeks post-transplantation when cells

were still numerous, as well as in the 7 week survival animals.

There was no association of GFP labelled hOM-MSC profiles

with either P0 remyelinated fibres or NF200 immunolabelled

axons in the dorsal columns (Fig. 9D,G), lateral funiculi

(Fig. 9E,H) or within the ventral funiculi (Fig. 9F,I). This

suggests that hOM-MSCs were not directly responsible for

the P0 remyelination of spared fibres in these regions.

Discussion

Remyelination at the Injury Site
Demyelination is a potential therapeutic target for improving

outcome after SCI (Plemel et al., 2014) because loss of the

myelin sheath around spared axons is a pathological feature

of traumatic injuries. Demyelination has consistently been

reported in animal models of contusion injuries (Blight and

Young, 1989; Bresnahan, 1978; Jeffery and Blakemore, 1999)

and although there is also evidence from animal studies that

demyelinated axons at the site of injury may be remyelinated

by endogenous cells (Beattie et al., 1997; Biernaskie et al.,

2007; Bresnahan, 1978; Brook et al., 1998; Bunge et al.,

1993; Buss et al., 2007; Guest et al., 2005) this process is

generally considered to be incomplete (Plemel et al., 2014).

There are also reports of demyelination in clinical cases of

SCI (Bunge et al., 1993; Guest et al., 2005; Kakulas, 1999;

Norenberg et al., 2004), although the incidence and persistence

is more difficult to assess because the evidence is generally

FIGURE 9: hOM-MSC survival and association with P0 distribution. Confocal images showing survival of transplanted cells at and around
the injury epicenter at different time points post-transplantation: (A) 10 days, (B) 4 weeks and (C) 7 weeks (GFAP 5 blue, GFP expressing
hOM-MSCs 5 green (in A and C) and NF200 5 blue, GFP expressing hOM-MSCs 5 green (in B)). (D–F) Confocal images of GFP labelled
hOM-MSCs, NF200 axons and P0 immunolabelling found within dorsal columns (D), lateral funiculi (E) and ventral funiculi (F) in hOM-
MSC transplanted animal at 4 weeks (P0 5 red, NF200 5 blue, GFP 5 green). The boxed areas in (D–F) are shown at higher magnification
in (G–I). The asterisk in (E) indicates a P0 immunolabelled dorsal root. [Color figure can be viewed at wileyonlinelibrary.com]
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obtained from post-mortem material in which persistently

demyelinated axons may have degenerated (Bunge et al., 1993).

Endogenous repair of demyelinated axons is known to

be mediated in part by SCs and studies in animal models

have consistently shown the presence of either SCs or P0

myelination within the spared rim of dorsal column white

matter above the injury site (Beattie et al., 1997; Biernaskie

et al., 2007; McTigue et al., 2006; Takami et al., 2002). Fur-

thermore, this remyelination has been shown to lead to elec-

trophysiologically demonstrable improvements in conduction

along the dorsal columns (Blight and Young, 1989). In this

study P0 immunolabelling was consistently seen in the dorsal

columns and was of similar extent in both hOM-MSC trans-

planted and control animals. This suggests efficient endoge-

nous remyelination of dorsal column fibres by the end point

of the study (10 weeks after injury) in both control and trans-

planted animals and this may explain why electrophysiological

assessment of dorsal column conduction (SEP recordings) did

not reveal a difference between the groups. In contrast to this

general dorsal column labelling, in lateral and ventral regions

of the white matter, P0 immunolabelling was only consistent-

ly observed in transplanted animals. In media injected ani-

mals P0 immunolabelling in these regions was usually absent

or, in the minority of animals in which it was seen, involved

only a few fibres. Consistent with this, there is only one pre-

vious report of P0 in regions lateral and ventral to a contu-

sion injury and this was at a chronic time point (13 weeks

post-injury) (McTigue et al., 2006). P0 immunolabelled

fibres in lateral and ventral white matter also immunolabelled

for the paranodal protein Caspr supporting the premise that

remyelinated fibres in these regions should be capable of

supporting impulse conduction.

Mechanism of Remyelination
Although P0 immunolabelling was more widely distributed in

transplanted animals than controls, there was no evidence that

the transplanted cells themselves formed myelin sheaths. Care-

ful examination of all sections in which P0 immunolabelling

associated with fibres was seen, did not show any examples of

co-localisation with GFP labelled hOM-MSCs. This suggests

that the transplanted cells do not themselves directly participate

in the remyelination. This is consistent with the literature that

transplanted MSCs do not differentiate in vivo but instead

modulate the injury microenvironment (Zhang et al., 2015). In

addition, when investigated in vitro these cells did not directly

myelinate neurites in myelinating co-cultures (Lindsay et al.,

2013), rather, they were found to facilitate the formation of

myelin by production of secreted factors.

Repair of myelin by endogenous cells is a well-

established phenomenon in the dorsal columns of the spinal

cord and non-myelinating and/or de-differentiated SCs

migrating from the dorsal roots are generally considered to

contribute to this (Beattie et al., 1997; Duncan and Hoffman,

1997; Nagoshi et al., 2011). However, there is also evidence

that precursor cells present within the CNS can give rise to

remyelinating SCs (Akiyama et al., 2001; Blakemore, 2005;

Keirstead et al., 1999; Zawadzka et al., 2010). At present the

relative contribution of each of these potential sources of SCs

is uncertain. We assume that the cells contributing to the

peripheral type myelin seen in the lateral and ventral white

matter of transplanted animals in this study have a similar

origin. However, it is possible that there are regional differ-

ences. For example, remyelination in lateral regions (farther

from spinal roots) might depend more on differentiation of

precursor cells, while SCs in the ventral roots might contrib-

ute to remyelination in the ventral white matter.

