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ABSTRACT: In this paper, we introduce a class of random walks with absorbing states on simplicial
complexes. Given a simplicial complex of dimension d, a random walk with an absorbing state is
defined which relates to the spectrum of the k-dimensional Laplacian for 1 ≤ k ≤ d. We study
an example of random walks on simplicial complexes in the context of a semi-supervised learning
problem. Specifically, we consider a label propagation algorithm on oriented edges, which applies to
a generalization of the partially labelled classification problem on graphs. © 2016 Wiley Periodicals, Inc.
Random Struct. Alg., 49, 379–405, 2016
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1. INTRODUCTION

The relation between spectral graph theory and random walks on graphs is well studied
and has both theoretical and practical implications [2, 13, 14, 16]. Consider an unweighted
and undirected graph G = (V , E). A random walk on the graph G is defined via a Markov
chain on the set of vertices, with transition probability matrix P = I − D−1W where W is
the graph adjacency matrix, and D is a diagonal matrix with Dii the degree of vertex i. The
graph Laplacian is defined as � = D − W so P = D−1�. Connections between spectral
properties of the graph Laplacian and properties of random walks are well understood [13],
the mixing time of a random walk on a graph is one connection. A key observation is that
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the stationary distribution of a random walk on a graph is related to the harmonics of the
graph Laplacian [13]. Expander graphs are another important example that highlights the
relationship between random walks and spectral graph theory [2, 7, 13].

Graphs are common objects on which stochastic processes are defined, however they are
limited in their ability to represent interactions between more than two objects. Simplicial
complexes provide a language to describe such high-order interactions. In this paper we will
define stochastic processes on simplicial complexes and examine what properties of random
walks on graphs extend to random walks on simplicial complexes. The idea of extending
results of random walks on graphs to random walks on simplicial complexes have only
recently been explored [6, 17, 19, 20]. There has also been recent activity studying the
related problem of extending the notion of expander graphs to simplicial complexes and
finding isoperimetric inequalities for simplicial complexes [8, 15, 17, 18, 21]. In contrast,
the understanding of quasirandom properties of hypergraphs is relatively well developed
[4, 5, 10, 12].

The main objective of this paper is to define random walks on simplicial complexes by a
Markov chain and relate the stationary distribution of the chain to harmonics of the Hodge
Laplacian. The extension of the graph Laplacian to simplcial complexes goes back to the
work of Eckmann [9] where higher-order combinatorial or Hodge Laplacians were defined.
The spectrum of the k-th order Hodge Laplacian provides information on whether the k-th
(co)homology class is trivial. The size of the spectral gap can be considered a “measure" of
how far the complex is from having nontrivial (co)homology. In this paper we will show that
the stationary distribution of the random walk on the simplicial complex captures nontrivial
k-th (co)homology classes.

The main differences between random walks on graphs and random walks on simplicial
complexes are as follows:

1. Detection of higher-order homology groups: The topological properties studied on
graphs are usually limited to connected components and cycles–these are the zeroth
and first homology groups, H0 and H1 respectively. In the case of simplicial com-
plexes we can examine higher dimensional analogs of cycles, represented by the
higher homology groups H2, H3 respectively. Understanding the relationship between
random walks on simplicial complexes and their homology is one of our aims.

2. The role of orientation: In order to study simplicial homology each simplex in a
complex is required to have an orientation, an ordering on its vertices that can be
either positive or negative. Conceptually, the biggest difference form the graph case
is that for random walks on simplicial complexes a Markov chain needs to be defined
on each orientation and the two chains need to be coupled.

3. Defining neighbors: In a graph there is only one logical way to define neighboring
vertices–if they are connected by an edge. Two simplexes in a simplicial complex can
be connected in various ways, see Fig. 1. In this paper we focus on the case where
two k-simplexes are considered to be neighbors if they share a common (k − 1)-
dimensional face. In [17] two k-simplexes are considered neighbors if they are faces
of a common (k + 1)-dimensional simplex (a coface). These different definitions of
neighborhoods yield random walks with different properties.

1.1. Motivation and Related Work

A strong motivation for studying random walks on simplicial complexes is a desire to capture
geometry as well as topology. Consider two objects: (a) a solid three dimensional disc and
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Fig. 1. (A) The image on the left corresponds to the random walk between two edges that share a
triangle. (B) The image on the right corresponds to the random walk between two triangles that share
an edge.

(b) the same disc with a small hole punctured in the middle. Generate a graph Gs from a
random sample of the solid disc and a graph Gp from a random sample of the punctured disc.
If the puncture is small the spectra of the graph Laplacian of Gs and the graph Laplacian
Gp will be very similar. In contrast if one generates a simplicial complex or triangulation
of the solid and punctured disc, Ts and Tp respectively, the spectra of higher-order Hodge
Laplacians will not be the same since the inner boundary of the disc with a hole will be
detected by the Hodge Laplacian.

The two operators needed to define the Hodge Laplacian are the boundary map and
the coboundary map. Here we provide an intuition for these maps and describe how they
relate to the different walks shown in Fig. 1. A rigorous formulation will be provided in
Section 2.3. The boundary operator ∂k maps k-dimensional complexes to (k − 1) dimen-
sional simplices, for example ∂1 maps edges to vertices and ∂2 maps triangles to edges.
The coboundary operator δk goes in the opposite direction, it defines a map from lower-
dimensional complexes to higher-dimensional complexes. The k-th Hodge Laplacian for
dimension k > 0 is composed of two components

�k = ∂k+1δ
k + δk−1∂k .

These two components will correspond to the two definitions of random walks displayed
in Figure 1. One can define a random walk between triangles that share an edge, Fig. 1b,
this corresponds to δ1∂2 since each move in the walk can be thought of as a composition of
moving from a triangle to an edge and back to a triangle. One can also define a random walk
between edges that share a triangle, Fig. 1a, this corresponds to ∂2δ

1 since each move in the
walk can be thought of as a composition of moving from an edge to a triangle back to an
edge. One can also define a walk that combines both types of walks. Walks corresponding to
∂k+1δ

k were introduced by Parzanchevski and Rosenthal [17]. In this paper we will introduce
walks corresponding to δk−1∂k as well as walks that relate to the Hodge Laplacian.

The following example motivates the walk in Fig. 1B. Consider the 2-dimensional sim-
plicial complex formed by a hollow tetrahedron (or any triangulation of the 2-sphere). We
know that the complex has nontrivial 2-dimensional homology since there is a void. How-
ever, this homology cannot be detected by the random walk defined in [17], because there
are no tetrahedrons that can be used by the walk to move between the triangles. In general,
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the walk defined in [17] can detect homology from dimension 0 to co-dimension 1, but never
co-dimension 0. Hence, a new walk which can travel from triangles to triangles through
edges is needed to detect the void.

In addition to the two types of random walks explored in this paper and in [17], a recent
paper by Rosenthal [19] considers a notion of branching processes on simplicial complexes.
We will return to a discussion of the similarities and differences of these Markov processes
in Section 7.

1.2. Overview of paper

In Section 2 we state the notation used in this paper and define chains, cochains, and the
Hodge Laplacian. In Section 3 we define a random walk from a k-simplex to another k-
simplex through a (k −1)-dimensional face. We then relate the stationary distribution of the
walk to the harmonics of the δk−1∂k component of the Hodge Laplacian and provide mixing
times. In Section 4 we define a random walk from a k-simplex to another k-simplex through
a (k + 1)-dimensional coface and relate the stationary distribution to the harmonics of the
∂k+1δ

k component of the Hodge Laplacian. The results in this section can be considered a
restatement of the results in [17]. In Section 5 we define a walk that captures the harmonics
of the entire Hodge Laplacian. In Section 6 we provide some examples of random walks
to illustrate some of our ideas and present a novel machine learning algorithm based on
random walks on simplicial complexes.

2. DEFINITIONS

In this section we define the notion of a simplicial complex X, the chain and cochain
complexes associated to it, and the k-Laplacian.

2.1. Simplicial Complexes

By a simplicial complex we mean an abstract finite simplicial complex. Simplicial com-
plexes generalize the notion of a graph to higher dimensions. Given a set of vertices V , any
nonempty subset σ ⊆ V of the form σ = {v0, v1, . . . , vj} is called a j-dimensional simplex,
or j-simplex. A simplicial complex X is a finite collection of simplexes of various dimen-
sions such that X is closed under inclusion, i.e., τ ⊆ σ and σ ∈ X implies τ ∈ X. While
we will not need it for this paper, one can include the empty set in X as well (thought of as
a (−1)-simplex). Given a simplicial complex X, denote the set of j-simplexes of X as Xj.
We say that X is d-dimensional or that X is a d-complex if Xd �= ∅ but Xd+1 = ∅. Graphs
are 1-dimensional simplicial complexes. We will assume throughout that X is a d-complex
for some fixed d ≥ 1.

