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ABSTRACT
RUNX1 plays opposing roles in breast cancer: a tumor suppressor in estrogen receptor-positive (ERC)
disease and an oncogenic role in ER-negative (ER¡) tumors. Potentially mediating the former, we have
recently reported that RUNX1 prevents estrogen-driven suppression of the mRNA encoding the tumor
suppressor AXIN1. Accordingly, AXIN1 protein expression was diminished upon RUNX1 silencing in ERC

breast cancer cells and was positively correlated with AXIN1 protein expression across tumors with high
levels of ER. Here we report the surprising observation that RUNX1 and AXIN1 proteins are strongly
correlated in ER¡ tumors as well. However, this correlation is not attributable to regulation of AXIN1 by
RUNX1 or vice versa. The unexpected correlation between RUNX1, playing an oncogenic role in ER¡ breast
cancer, and AXIN1, a well-established tumor suppressor hub, may be related to a high ratio between the
expression of variant 2 and variant 1 (v2/v1) of AXIN1 in ER¡ compared with ERC breast cancer. Although
both isoforms are similarly regulated by RUNX1 in estrogen-stimulated ERC breast cancer cells, the higher
v2/v1 ratio in ER¡ disease is expected to weaken the tumor suppressor activity of AXIN1 in these tumors.
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Introduction

In addition to their developmental roles, the 3 transcription
factors in the mammalian RUNX family play context-specific
roles in cancer as either tumor suppressors or oncogenes.1-6

RUNX1 is a master regulator of haematopoietic cell fate deter-
mination and is frequently disrupted in leukemias.7-11 Recently,
its role in estrogen receptor-positive (ERC) breast cancer sup-
pression has been disclosed based on identification of recurrent
somatic mutations and/or deletions in tumor biopsies.12-14

Even though Runx1 knockout is insufficient for breast cancer
initiation,15 its silencing in ERC breast cancer cells in vitro has
been shown to increase cell proliferation and expression of
stem cell markers, attributable to decreased expression of the
tumor suppressor AXIN1.1

AXIN1 is a multidomain scaffold protein with a tumor
suppressor activity mostly attributable to its role as a rate-
limiting factor in the ß-catenin destruction complex.16-18

Besides its well-known function as a negative regulator of
Wnt/ß-catenin signaling,17-19 AXIN1 has been implicated
in coordinating several other pathways including TGFb,
SAPK/JNK, p53, YAP/TAZ and Myc.20-24 Two major iso-
forms of AXIN1 have been described, with variant 1(v1)
comprising 11 exons and v2 lacking exon 9, which encodes
a PP2A binding domain that likely plays a role in destabi-
lizing Myc by dephosphorylation of S6222. Although

AXIN1 is a well-recognized tumor suppressor with multi-
ple mutations identified in several different cancers,25-28

no recurrent mutations in AXIN1 have been identified in
breast cancer.14 In our recent study, however, we demon-
strated that RUNX1 and estrogens combinatorially regu-
lated the AXIN1 gene in breast cancer cells, so that AXIN1
expression was downregulated when RUNX1 was lost
while ER was active.1 Additionally, breast carcinogenesis is
accompanied with an increase in the v2/v1 ratio between
the 2 AXIN1 isoforms.29

Despite significant improvements to early detection and the
development of effective hormonal and other therapies, breast
cancer is predicted to claim more than 40,000 female lives in
the United States in 201630. Heterogeneity of breast cancer is
critical in disease management. More than 2 thirds of all
tumors are ERC and/or PRC/HER2¡, 12% are triple negative
breast cancer (TNBC), 10% are ERC and/or PRC/HER2C, and
5% are ER¡/HER2C 31. HER2C and TNBC patients have poor
survival compared with ERC breast cancer patients. Whereas
ERC and HER2C patients can benefit from hormonal (Tamoxi-
fen, Fulvestrant, Letrozole)32-36 and anti-HER2 therapies (Tras-
tuzumab, Lapatinib),37,38 no targeted therapeutic approaches
are available for aggressive TNBC.39-42

An increasing body of evidence points at context-depen-
dent functional interaction between sex hormone steroid
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signaling and the roles that RUNX proteins play in can-
cer.43-48 In breast cancer, interactions of RUNX proteins
with estrogen signaling are critical for their roles as either
tumor suppressors or oncogenes.1,6,49,50 Recurrent inactivat-
ing mutations in RUNX1 are specific to ERC tumors.14,15

Rather than functioning as a tumor suppressor, RUNX1
expression in TNBC correlates with poor prognosis and its
silencing in a cell culture model of TNBC ameliorates can-
cer-related phenotypes.51-53 In this study we report the
unexpected positive association between RUNX1 and
AXIN1 in ER¡ breast cancer and present evidence suggest-
ing that the association of RUNX1 with tumor aggression
in this breast cancer subtype can be explained in part by
the preferential expression of AXIN1v2.