The more extensive pattern of P0 immunolabelling seen

in transplanted animals suggests that hOM-MSCs facilitate

Schwann cell remyelination over a wider area of white matter

than would normally occur in the absence of cells. Transplant-

facilitated recruitment of endogenous SCs has been described

previously (Biernaskie et al., 2007; Hill et al., 2006; Ramer

et al., 2004; Takami et al., 2002), but only within the trans-

planted injury site and/or dorsal columns. The mechanism may

involve chemotaxis induced by growth factors or cytokines pro-

duced by the transplanted cells (Nagoshi et al., 2011). hOM-

MSCs secrete a variety of factors including NGF (Lindsay et al.,

2013) which is known to promote axonal susceptibility to

Schwann cell myelination (Chan et al., 2004).

Although both SCs and OPCs participate in endoge-

nous remyelination at a site of spinal cord injury, remyelina-

tion by SCs precedes that by OPCs (Totoiu and Keirstead,

2005) and preferentially targets large diameter axons. This

early repair process is thought to be important for the rapid

restoration of saltatory conduction and neuroprotection of

demyelinated spared axons in the early stages following injury

(Powers et al., 2013). Because hOM-MSCs promote OPC

differentiation and proliferation, and also promote CNS mye-

lination in vitro (Lindsay et al., 2013), remyelination by oli-

godendrocytes may also have been facilitated in the

transplanted animals studied here. Further investigation using

electron microscopic or teased fibre approaches would be nec-

essary to explore this possibility.

Functional Outcome Measures
Dorsal column function did not differ in transplanted and

control animals when assessed electrophysiologically at the

end point of the study. However, this is probably explained

by the highly efficient endogenous remyelination that occurs

in the dorsal columns, as previously discussed. Gross assess-

ment of locomotor recovery (BBB open field score) and pos-

ture (distribution of weight bearing) also did not differ
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between control and transplanted animals suggesting that any

recovery of function resulting from the more extensive

transplant-mediated remyelination is relatively modest. How-

ever, more sophisticated and sensitive analysis of gait revealed

a significantly more rapid recovery of the co-ordination

between forelimbs and hindlimbs during walking on the Dig-

iGait treadmill in transplanted animals. The rate of improve-

ment in gait co-ordination was significantly greater in

transplanted than control animals when analyzed using linear

regression analysis (Matthews, 1993; Vossoughi et al., 2012).

Co-ordinated stepping primarily involves descending and

long propriospinal fibres in lateral and ventral parts of the

spinal cord (Gorska et al., 1996; Loy et al., 2002; Reed et al.,

2009; Zorner et al., 2010), regions where peripheral myelina-

tion was enhanced in transplanted animals. It is therefore

tempting to suggest that the greater improvement in gait seen

in transplanted animals is associated with the more extensive

remyelination. Injury site cavitation was also reduced in the

transplanted animals and this might have contributed to the

improved gait.

Comparison with Previous Cell Transplant Studies
This is the first report to assess the repair potential of purified

transplants of MSCs from the human olfactory mucosa:

nonetheless there have been numerous studies using this tissue

as a source of cells. Where nonpurified cells have been used

(Chhabra et al., 2009; Feron et al., 2005; Granger et al.,

2012; Lima et al., 2006, 2010), it is probable that hOM-

MSCs were present since they proliferate quickly and express

surface markers which overlap with those expressed by

fibroblast-like cells (Delorme et al., 2010; Lindsay et al.,

2013). Of particular interest is a recent study in which dogs

with naturally occurring chronic SCI were treated with autol-

ogous cells derived from olfactory mucosa (Granger et al.,

2012). The functional outcome reported was very similar to

this study in that although long tract function assessed elec-

trophysiologically did not improve, gait analysis showed more

co-ordinated stepping. However, the mechanisms underlying

these improvements could not be investigated (Granger et al.,

2012).

Although MSCs have been widely investigated in the

field of SCI their source has, until now, been limited to bone

marrow (BM-MSCs). There are no reports of BM-MSCs

leading to improved remyelination as we show here for

hOM-MSCs, and our own in vitro investigations have shown

that conditioned media from BM-MSCs does not have the

same facilitatory effect on CNS myelination (Lindsay et al.,

2013). Although there are reports of functional improvements

when transplanted acutely after injury (Ankeny et al., 2004;

Himes et al., 2006; Hofstetter et al., 2002; Neuhuber et al.,

2005; Torres-Espin et al., 2014), minimal improvements are

seen when transplantation is delayed to subacute or chronic

time points (Nandoe Tewarie et al., 2009; Tetzlaff et al.,

2011; Torres-Espin et al., 2014; Yoshihara et al., 2006).

Alternative strategies for the promotion of remyelination

by cell therapy include transplanting cells which directly par-

ticipate in remyelination [reviewed by (Plemel et al., 2014;

Tetzlaff et al., 2011)]. For example, recent investigations have

shown that embryonic stem cell derived OPCs (Sharp et al.,

2010) and SCs, including cells derived from skin precursors

(Sparling et al., 2015) enhanced remyelination and functional

recovery in rodent contusion injury models, although these

studies used subacute (7 days) and acute transplantation,

respectively and mechanisms other than remyelination may

have contributed to functional recovery.

The results reported here suggest that hOM-MSCs have

the potential to enhance endogenous remyelination after trau-

matic SCI. Because persistent demyelination may be a patho-

logical feature of at least some clinical injuries this may be

therapeutically beneficial in accelerating functional recovery

and/or providing neuroprotection of spared axons.
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