If σ ∈ Xj, τ ∈ Xj−1, and τ ⊂ σ , then we call τ a face of σ and σ a coface of τ . Every
j-simplex σ for j ≥ 1 has exactly j + 1 faces but may have any number of cofaces. Given
σ ∈ Xj we define deg(σ ) (called the degree of σ ) to be the number of cofaces of σ . Two
simplexes are upper adjacent if they share a coface and lower adjacent if they share a face.
The number of simplexes upper adjacent to a j-simplex σ is (j + 1) · deg(σ ) while the
number of simplexes lower adjacent to σ is

∑
τ⊂σ (deg(τ ) − 1) where the sum is over all

faces τ of σ .
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Orientation plays a major role in the geometry of a simplicial complex. For j > 0, an
orientation of a j-simplex σ is an equivalence class of orderings of its vertices, where two
orderings are equivalent if they differ by an even permutation. Notationally, an orientation
is denoted by placing one of its orderings in square brackets, as in [v0, . . . , vj]. Every j-
simplex σ has two orientations which we think of as negatives of each other. We abbreviate
these two orientations as σ+ and σ− = −σ+ (which orientation σ+ corresponds to is chosen
arbitrarily). For any j ≥ 1, we will use Xj

+ = {σ+ : σ ∈ Xj} to denote a choice of positive
orientation σ+ for each j-simplex σ . The set of all oriented j-simplexes will be denoted by
Xj

±, so that Xj
± = {σ± : σ+ ∈ Xj

+} and |Xj
±| = 2|Xj| for any choice of orientation Xj

+.
An oriented simplex σ+ = [v0, . . . , vj] induces an orientation on the faces of σ as

(−1)i[v0, . . . , vi−1, vi+1, . . . , vj]. Conversely, an oriented face (−1)i[v0, . . . , vi−1, vi+1, . . . , vj]
of σ induces an orientation σ+ = [v0, . . . , vj] on σ . Two oriented j-simplexes σ+ and σ ′

+
are said to be similarly oriented, and we write σ+ ∼ σ ′

+, if σ and σ ′ are distinct, lower
adjacent j-simplexes and σ+ and σ ′

+ induce the opposite orientation on the common face
(if σ and σ ′ are upper adjacent as well, this is the same as saying that σ+ and σ ′

+ induce
the same orientation on the common coface). If they induce the same orientation on the
common face, then we say they are dissimilarly oriented and write σ− ∼ σ ′

+. We say that
a d-complex X is orientable if there is a choice of orientation Xd

+ such that for every pair
of lower adjacent simplexes σ , σ ′ ∈ Xd , the oriented simplexes σ+, σ ′

+ ∈ Xd
+ are similarly

oriented.
Orientation is typically not a property of vertices of a graph and the term oriented graph

is taken to mean a directed graph. For j = 0 there are no distinct orderings, and one can
think of each vertex v as being positively oriented by default (so, v+ = v) and having an
oppositely-oriented counterpart v− := −v. However, introducing orientation to a graph is
not standard. The collection of oriented 0-simplexes, X0

± does not reduce to the standard
graph setting, since graphs are not considered to be oriented. We will discuss orientation
in more detail in Section 3. We will see in Section 3 that the random walks we define on
simplicial complexes do not reduce to a simple random walk on a graph.

2.2. Chain and Cochain Complexes

Given a simplicial complex X , we can define the chain and cochain complexes of X over
R. The space of j-chains Cj := Cj(X; R) is the vector space of linear combinations of
oriented j-simplexes with coefficients in R, with the stipulation that the two orientations of
a simplex are negatives of each other in Cj (as implied by our notation). Thus, any choice
of orientation Xj

+ provides a basis for Cj. The space of j-cochains Cj := Cj(X; R) is then
defined to be the vector space dual to Cj. These spaces are isomorphic and we will make
no distinction between them. Usually, we will work with cochains using the basis elements
{1σ+ : σ+ ∈ Xj

+}, where 1σ+ : Cj → R is defined on a basis element τ+ ∈ Xj
+ as

1σ+(τ+) =
{

1 τ+ = σ+
0 else

.

The boundary map ∂j : Cj → Cj−1 is the linear map defined on a basis element
[v0, . . . , vj] as

∂j[v0, . . . , vj] =
j∑

i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vj].
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The coboundary map δj−1 : Cj−1 → Cj is then defined to be the transpose of the boundary
map. In particular, for f ∈ Cj−1,

(δj−1f )([v0, . . . , vj]) =
j∑

i=1

(−1)if ([v0, . . . , vi−1, vi+1, . . . , vj]).

When there is no confusion, we will denote the boundary and coboundary maps by ∂ and
δ. It holds that ∂∂ = δδ = 0, so that (Cj, ∂j) and (Cj, δj) form chain and cochain complexes
respectively.

The homology and cohomology vector spaces of X over R are

Hj := Hj(X; R) = ker ∂j

im ∂j+1
and Hj := Hj(X; R) = ker δj

im δj−1
.

It is known from the universal coefficient theorem that Hj is the vector space dual to Hj.
Reduced (co)homology can also be used, and it is equivalent to including the nullset as a
(−1)-dimensional simplex in X .

2.3. The Hodge Laplacian

The k-Laplacian of X is defined to be

�k := �
up
k + �down

k

where
�

up
k = ∂k+1δ

k and �down
k = δk−1∂k .

The Laplacian is a symmetric positive semi-definite matrix, as is each part �
up
k and �down

k .
From Hodge theory, it is known that

ker �k
∼= Hk ∼= Hk

and the space of cochains decomposes as

Ck = im ∂k+1 ⊕ ker �k ⊕ im δk−1

where the orthogonal direct sum ⊕ is with respect to the “usual” inner product

〈f , g〉 =
∑

σ+∈Xk+

f (σ+)g(σ+).

For much of this paper we will focus on the �down
j half of the Laplacian. Trivially,

im ∂j+1 ⊆ ker �down
j and the smallest nontrivial eigenvalue of �down

k is therefore given by

λk = min
f ∈Ck

f ⊥im ∂

‖∂kf ‖2
2

‖f ‖2
2

,

where ‖f ‖2 := √〈f , f 〉 denotes the Euclidean norm on Ck . A cochain f that achieves the
minimum is an eigenvector of λk . It is easy to see that any such f is also an eigenvector of
�k with eigenvalue λk and that, therefore, λk relates to homology:

λk = 0 ⇔ ker �k �= 0 ⇔ Hk �= 0.

Random Structures and Algorithms DOI 10.1002/rsa
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Remark 2.1. Given a choice of orientation Xk
+, �down

k can be written as a matrix with
rows and columns indexed by Xk

+, the entries of which are given by

(�down
k )σ ′+ ,σ+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k + 1 σ ′

+ = σ+
1 σ ′

− ∼ σ+
−1 σ ′

+ ∼ σ+
0 otherwise.

Changing the choice of orientation Xk
+ amounts to a change of basis for �down

k . If the
row and column indexed by σ+ are instead indexed by σ−, all the entries in them switch
sign except the diagonal entry. Alternatively, �down

k can be characterized by how it acts on
cochains

�down
k f (τ+) = (k + 1) · f (τ+) +

∑
σ−∼τ+

f (σ+) −
∑

σ+∼τ+
f (σ+).

Note that since �down
k f is a cochain, �down

k f (τ−) = −�down
k f (τ+).

The remainder of this section states some relevant properties on the behavior of �down
k .

Definition 2.2. A d-complex X is called k-connected (1 ≤ k ≤ d) if for every two k-
simplexes σ , σ ′ there exists a chain σ = σ0, σ1, . . . , σn = σ ′ of k-simplexes such that σi is
lower adjacent to σi+1 for all i. For a general d-complex X, such chains define equivalence
classes of k-simplexes, and the subcomplexes induced by these are called the k-connected
components of X .

Definition 2.3. A d-complex X is called disorientable if there is a choice of orientation
Xd

+ of its d-simplexes such that all lower adjacent d-simplexes are dissimilarly oriented. In
this case, the d-cochain f = ∑

σ+∈Xd+ 1σ+ is called a disorientation.