Materials and methods

Cells

The ERC MCF7 and the ER¡ MDA-MB-231 breast cancer
cell lines were obtained from the American Type Culture
Collection and cultured in DMEM (Mediatech, Inc.) supple-
mented with 10% FBS (Gemini Bio-products) and in
DMEM/F12 (Mediatech, Inc.) supplemented with 5% FBS,
respectively. Construction of the MCF7/shRx1dox cells and
MDA-MB-231/shRx1dox cells, conditionally expressing
shRNAs for RUNX1 upon doxycycline (dox) treatment, has
been described previously.1 For hormone depletion, cells
were washed 3 times with PBS and maintained for 48 h in
phenol-red free growth medium supplemented with 10%
charcoal stripped serum (CSS) (Gemini Bio-products)
before treatment.

RT-qPCR

Total RNA was isolated using AurumTM Total RNA mini-kit
(BioRad) and cDNA was synthesized from 1 mg of total RNA
with qScriptTM cDNA SuperMix (Quanta Biosciences). Quanti-
tative Real Time PCR was performed in triplicate using Max-
ima SYBR Green/Fluorescein Master Mix (ThermoFisher
Scientific) with CFX96 instrument (BioRad). Relative mRNA
expression values were normalized to 18S RNA. Primers used
for RT-qPCR were 50 -CAAGCAGAGGTATGTGCAGGA- 30
(Forward) and 50 -CACAACGATGCTGTCACACG- 30
(Reverse) for Axin1 v1; and 50 -AAGCAGAGGACAA-
GATCGCA- 30 (Forward) and 50 -CGCAGAAGTAGTACGC-
CACA- 30 (Reverse) for Axin1 v2.

Tissue microarray analysis

Breast cancer tissue microarray (TMA) slides used in this study
were purchased from Protein Biotechnologies, Inc. (TM-1007).
Represented in this TMA are 34 ER¡ tumors, including 33
cases of invasive ductal carcinoma and 1 case of ductal carci-
noma in situ. TMA slides were immunostained as described
previously using antibodies against RUNX1 (#8529) or AXIN1
(#2087) from Cell Signaling Technology.1 ER and Ki67 histo-
scores were provided by the manufacturer and presence or
absence of RUNX1 and AXIN1 was determined by a certified

surgical pathologist at USC. Association between the RUNX1
and AXIN1 status was tested using the Pearson chi-square test
for the 2 £ 2 table using MedCalc (http://medcalc.com).

Data mining

RNA-sequencing data for the breast cancer cohort of TCGA
was downloaded from the TCGA Data Portal (http://cancerge
nome.nih.gov/). Isoform sequencing data and exon sequencing
data for AXIN1 was analyzed using Partek Genomics Suite 6.4
(Partek, Inc.).

Results

Correlation between RUNX1 and AXIN1 in ER¡ breast
cancer tumors

Based on clinical data mining of RUNX1-depleted ERC breast
cancer cells and genome-wide analyses of ERC breast epithelial
cells in vivo and in vitro, we have recently demonstrated that
RUNX1 antagonized estrogen-mediated AXIN1 suppression.1

Figure 1. Association between RUNX1 and AXIN1 in ER¡ breast cancer tumors.
Breast cancer tumor microarray TMA-1007 from Protein Biotechnologies, Inc. was
immunostained for RUNX1 and AXIN1. The ER¡ invasive ductal carcinomas were
designated as positive or negative for RUNX1 and AXIN1. (A) RUNX1 and AXIN1 sta-
tus, and the odds ratio and 95% confidence intervals for the association between
AXIN1 status and RUNX1 status in the ER¡ tumors in the TMA. Association between
the RUNX1 status and AXIN1 status was tested using the Pearson chi-square test
for the 2 £ 2 table. (B) RUNX1 and AXIN1 immunohistochemical staining of 2 rep-
resentative ER¡ tumors from the TMA illustrating the association between RUNX1
and AXIN1 expression.
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Consistent with this model, immunohistochemical analysis of
31 ERC breast cancer tumors in a tissue microarray (TMA-
1007 from Protein Biotechnologies) indicated positive correla-
tion between RUNX1 and AXIN1 in a manner dependent on
ERa expression.1 Analysis of 34 ER¡ tumors that were repre-
sented in the same TMA revealed that RUNX1 and AXIN1
were strongly correlated in the ER¡ tumors as well (Fig. 1).
This observation was unexpected because unlike ERC breast
cancer cells, RUNX1 manipulation in ER¡ breast cancer cells
did not affect AXIN1 expression.1 Additionally, unlike in ERC

tumors, RUNX1 does not appear to play a tumor suppressor
role in ER¡ breast cancer. Not only is the RUNX1 locus devoid
of recurrent mutation,14 RUNX1 expression in ER¡ breast can-
cer actually correlates with disease aggression.51-53