Remark 2.4. Disorientability was defined in [17] and shown to be a higher-dimensional
analog of bipartiteness for graphs. Note that one can also define X to be k-disorientable if
the k-skeleton of X (the k-complex given by the union

⋃
i≤k Xi) is disorientable, but this can

only happen when k = d. For example if k < d then there exists a (k + 1)-simplex σ+ =
[v0, . . . , vk+1]. Given any two dissimilarly oriented faces of σ+, say, [v1, v2, . . . , vk+1] and
[v0, v2, . . . , vk], we find that the simplex {v0, v1, v3, . . . , vk} cannot be dissimilarly oriented
to both of them simultaneously.

The following Lemma is similar to Proposition 2.7 in [17].

Lemma 2.5. Let X be a d-complex, 1 ≤ k ≤ d and M = maxσ∈Xk−1 deg(σ ).

1. Spec(�down
k ) is the disjoint union of Spec(�down

k |Xi) where Xi are the k-connected
components of X.

2. The spectrum of �down
k is contained in [0, (k + 1)M].

3. The kernel of �down
k is exactly ker ∂k = im ∂k+1 ⊕ ker �k.

4. The upper bound (k + 1)M is attained if and only if k = d and X has a d-connected
component that is both disorientable and of constant (d − 1)-degree.
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Proof. Statement (1) follows from the fact that �down
k can be written as a block diagonal

matrix with each block corresponding to a component Xi. Statement (3) is easy to verify.
For statement (2), let f be an eigenvector of �down

k with eigenvalue λ, let Xk
+ be a choice

of orientation such that f (σ+) ≥ 0 for all σ+ ∈ Xk
+ and suppose f (τ+) = max

σ+∈Xk+ f (σ+).
Then by Remark 2.1,

λf (τ+) = �down
k f (τ+)

= (k + 1) · f (τ+) +
∑

σ−∼τ+
f (σ+) −

∑
σ+∼τ+

f (σ+)

≤ (k + 1) · f (τ+) +
∑

σ−∼τ+
f (τ+) +

∑
σ+∼τ+

f (τ+)

≤ (k + 1) · f (τ+) + (k + 1)(M − 1) · f (σ+)

≤ (k + 1)M · f (τ+)

where the third inequality results from the fact that any k-simplex is lower adjacent to at
most (k + 1)(M − 1) other k-simplexes. Therefore, λ ≤ (k + 1)M.

It now remains to prove statement (4). Looking back at the inequalities, it holds that
λ = (k + 1)M only if σ− ∼ τ+ and f (σ+) = f (τ+) whenever σ and τ are lower adjacent,
and the faces of σ all have degree M. But since f (σ+) = f (τ+), the same reasoning can be
applied to f (σ+) for all σ lower adjacent to τ and eventually to all k-simplexes in the same
k-connected component Xi. Ultimately, this implies that Xi has constant (k − 1)-degree and
is k-disorientable (and hence k = d).

To see that this bound is indeed attainable, consider a disorientable d-complex with
constant (d − 1)-degree M (this includes, for instance, the simplicial complex induced by a
single d-simplex). Let Xd

+ be a choice of orientation such that all lower adjacent d-simplexes
are dissimilarly oriented. Then a disorientation f on Xd will satisfy

�down
k f (τ+) = (k + 1) · f (τ+) +

∑
σ−∼τ+

f (σ+) −
∑

σ+∼τ+
f (σ+)

= (k + 1) · f (τ+) +
∑

σ−∼τ+
f (σ+)

= (k + 1) · 1 +
∑

σ−∼τ+
1 = (k + 1)M = (k + 1)M · f (τ+)

for every τ+.

3. RANDOM WALKS AND �DOWN
K

In this section we will define a random walk on a d-complex. The stationary distribution
of the random walk is related to the harmonics of �down

k for 1 ≤ k ≤ d. The mixing time
of the walk is a function of the spectral gap of �down

k . A notion of maximal degree M will
appear in our results.

The following random walk is a Markov chain that is related to �down
k .

Definition 3.1. The state space is the set of oriented complexes as well as a death state
{�}, S = Xk

± ∪ {�}.
Random Structures and Algorithms DOI 10.1002/rsa
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1. Neighbors: two oriented k-cells σ and σ ′ are called neighbors, which we denote as
σ ↓ σ ′ if they share a (k − 1) face and have opposite orientation on the shared face.

2. Transition matrix P: the transition matrix is the time-homogenous Markov chain on
the state space S = Xk

± ∪ {�} with transition probabilities

Pσ ,σ ′ = Prob(σ → σ ′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α0 when σ �= � and σ ′ = σ

α1 when σ �= � and σ ↓ σ ′

α2 when σ �= � and σ ↓ σ ′

β when σ �= � and σ ′ = �

1 σ = σ ′ = �,

where σ ′ denotes the opposite orientation of σ ′, σ ↓ σ ′ is the notation for moving to
an oriented neighboring cell, and σ ↓ σ ′ is the notation for moving to a disoriented
neighboring cell. The probability of transitioning into a death state is β = 1 −∑

σ ′∈Lk(σ )
Prob(σ → σ ′)−α0 where Lk(σ ) are the set of simplexes that are oriented

or disoriented neighbors of σ . The transition probabilities are constrained to ensure
P is a stochastic matrix.

The intuition behind the steps in the transition matrix follows. We first consider the
case where there is no death state. In this case with probability α0 one stays in the same
state. The probability of moving to an oriented neighboring cell is α1. The probability of
moving in one step to disoriented neighboring cell is α2. The death state is needed when
the total probability, 1 − β, of either moving to a new cell or staying at the same cell is less
than one. In this case the remaining probability β corresponds to moving to an absorption
or death state. There is also an interpretation of the Markov chain as two coupled Markov
chains. Again for simplicity we consider the case where there is no death state. Consider one
Markov chain on the state space Xk

+ and another chain on Xk
−. The two chains are coupled

as follows: at each time step one can either jump to another state in the chain or jump to the
corresponding state of opposite orientation in the other chain and proceed in the new chain.

We now specify the parameter values of the transition matrix P.

Definition 3.2. We define transition matrix P based on Definition 3.1 with parameter
values

α0 = p, α1 = α2 = 1 − p

(M − 1)(k + 1)
,

where M is the maximal degree maxσ∈Xk−1 deg(σ ), 1 ≤ k ≤ d corresponds to the order of
�down

k , and 0 < p < 1.

We selected this parameter specification for ease of analysis and to impose certain intu-
itive properties of the walk. The value 0 < p < 1 determines the laziness of the walk, the
probability of not changing states. We set the probability of moving to a neighbor as equal to
the probability of moving to a disoriented neighbor, α1 = α2. One reason for the existence
of the death state is that if α1 = α2 the total transition probability at each state may not sum
to one so we use the death state as an absorption state. A natural choice for α1 is a uniform
probability of transitioning to each of the neighbors of a complex. We set α1 = 1−p

(M−1)(k+1)
,

this would be a uniform transition probability if all complexes had maximal degree M, this
is the analog of a M-regular graph. We suspect that the qualitative phenomena and insights
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we derive for the specified walk will transfer to walks defined by other parameters, such as
the more natural uniform walk.

In the remainder of this section we will relate the stationary distribution of the stochastic
matrix P to the geometry of the simplicial complex on which the random walk is defined.
Specifically we are interested in relating the stationary distribution to the harmonics of
�down

k . From Hodge theory we know that the relevant geometry is characterized by the
space of k-cochains, f ∈ Ck . A k-cochain is antisymmetric under exchange of any pairs of
indices which implies the following constraint{

f : Xk
± → R | f (σ ) = −f (σ ), ∀σ ∈ Xk

±
}

.

Given the transition matrix P we can compute the following expected value from a k-cochain
at time t as

Et[f ] :=
∑
σ∈Xk±

pt(σ )f (σ ) =
∑
σ∈Xk

(pt(σ ) − pt(σ ))f (σ ),

where pt(σ ) is the probability vector over states X+ at time t and pt(σ ) is the probability
vector over states X− at time t. We will be interested in the convergence of the following
“expectation process"

Et = pt(σ ) − pt(σ ).

If we consider the random walk as two coupled chains, on X+ and X− respectively, the above
can be thought of as the difference in the marginal probability vectors of each chain.

In the case of a graph with a stochastic matrix PG one studies the convergence of pt the
probability vector over states at time t to a stationary distribution π . The rate of convergence
of the probability vector pt to π as well as the stationary distribution π are related to
harmonics of the graph Laplacian. The graph case has some fundamental differences from
the case of simplicial complexes in that graphs are not defined with orientation and the
antisymmetric constraint that is required of k-cochains is not relevant.

Note that the orientation of the complexes does not affect the Hodge Laplacian. One can
define the following propagation matrix on Xk

+ that corresponds to the random walk P in
Definition 3.2.

Definition 3.3. The propagation matrix B of the lower k-walk is defined to be a square
matrix indexed by Xk

+ with

(B)σ+→σ ′+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α0 = p σ ′

+ = σ+
α1 = − 1−p

(M−1)(k+1)
σ ′

+ ↓ σ+
α2 = 1−p

(M−1)(k+1)
σ ′

+ ↓ σ+
0 otherwise.

There is a natural relation between the propagation matrix and the Markov matrix. We
define a matrix Q with rows indexed by Xk

+ and columns indexed by S. The values of the
matrix are specified as follows: Qij = 1 if state i and state j are neighbors, Qij = −1 if state
i and state j with reverse orientation are neighbors, and Qij = 0 if state j is a death state.
This matrix has the following property QP = BQ. We now state some properties of the
propagation matrix and its relation to the transition probability matrix P.
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Proposition 3.4. The propagation matrix B is given by

B = p(M − 2) + 1

M − 1
I − 1 − p

(M − 1)(k + 1)
· �down

k .

In addition, B satisfies QP = BQ and

QPtν = BtQν.

Proof. The first claim is a straightforward computation based on Definition 3.3. The second
claim is equivalent to the equality QP = BQ, which we now prove. If σ ′ ∈ S and Pσ ′ is
the column of P indexed by σ ′, then the column of QP indexed by σ ′ is QPσ ′ . Using the
definition of Q, the following holds

(QP)σ+ ,σ ′ = QPσ ′(σ+)

= Pσ ′(σ+) − Pσ ′(σ−)

= (P)σ+ ,σ ′ − (P)σ− ,σ ′

=

⎧⎪⎨⎪⎩
±p σ ′ = σ±
± 1−p

(M−1)(k+1)
s �= � and σ ′ ↓ σ±

0 otherwise.

Similarly, note that (BQ)σ+ ,σ ′ = B(Q1σ ′)(σ+) where 1σ ′ is the vector assigning 1 to σ ′ ∈ S
and 0 to all other elements in S. If σ ′ = �, Q1σ ′ is the zero vector. Otherwise, if σ ′ = τ±
then Q1σ ′ = ±1τ+ and

(BQ)σ+ ,σ ′ = ±B 1τ+(σ+)

= ±(B)σ+ ,τ+

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
±p τ+ = σ+
± 1−p

(M−1)(k+1)
τ+ ↓ σ+

∓ 1−p
(M−1)(k+1)

τ− ↓ σ+
0 else

=

⎧⎪⎨⎪⎩
±p σ ′ = σ±
± 1−p

(M−1)(k+1)
σ ′ ↓ σ±

0 otherwise.

For what follows, we define E τ+
t := Bt1τ+ to be the marginal difference of the random

walk on X starting at τ+ at time t. Also, let Xk
+ be a choice of orientation and denote

M = maxσ∈Xk−1 deg(σ ).

Corollary 3.5.

1. The spectrum of B is contained in
[
2p − 1, p(M−2)+1

M−1

]
, with the upper bound acheived

by cochains in ker ∂k and the lower bound acheived if and only if k <= d and there
is a disorientable d-connected component of constant (d − 1)-degree.
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2. If τ has a coface, then

∥∥E τ+
t

∥∥
2
≥
(

p(M − 2) + 1

M − 1

)t 1√
k + 2

.

3. If p �= 0, 1 then

∥∥E τ+
t

∥∥
2
≤ max

{
|2p − 1|t ,

(
p(M − 2) + 1

M − 1

)t}
.

Proof. Statement (1) is easy to verify using Lemma 2.5 and Proposition 3.4. Statement
(3) follows from the inequality ‖Af ‖2 ≤ ‖A‖ ‖f ‖2 where A is a matrix, f is a vector, and
‖A‖ is the spectral norm of A.

It remains now to prove statement (2). If τ has a coface σ , let f = ∂k+11σ+ (with σ+
being any orientation of σ ) which implies f ∈ ker ∂k . Let f , f1, . . . , fi be an orthogonal basis
for Ck such that f1, . . . , fi are eigenvectors of B. Then,∥∥E τ+

t

∥∥
2
= ∥∥Bt1τ+

∥∥
2

= ∥∥αBtf + α1Btf1 + . . . + αiB
tfi

∥∥
2

≥ ∥∥αBtf
∥∥

2

= |α|
(

p(M − 2) + 1

M − 1

)t

‖f ‖2

=
(

p(M − 2) + 1

M − 1

)t ∣∣∣∣〈 f

‖f ‖2

, 1τ+

〉∣∣∣∣
=
(

p(M − 2) + 1

M − 1

)t |f (τ+)|
‖f ‖2

=
(

p(M − 2) + 1

M − 1

)t 1√
k + 2

By Corollary 3.5 we know that limt→∞ Et = 0 when p �= 0, 1. We rescale B to define the
normalized propagation matrix

B̃ := M − 1

p(M − 2) + 1
B.

for which the trivial convergence due to
( p(M−2)+1

M−1

)
< 1 is eliminated. We also define

the normalized marginal difference Ẽ τ+
t := B̃t1τ+ . The next two theorems show that the

homology of X can be determined from the limiting behavior of the normalized marginal
difference.

Theorem 3.6. The limit Ẽ τ+∞ := limt→∞ Ẽ τ+
t of the normalized marginal difference exists

for all τ+ if and only if B̃ has no eigenvalue λ ≤ −1. Furthermore, Ẽ τ+∞ = projker ∂k
1τ+

whenever Ẽ τ+∞ exists, where projker ∂k
is the projection map onto ker ∂k.

Proof. Note that by Corollary 3.5, the spectrum of B̃ is upper bounded by 1 and the
eigenspace of the eigenvalue 1 is exactly ker ∂k . Let f1, . . . , fi be an orthogonal basis for Ck
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such that f1, . . . , fi are eigenvectors of B̃ with eigenvalues γ1, . . . , γi. Then any 1τ+ can be
written as a linear combination 1τ+ = α1f1 + . . . + αi, fi so that

Ẽ τ+∞ = B̃t1τ+ = α1γ
t
1 f1 + . . . , αiγ

t
i fi

Since the fj form a basis, Ẽ τ+∞ converges if and only if αjγ
t
j converges for each j. In other

words, Ẽ τ+∞ converges if and only if for every j, αj = 0 or γj > −1. Furthermore, the limit
(when it exists) is always ∑

{j:γj=1}
αj fj = projker ∂k

1τ+

Finally, suppose B̃ has an eigenvalue λ ≤ −1. Then there is an eigenvector f such that
B̃t f = λt f does not converge. Since the set of cochains {1τ+ : τ+ ∈ Xk

±} spans Ck(R), f can
be written as a linear combination of the cochains and therefore B̃t1τ+ must not converge
for some τ+.

Theorem 3.7.

1. If M−2
3M−4 < p < 1 then the limit Ẽ τ+∞ exists for all τ+ and

dim(span{projker δk Ẽ τ+∞ : τ+ ∈ Xk
±}) = dim(Hk(X))

where projker δk denotes the projection map onto ker δk.
2. The same holds when p = M−2

3M−4 or k = d or there are no disorientatable d-connected
components of constant (d − 1)-degree.

3. We can say more if p ≥ 1
2 . In this case,

∥∥Ẽ τ+
n − Ẽ τ+∞

∥∥
2
= O

([
1 − 1 − p

(p(M − 2) + 1)(k + 1)
λk

]t)
Proof. The proof follows mostly from Theorem 3.6. According to Theorem 3.6, Ẽ τ+∞
exists for all τ+ if and only if the spectrum of B̃ is contained in (−1, 1]. Using Corollary
3.5 and the definition B̃ := M−1

p(M−2)+1 B, we know that the spectrum of B̃ is contained in[
(2p − 1) M−1

p(M−2)+1 , 1
]
. Now each of the following statements imply each other

(2p − 1)
M − 1

p(M − 2) + 1
> −1,

p(M − 2) + 1

M − 1
> 1 − 2p

p

(
M − 2

M − 1
+ 2

)
> 1 − 1

M
, p >

M − 2

3M − 4
,

which proves that the spectrum of B̃ is indeed contained in (−1, 1] when p > M−2
3M−4 . Since

the 1τ+ span all of Ck , the Ẽ τ+∞ = projker ∂k
1τ+ span all of ker ∂k , and hence the projker δk Ẽ τ+∞

span all of ker δk .
In the case that p = M−2

3M−4 , the spectrum of B̃ is contained in [−1, 1]. However, as long as
−1 is not actually an eigenvalue of B̃, the result still holds. According to Corollary 3.5, −1
is an eigenvalue if and only if k = d and there is a disorientable d-connected component of
constant (d − 1)-degree. The case p = 1 is trivial (̃B = I) and is not considered.
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Finally, if the spectrum of B lies in (−1, 1] and λ is the eigenvalue of B̃ contained in
(−1, 1) with largest absolute value, then∥∥∥B̃t f − lim

t→∞ B̃t f
∥∥∥

2
≤ |λ|t ‖f ‖2

for all f . To see this, let f1, . . . , fi be an orthonormal basis for Ck such that f1, . . . , fi are eigen-
vectors of B̃ with eigenvalues γ1, . . . , γi. Then any f can be written as a linear combination

f = α1f1 + . . . , +αifi so that ‖f ‖2 =
√∑

j

∣∣αj

∣∣2 and

∥∥∥B̃t f − lim
t→∞ B̃t f

∥∥∥
2
=
∥∥∥∥∥∥α1γ

t
1 f1 + . . . + αiγ

t
i fi −

∑
{j:γj=1}

αj fj

∥∥∥∥∥∥
2

,

=
∥∥∥∥∥∥
∑

{j:γj �=1}
αjγ

t
j fj

∥∥∥∥∥∥
2

,

≤ |λ|t · ‖f ‖2 .

In particular, if p ≥ 1
2 then the spectrum of B̃ is contained in [0, 1] and therefore λ =

1 − 1−p
(p(M−2)+1)(k+1)

λk .

Note the dependence of the theorem on both the probability p of remaining in a state and
on M. We can think of M as the maximum amount of “branching”, where M = 2 means
there is no branching, as in a pseudomanifold of dimension d = k, and large values of M
imply a high amount of branching. In particular, the walk must become more and more lazy
for larger values of M in order to prevent the marginal difference from diverging. However,
since M−2

3M−4 < 1
3 for all M a lazy probability of at least 1

3 will always ensure convergence.
While there is no explicit dependence on k or the dimension d, it is easy to see that M must
always be at least d − k + 1 (for instance, it is not possible for a triangle complex to have
maximum vertex degree 1). A natural question is how varying the transition matrix P in
Definition 3.2 will change the scaling behavior of the walk with respect to M and p.

We would also like to know whether the normalized marginal difference always converges
to 0. Note that if τ+ has a coface, then we already know that

∥∥E τ+
t

∥∥
2

stays bounded away from
0 according to Corollary 3.5. However, if τ has no coface, then 1τ+ may be perpendicular
to ker ∂k , allowing

∥∥E τ+
t

∥∥
2

to die in the limit as we see in the following corollary.

Corollary 3.8. If τ has no coface, Hk = 0, and if M−2
3M−4 < p < 1 then∥∥E τ+∞

∥∥
2
= 0.

The same is true when p = M−2
3M−4 and or k = d and there are no disorientable d-connected

components of constant (d − 1)-degree,

Proof. Under all conditions stated, Ẽ τ+∞ converges. If τ has no coface, then 1τ+ is in the
orthogonal complement of im ∂k+1, because all elements of im ∂k+1 are supported on oriented
faces of (k + 1)-simplexes. If Hk = 0 then ker ∂k = im ∂k+1 and∥∥Ẽ τ+∞

∥∥
2
= projker ∂k

1τ+ = 0.
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4. RANDOM WALKS AND �UP
K

The random walk described by Parzanchevski and Rosenthal in [17] is the “dual” of the
random walk defined in the previous section in that one traverses between simplexes via
cofaces rather than faces. We include Rosenthal and Parzanchevski’s proposed walk in this
section so the paper is self contained and we can compare the walk on �

up
k with the one in

the previous section as well as a walk corresponding to the full Hodge Laplacian. We do
not present any new results in this section.

Let X be a d-complex, 0 ≤ k ≤ d − 1, and 0 ≤ p < 1.

Definition 4.1. The State space is the set of oriented complexes as well as a death state,
S = Xk

± ∪ {�}.

1. Co-neighbors: two oriented k-cells are called co-neighbors, which we denote as σ ↑
σ ′ if they share a (k + 1) coface and have opposite orientation on the shared face.

2. Transition matrix P: the transition matrix is the time-homogenous Markov chain on
the state space S = Xk

± ∪ {�} with transition probabilities

Pσ ,σ ′ = Prob(σ → σ ′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α0 = p when σ �= � and σ ′ = σ

α1 = 1−p
k−deg(σ )

when σ �= � and σ ′ ↑ σ

α2 = α1 when σ �= � and σ ↑ σ ′

β = 1 − p when deg(σ ) = 0 and σ ′ = �

1 σ = σ ′ = �,

for all σ , σ ′ ∈ Xk .

The definition of the walk in [17] is slightly different. There is no death state in [17]
because the case of k = d − 1 was examined and it was assumed that every k-simplex had
at least one coface. As in the previous section we can relate the above Markov matrix to
�

up
k and QPtν is the marginal difference after t steps for the random walk via co-neighbors.

Here Q is the same matrix as in the previous section. There is again a propagation matrix A
such that QPtν = AtQν and A relates to �

up
k . As before the marginal difference converges to

0 for all initial distributions. We scale A by a constant to provide a normalized propagation
matrix Ã and a normalized marginal distribution ÃtQν that describes the limiting behavior.
The limiting behavior of the normalized marginal difference reveals homology similar to
Theorem 3.7

There are a few differences between the walk across faces and the walk across cofaces.
The norm of the normalized marginal difference for the walk across cofaces starting at a
single oriented simplex stays bounded away from 0 (see Proposition 2.8 of [17]), whereas
this need not hold for the walk across faces (as in Corollary 3.8). This is because in the walk
across cofaces every starting point 1τ+ has some nonzero inner product with an element of
im δk−1 ⊆ ker δk . The second difference is the threshold values for p in Theorem 3.7 and
Theorem 2.9 of [17]. For the walk across faces, homology can be detected for p > M−2

3M−4
(where M = maxσ∈Xk−1 deg(σ )) whereas for the walk across cofaces the threshold is p >

k
3k+2 . Hence, the walk across cofaces is sensitive to the dimension while the walk across
faces is sensitive to the maximum degree. In both cases, p ≥ 1

3 is always sufficient to detect
homology and p ≥ 1

2 allows us to put a bound on the rate of convergence.
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5. RANDOM WALK RELATED TO THE FULL HODGE LAPLACIAN

The existence of random walks across faces and cofaces that respectively correspond to
the two parts of the Hodge Laplacian suggests that there may be a random walk for the
entire Laplacian, �k = �

up
k + �down

k . In this section, we state results for a random walk
that captures both parts of the Hodge Laplacian. One can define a weighted notion of the
Hodge Laplacian to weighted Laplacians

Lk,W := W−1/2
k ∂k+1Wk+1δ

kW−1/2
k + W 1/2

k δk−1W−1
k−1∂kW 1/2

k

where Wj denotes a diagonal matrix with diagonal entries equal to positive weights, one for
each j-simplex. In general, one can also define an operator Lk that is a generalized notion
of the k-th Hodge Laplacian.

Definition 5.1. Let Xk
+ be a choice of orientation. A generalized Laplacian matrix is a

square matrix L such that

1. the rows and columns of L are indexed by Xk
+,

2. L has nonnegative diagonal entries,
3. whenever L has a zero on the diagonal, all other entries in the same row or column

are also zero,
4. L is a non-negative operator.

Definition 5.2. Let Xk
+ be a choice of orientation, L a generalized Laplacian matrix,

and p ∈ [0, 1]. Given L we define a normalization matrix D−1
L as a diagonal matrix with

(D−1
L )σ+ ,σ+ = (Lσ+ ,σ+)−1 if Lσ+ ,σ+ > 0 and (D−1

L )σ+ ,σ+ = 0 otherwise.
We define the p-lazy propagation matrix related to L to be

AL,p := p(K − 1) + 1

K
I − 1 − p

K
· LD−1

L

where p ∈ [0, 1], K := max
σ+∈Xk+

∑
σ ′+ �=σ+

∣∣∣(LD−1
L )σ ′+ ,σ+

∣∣∣. The case K = 0 is degenerate

and is not considered. In addition, we define the normalized p-lazy propagation matrix

ÃL,p := I − 1 − p

p(K − 1) + 1
LD−1

L

(
= K

p(K − 1) + 1
AL,p

)
Note that whenever K = 1, AL,p = ÃL,p. In particular, this is true in the graph case when

L = �0.
We will now define the Markov transition matrix in terms of the propagation matrix.

Definition 5.3. Let Xk
+ be a choice of orientation, L a generalized Laplacian matrix,

p ∈ [0, 1], and let AL,p be defined as above. The state space is S := Xk
± ∪ {�} which is a

(2n + 1) × (2n + 1) matrix where the number of unoriented complexes is n. The Markov
transition matrix is defined as

PL,p =
⎡⎣A A′

A′ A
0

v 1

⎤⎦ ,
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where the first n rows and columns correspond to Xk
+, the second n rows and columns

correspond to Xk
−, and the last row and column correspond to the death state. The elements

of matrix A correspond to transition probabilities between simplexes of the same orientation
and Aij = (AL,p)ij ∨ 0 for i, j = 1, ..., n. The elements of matrix A′ correspond to transition
probabilities between simplexes of the opposite orientation and A′

ij = (−AL,p)ij ∨ 0 for
i, j = 1, ..., n. The elements in the column vector v are the probabilities of entering the death
set from one of the complexes and

vi = 1 −
∑

σ ′∈S\{�}
(PL,p)σ ′ ,σ for all σ .

The row vector v′ is the transpose of v. The 1 in the lower diagonal states implies that one
does not leave the death state.

The following lemma shows that PL,p is a left stochastic matrix.

Lemma 5.4. Let Xk
+ be a choice of orientation, L a generalized Laplacian, and p ∈ [0, 1].

The matrix PL,p defined above is a left stochastic matrix for an absorbing Markov chain on
the state space S (i.e., (PL)σ ′ ,σ = Prob(σ → σ ′)) such that � is an absorbing state and
Prob(σ → σ) = p for all σ �= �.

Proof. It is clear by the definition of PL,p that � is an absorbing state. To see that Prob(σ →
σ) = p for all s �= �, note that

(AL,p)σ+ ,σ+ = p(K − 1) + 1

K
− 1 − p

K
· 1

= p(K − 1) + 1 − 1 + p

K
= p

and hence by the definition of PL,p,

(PL,p)σ− ,σ− = (PL,p)σ+ ,σ+ = p

for all σ . It is also clear by the definition of PL,p that the entries (PL,p)σ ′− ,σ+ = (PL,p)σ ′+ ,σ−
are nonnegative for any σ , σ ′. Hence, in order to show that PL,p is left stochastic we need
only to prove that

∑
σ ′∈S\{�}(PL,p)σ ′ ,σ ≤ 1 for all σ ∈ S \ {�}. By the symmetries inherent

in PL,p, the value of the sum is the same for σ = σ+ as it is for σ = σ−. For any σ = σ+,∑
σ ′∈S\{�}

(PL,p)σ ′ ,σ =
∑

σ ′+∈Xk+

(AL,p)σ ′+ ,σ+

= p +
∑

σ ′+∈Xk+\{σ+}

∣∣∣(AL,p)σ ′+ ,σ+

∣∣∣
= p + 1 − p

K

∑
σ ′+∈Xk+\{σ+}

∣∣∣(LD−1
L )σ ′+ ,σ+

∣∣∣
≤ p + (1 − p) = 1.

The following theorem relates the Markov transition matrix PL,p to the generalized Hodge
Laplacian L.
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Theorem 5.5. Let Xk
+ be a choice of orientation, L a generalized Laplacian matrix,

p ∈ [0, 1], and let AL,p and PL,p be defined as above. In addition, let Q be defined as in
Section 3. Then

AL,pQ = QPL,p.

In other words, the evolution of the marginal differences QPt
L,pν after n steps with initial

distribution ν is governed by the propagation matrix: QPt
L,pν = At

L,pQν.

Proof. Using the definition of Q

(QPL,p)σ+ ,s = (PL,p)σ+ ,s − (PL,p)σ− ,s

=
{

±(AL,p)σ+ ,σ ′+ s = σ ′
±

0 s = �
.

Similarly, note that (AL,pQ)σ+ ,s = AL,p(Q1s)(σ+) where 1s is the vector assigning 1 to s ∈ S
and 0 to all other elements in S. If s = �, Q1s is the zero vector. Otherwise, if s = τ± then
Q1s = ±1τ+ . Thus,

(AL,pQ)σ+ ,s =
{

±AL,p1τ+(σ+) s = τ±
0 s = �

=
{

±(AL,p)σ+ ,τ+ s = τ±
0 s = �

.

Finally, we conclude with a few results motivating the normalized propagation matrix
and showing how the limiting behavior of the marginal difference relates to the kernel and
spectrum of L.

Theorem 5.6. Let Xk
+ be a choice of orientation, L a generalized Laplacian matrix with

Spec(L) ⊂ [0, �] (� > 0). Then for �−1
K+�−1 ≤ p < 1 the following statements hold:

1.
∥∥At

L,pQν
∥∥

2
→ 0 for every initial distribution ν,

2. Ãt
L,pQν → projker L Qν for every initial distribution ν, where projker L denotes the

projection map onto the kernel of L,
3. If λ is the spectral gap (smallest nonzero eigenvalue) of L then

∥∥Ãt
L,pQν − projker L Qν

∥∥
2
= O

([
1 − 1 − p

p(K − 1) + 1
λ

]t)
.

Proof. The proof is the same as in the proofs of Corollary 3.5 and Theorem 3.7 and mostly
boil down to statements about the spectra of AL,p and ÃL,p. Note that since �−1

K+�−1 ≤ p < 1,

Spec(̃AL,p) ⊂ [0, 1] where the eigenspace of the eigenvalue 1 is equal to the kernel of L,
and the largest eigenvalue of ÃL,p less than 1 is 1 − 1−p

p(K−1)+1λ.

As an example of the applicability of this framework, ÃL,p is used with L = �k to perform
label propagation on edges in the next section.
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6. WALKS ON TRIANGLE COMPLEXES AND RANDOM WALKS FOR
SEMI-SUPERVISED LEARNING

In this section we provide some examples of random walks on simplicial complexes to
provide some intuition. In addition we extend the label propagation algorithm used in
machine learning for semi-supervised learning from graphs to simplicial complexes.

6.1. Triangle Complexes

We begin by reviewing local random walks on graphs as defined by Fan Chung in [3]. Given
a graph G = (V , E) and a designated “boundary” subset S ⊂ V , a 1

2 -lazy random walk on
S = V \S can be defined to satisfy a Dirichlet boundary condition on S (meaning a walker is
killed whenever it reaches S). The walker starts on a vertex v0 ∈ S and at each step remains in
place with probability 1

2 or else jumps to one of the adjacent vertices with equal probability.
The boundary condition is enforced by declaring that whenever the walker would jump to a
vertex in S, the walk ends. Thus, the left stochastic matrix P for this walk can be written as

(P)v′ ,v∈S = Prob(v → v′) =

⎧⎪⎨⎪⎩
1
2 if v = v′

1
2dv

if v ∼ v′

0 else

where v ∼ v′ denotes that vertices v and v′ are adjacent and dv is the number of edges
connected to v. Note that P is indexed only by S, and that its columns sums may be less than
1. The probability of dying is implicitly encoded in P as the difference between the column
sum and 1. As was shown in [3], P is related to a local Laplace operator also indexed by S. If
D is the degree matrix and A the adjacency matrix, the graph Laplacian of G is � = D − A.
We denote the local Laplacian as �S, where S in the subscript means rows and columns
indexed by S have been deleted. The relation between P and �S is

P = I − 1

2
�SD−1

S .

Hence, the existence and rate of convergence to a stationary distributions can be studied in
terms of the spectrum of the local Laplace operator.

Now suppose we are given an orientable 2-dimensional non-branching simplicial com-
plex X = (V , E, T) where T is the set of triangles (subsets of V of size 3). Non-branching
means that every edge is contained in at most 2 triangles. We can define a random walk on
triangles fundamentally identical to a local walk on a graph which reveals the 2-dimensional
homology of X . The 1

2 -lazy 2-walk on T starts at a triangle t0 and at each step remains in
place with probability 1

2 or else jumps to the other side of one of the three edges. If no
triangle lies on the other side of the edge, the walk ends. The transition matrix B for this
walk is given by

(B)t′ ,t = Prob(t → t′) =

⎧⎪⎨⎪⎩
1
2 if t = t′
1
6 if t ∼ t′

0 else

where t ∼ t′ denotes t and t′ share an edge. This is the same transition matrix as P, in the
case that dv = 3 for all v ∈ S. In this case, the analog of the set S is the set of triangles that

Random Structures and Algorithms DOI 10.1002/rsa



398 MUKHERJEE AND STEENBERGEN

Fig. 2. Making the Dirichlet boundary condition explicit, and translating into a graph.

do not share an edge, this is the boundary of X. To draw an explicit connection, imagine
adding a triangle to each boundary edge, obtaining a larger complex X̃ = (Ṽ , Ẽ, T̃). See
Fig. 2

Then take the “dual graph” G = (V , E) of X̃ by thinking of triangles as vertices (so,
V = T̃ ) and connecting vertices in G with an edge if the corresponding triangles in X̃ share
an edge. We do not add a vertex for each outer face. Choose the vertices corresponding to
the added triangles T̃ \ T to be the boundary set S. Now the matrix P associated to the local
random walk on G is indistinguishable from the matrix B associated to the random walk on
X. In addition, it can be seen that �S on G is the same as �2, the 2-dimensional Laplacian
on X defined with respect to a given orientation (recall that we have assumed orientability).
The following states the relation between the transition matrices and Laplacians:

B = P = I − 1

6
�S = I − 1

6
�2.

See Section 2 for the definition of �2, and the appendix of [21] for more on the connection
between �S and �2.

It is a basic fact that the kernel of �2 corresponds to the 2-dimensional homology group
of X over R. Therefore, there exists a stationary distribution for the random walk if and
only if X has nontrivial homology in dimension 2. Additionally, the rate of convergence to
the stationary distribution (if it exists) is governed by the spectral gap of �2. In particular,
the following statements hold:

1. Given a starting triangle t0, the marginal distribution of the random walk after n steps
is E t0

n := Bn1t0 where 1t0 is the vector assigning a 1 to t0 and 0 to all other triangles.
For any t0, the marginal distrubition converges, i.e., E t0∞ := limn→∞ E t0

n exists.
2. The limit E t0∞ is equal to 0 for all starting triangles t0 if and only if X has trivial

homology in dimension 2 over R.
3. The rate of convergence is given by

∥∥E t0
n − E t0∞

∥∥
2
= O

([
1 − 1

6
λ2

]n)

where λ2 is the smallest nonzero eigenvalue of �2.

The example given here is constrained by certain assumptions (orientability and the non-
branching property), which allows for the most direct interpretation with respect to previous
work done on graphs.
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6.2. Label Propagation on Edges

In machine learning random walks on graphs have been used for semi-supervised learning.
In this section we will generalize a class of algorithms on graphs called “label propagation"
algorithms to simplicial complexes, specifically we extend the algorithm described in [23]
(for more examples, see [1, 11, 22]). The goal of semi-supervised classification learning
is to classify a set of unlabelled objects {v1, . . . , vu}, given a small set of labelled objects
{vu+1, . . . , vu+�} and a set E of pairs of objects {vi, vj} that one believes a priori to share the
same class. Let G = (V , E) be the graph with vertex set V = {v1, . . . , vu+�} and let P be the
probability matrix for the usual random walk, i.e.,

(P)ij = Prob(vj → vi) = 1

dj

where dj is the degree of vertex j. We denote the classes an object belongs to as c = 1, ..., C
and an initial distribution f c

0 : V → [0, 1] is the a priori confidence that each vertex is in
class c, a recursive label propagation process proceeds as follows.

1. For t = 1, ..., � and c = 1, .., C:
(a) Set f c

t ← Pf c
t−1

(b) Reset f c
t (vi) = 1 for all vi labelled as c.

2. Consider f c
H as an estimate of the relative confidence that each object is in class c.

3. For each unlabelled point vi, i ≤ u, assign the label

arg max
c=1,..C

{f c
� (vi)}.

The number of steps � is set to be large enough such that f c
� is close to its limit f c

∞ :=
lim�→∞ f c

� . If G is connected, it can be shown that f c
∞ is independent of the choice of f c

0 .
Even if G is disconnected, the algorithm can be performed on each connected component
separately and again the limit f c

∞ for each component will be independent of the choice
of f c

0 .
We will now adapt the label propagation algorithm to higher dimensional walks, namely,

walks on oriented edges. Given any random walk on the set of oriented edges (and an
absorbing death state �), its probability transition matrix P could be used to propagate
labels in the same manner as the above algorithm. However, this will treat and label the two
orientations of a single edge separately as though they are unrelated. We will use walks that
are related to the 1-forms and harmonics of the Hodge Laplacian. A major difference with
propagation on a goal is that the labels will be oriented. For example, given an oriented
edge e+ and a class c, the propagation algorithm may assign a positive confidence that e+
belongs to class c or a negative confidence that e+ belongs to class c, which we view as a
positive confidence that e+ belongs to class −c or, equivalently, that e− belongs to class c.
This construction applies to systems in which every class has two built-in orientations or
signs, so the class information has a directed sense of “flow”.

For example, imagine water flowing along a triangle complex in two dimensions. Given
an oriented edge, the water may flow in the positive or negative direction along the edge.
A “negative” flow of water in the direction of e+ can be interpreted as a positive flow in
the direction of e−. Perhaps the flow along a few edges is observed and one wishes to infer
the direction of the flow along all the other edges. Unlike in the graph case, a single class
of flow already presents a classification challenge. Alternately, consider multiple streams
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of water colored according to the C classes, in which case we may want to know which
stream dominates the flow along each edge and in which direction. In order to make these
inferences, it is necessary to make some assumption about how labels should propagate from
one edge to the next. When considering water flow, it is intuitive to make the following two
assumptions.

1. Local Consistency of Motion. If water is flowing along an oriented edge [vi, vj] in
the positive direction, then for every triangle [vi, vj, vk] the water should also tend to
flow along [vi, vk] and [vk , vj] in the positive directions.

2. Preservation of Mass. The total amount of flow into and out of each vertex (along
edges connected to the vertex) should be the same.

In fact, either one of these assumptions is sufficient to infer oriented class labels given
the observed flow on a few edges. Depending on which assumptions one chooses, different
normalized propagation matrices ÃL,p (see Section 5) may be applied. For example, setting
the Laplacian matrix L to �

up
1 = ∂2δ

1 will enforce local consistency of motion without
regard to preservation of mass, while L = �down

1 = δ0∂1 will do the opposite. A reasonable
way of preserving both assumptions is by using the full Hodge 1-Laplacian L = �1, see
Fig. 3 for a visual example of the contrast between walks.

We now state a simple algorithm, analogous to the one for graphs, that propagates labels
on edges to infer a partially-observed flow. Let X be a simplicial complex of dimension
d ≥ 1 and let X1

+ = {e1, . . . , en} be a choice of orientation for the set of edges. Without loss
of generality, assume that oriented edges eu+1, . . . , en=u+� have been classified with class c
(not −c). Similar to the graph case, we apply a recursive label propagation process to an
initial distribution vector f c

0 : X1
+ → R measuring the a priori confidence that each oriented

edge is in class c. See Algorithm 1 for the procedure. The result of the algorithm is a set of
estimates of the relative confidence that each edge is in class c with some orientation.

Algorithm 1: Edge propagtion algorithm.
Data: Simplicial complex X , set of oriented edges

X1
+ = {e1, . . . , eu, eu+1, ..., eu+�}

with eu+1, . . . , eu+� labelled with oriented classes ±1, .., ±C, initial distribution
vector f c

0 : X1
+ → R, number of iterations �

Result: Confidence of class membership and direction for unlabelled edges
{f c

∗ (e1), ..., f c
∗ (eu)}C

c=1

for c = 1 to C do
for t = 1 to � do

f c
t ← ÃL,pf c

t−1;
f c
t (ei) ← 1 for ei labelled with class c;

f c
t (ei) ← −1 for ei labelled with class −c

end
end
{f c

∗ (e1), ..., f c
∗ (eu)}C

c=1 ← {f c
� (e1), ..., f c

� (eu)}C
c=1;
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Fig. 3. (A) An edge labelled on a 2-complex. (B) Label propagation with �
up
1 , note the gradient like

flows. (C) Label propagation with �down
1 , note the short cycles or curl structure. (D) Label propagation

with �1, note the cycle or Harmonic around the boundary. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

After running the algorithm, an unlabelled edge ei is assigned the oriented class
sgn(f c

� (ei))c where c = arg maxc=1,..C{∣∣f c
� (ei)

∣∣}.
We now prove that given enough iterations � the algorithm converges and the resulting

assigned labels are meaningful. The proof uses the same methods as the one found in [23]
for the graph case.

Proposition 6.1. Using the notation of Section 5, assume that L is a Laplacian matrix
with Spec(LD−1

L ) ⊂ [0, �]. Let ÃL,p be the normalized p-lazy propagation matrix as defined
in Definition 5.2. If �−2

2K+�−2 < p < 1 and if no vector in ker L is supported on the set of
unclassified edges, then Algorithm 1 converges. That is,

lim
�→∞

f c
T =: f c

∞ =
(

ψ c

(I − A4)
−1A3ψ

c

)
,

where A4 and A3 are submatrices of ÃL,p and ψ c is the class function on edges labelled with
±c (for which ψ c(ei) = ±1). In addition, f c

∞ depends neither on the initial distribution f c
0

nor on the lazy probability p.

Proof. First, note that we are only interested in the convergence of f c
T (ei) for ei not labelled

±c. Partition f c
� and ÃL,p according to whether ei is labelled ±c or not as

f c
� =

(
ψ c

f̂ c
�

)
and ÃL,p =

(
A1 A2

A3 A4

)
.
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The recursive definition of f c
� in Algorithm 1 can now be rewritten as f̂ c

� = A4 f̂ c
�−1 + A3ψ

c.

Solving for f̂ c
� in terms of f̂ c

0 yields

f̂ c
� = (A4)

k f̂ c
0 +

�−1∑
i=0

(A4)
iA3ψ

c.

In order to prove convergence of f̂ c
� , it suffices to prove that A4 has only eigenvalues strictly

less than 1 in absolute value. This ensures that (A4)
k f̂ c

0 converges to zero (eliminating
dependence on the initial distribution) and that

∑k−1
i=0 (A4)

iA3ψ
c converges to (I−A4)

−1A3ψ
c

as k → ∞. We will prove that Spec(A4) ⊂ (−1, 1) by relating Spec(A4) to Spec(LD−1
L ) ⊂

[0, �] as follows.
First, partition L and DL in a similar way to ÃL,p as

L =
(

L1 L2

L3 L4

)
and DL =

(
D1 0
0 D4

)
.

so that

A4 = I − 1 − p

p(K − 1) + 1
L4D−1

4 .

Hence Spec(A4) is determined by Spec(L4D−1
4 ), or to be more specific, λ ∈ Spec(L4D−1

4 ) ⇔
1 − 1−p

p(K−1)+1λ ∈ Spec(A4). Furthermore, note that L4D−1
4 and D−1/2

4 L4D−1/2
4 are similar

matrices that share the same spectrum. It turns out that the spectrum of D−1/2
4 L4D−1/2

4 is
bounded within the spectrum of D−1/2

L LD−1/2
L , which in turn is equal to Spec(LD−1

L ) ⊂ [0, �]
by similarity. Let g be an eigenvector of D−1/2

4 L4D−1/2
4 with eigenvalue λ and let g1, . . . , gi

be an orthonormal basis of eigenvectors of D−1/2
L LD−1/2

L (such a basis exists since it is a
symmetric matrix) with eigenvalues γ1, . . . , γi ∈ [0, �]. We can write(

0c

g

)
= α1g1 + . . . + αigi

for some α1, . . . , αi, where 0c is the vector of zeros with length equal to the number of edges
classified as ±c. Then

α2
1γ1 + . . . + α2

i γi =
(

0c

g

)�

D−1/2
1 L2D−1/2

4

(
0c

g

)
=
(

0c

g

)� (
D−1/2

1 L1D−1/2
1 D−1/2

1 L2D−1/2
4

D−1/2
4 L3D−1/2

1 D−1/2
4 L4D−1/2

4

)(
0c

g

)
=
(

0c

g

)� (
D−1/2

1 L2D−1/2
4 g

λg

)
= λ

(
α2

1 + . . . + α2
i

)
Because we assumed that γj ∈ [0, �] for all j, it would be a contradiction if λ > � or λ < 0.
The case λ = 0 is possible if and only if αjγj = 0 for all j and therefore

(
0c
g

) ∈ ker L. Since
we assumed that no vector in ker L is supported on the unlabelled edges, we conclude that
Spec(L4D−1

4 ) ⊂ (0, �]. Finally, since we assumed that �−2
2K+�−2 < p < 1, we conclude that

Spec(A4) ⊂
[
1 − 1−p

p(K−1)+1�, 1
)

⊂ (−1, 1).
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To see that the solution f̂ c
∞ = (I − A4)

−1A3ψ
c does not depend on p, note that I − A4 is a

submatrix of 1−p
p(K−1)+1 LD−1

L so that p(K−1)+1
1−p (I − A4) does not depend on p. Then write f̂ c

∞ as

f̂ c
∞ =

[
p(K − 1) + 1

1 − p
(I − A4)

]−1

× 1

1 − p
A3ψ

c

and note that p(K−1)+1
1−p A3 is an off-diagonal submatrix of p(K−1)+1

1−p I − LD−1
L and therefore

does not depend on p either.

Note that while the limit f c
∞ exists, the matrix I −A4 could be ill-conditioned. In practice,

it may be better to approximate f c
∞ with f c

t for large enough t. Also, the algorithm will
converge faster for smaller values of p and if f̂ c

0 = 0.

6.2.1. Simulation Study We use two simulations to illustrate how Algorithm 1 works.
In the first example, we describe how a single oriented edge of one class is propagated via
the different walks. In the second example, we describe the case where to oriented edges
with different class labels are propagated.

Propagating a single edge with one label Figure 3A shows a simplicial complex in which
a single oriented edge e1 has been labelled red and all other edges are unlabelled. Figure
3B displays the result of propagating this single label 1000 steps using Algorithm 1 with
L = �

up
1 , with the parameter p = 0.9, and f0 equal to the indicator function on e1 (edge e1

is labelled red). The edges in Fig. 3B are oriented according to the sign of f1000. Figures 3C
and 3D display the results of propagating the same red edge by L = �down

1 and L = �1

respectively. Propagation by �
up
1 results in gradient like flows while propagation by �down

1

results in a more curl like structure. Propagation by the walk corresponding to the full
Laplacian �1 results in longer cycles or harmonics as can be seen by the cycle around the
boundary of the simplcial complex.

Propagating edges of different labels Figure 4A shows a simplicial complex in which two
edges have been labelled with class c = 1 (indicated by the red color) and two other edges
have been labelled with class c = 2 (indicated by the blue color). Figure 4B displays the
result of 1000 iterations of Algorithm 1 with L = �1, p = 0.9, and f c

0 equal to the indicator
function on the oriented edges labelled with classes c = 1, 2. The orientation of the edges
are given by the sign of f c=1

T , if |f c=1
T | > |f c=2

T |, or f c=2
T , if |f c=1

T | < |f c=2
T |. Notice that only a

small number of labels are needed to induce large-scale circular motion. Near the middle,
a few blue labels mix in with the red due to the asymmetry of the initial labels.

7. DISCUSSION

In this paper, we introduced a random walk on simplicial complexes with a stationary
distribution that is related to part of the k-th Hodge Laplacian �down

k = δk−1∂k . We compared
our result to the result in [17] which focused on the walk corresponding to part of the k-th
Hodge Laplacian �

up
k = ∂k+1δ

k . We also state a walk that corresponds to the full Hodge
Laplacian �k .

There remain many open questions about random walks on simplicial complexes and the
spectral theory of higher order Laplacians. Possible future directions of research include:
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Fig. 4. (A) A 2-complex with two different labels on four edges. (B) Edge propagation with two classes
with �1. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

1. What is the continuum limit for these random walks for a model where the random
complex is generated by sampling a manifold.

2. Is it possible to use conditioning techniques from stochastic processes such as Doob’s
h-transform to analyze these walks?

3. What applications do these walks have to problems in machine learning and statistics?
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