Alternative splicing of AXIN1 in ER¡ vs. ERC breast cancer

RUNX1 appears to play opposite roles in ERC and ER¡ breast
cancer, yet the tumor suppressor AXIN1 is positively correlated
with RUNX1 in both ERC and ER¡ tumors (Fig. 1 and ref. 1).
To resolve this conundrum, we hypothesized that ER¡ tumors
express at relatively higher level of the cancer-associated variant
2 of AXIN1 (AXIN1v2). We tested this hypothesis by interro-
gating the breast cancer RNA-seq database of TCGA. Indeed,
although v2 is the transcript expressed at higher levels across
all tumor subtypes, its levels are highest in the basal-like sub-
type and the v2/v1 ratio is higher in ER¡ (Basal-like and
HER2-enriched) compared with ERC (Luminal A and Luminal
B) tumors (Fig. 2A). Accordingly, a heat map describing
expression of each AXIN1 exon across the breast cancer tumors
in TCGA demonstrates reduced expression of AXIN1 exon 9 in
ER- tumors, in particular the basal-like subtype (Fig. 2B).

Positive correlation of each of RUNX1 and AXIN1 with the
Ki67 index in ER¡ breast cancer

We next calculated the correlation between each of RUNX1
and AXIN1 across the 34 ER¡ breast cancer tumors in the
TMA-1007 tissue microarray with the Ki67 index provided by
the manufacturer. Consistent with the proposed oncogenic role
of RUNX1 in ER¡ breast carcinogenesis,51-53 its expression was
positively correlated with the Ki67 index (p D 0.01; Table 1).
Less expectedly, AXIN1 expression was also positively corre-
lated with the Ki67 index (Table 1). This finding suggests that
AXIN1 plays a weak, if any, tumor suppressor role in ER¡

breast cancer, possibly related to the predominance of
AXIN1v2 in these tumors.

Association between AXIN1 and RUNX1 in ER¡ breast
cancer does not involve transcriptional control

The correlation between RUNX1 and AXIN1 across ERC

breast cancer is attributable to RUNX1-mediated antago-
nism of AXIN1 transcriptional repression by estrogens.1

The positive correlation between RUNX1 and AXIN1 in the
ER¡ tumors (Fig. 1) is misaligned with our observations
that RUNX1 silencing did not decrease AXIN1 expression
in estrogen-deprived ERC MCF7 cells (CSS without E2 sup-
plementation) or in ER¡ MBA-MB-231 cells.1 We suspected
that this misalignment was attributable to differential regu-
lation of the 2 AXIN1 variants. However, RT-qPCR analysis
revealed similar regulation of AXIN1v1 and AXIN1v2. They
were both downregulated by RUNX1 silencing in MCF7
cultures in the presence of estrogens (Fig. 3B-C) and they
were both unaffected by RUNX1 silencing in hormone
depleted MCF7 cultures (Fig. 3A) and in the ER¡ MDA-

Figure 2. AXIN1 splice variant expression in breast cancer subtypes. (A) Box-whisker plot describing the differential expression of AXIN1 variants (upper panel) and their
ratio (lower panel) in breast cancer subtypes. (B) Semi-supervised hierarchical clustering for expression of AXIN1 exons in breast cancer subtypes. Expression of AXIN1 var-
iants was represented by RSEM normalized values of the individual isoforms and expression of AXIN1 exons was represented by RPKM values in the Level-3 RNA-seqV2
data downloaded from the TCGA data portal. P-values were calculated by ANOVA.
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MB-231 cell cultures (Fig. 3D). These results suggest that
the positive correlation between RUNX1 and AXIN1 in
ER¡ breast cancer (Fig. 1) is not attributable to a RUNX1-
mediated control of AXIN1 transcription.

Discussion

RUNX proteins are known to exert context-dependent opposing
roles in breast cancer. Potentially reflecting subtype-specific fea-
tures, RUNX1 somatic mutations occur recurrently in ERC but
not in ER¡ breast cancer.14 The tumor suppressor role of
RUNX1 in ERC tumors12-14 is in part is attributable to antago-
nism of estrogen-mediated AXIN1 suppression.1 In ER¡ tumors,
on the other hand, RUNX1 predominantly plays an oncogenic
role, reflected in positive correlation with disease aggression and

mortality52,53 as well as cancer-related phenotypes in vitro.51,52

Apparently inconsistent with the oncogenic role of RUNX1 in
ER¡ breast cancer, its expression in these tumors is positively
correlated with AXIN1 (Fig. 1). Our findings suggest that
RUNX1-positive ER¡ tumors remain aggressive despite AXIN1
expression because they express the AXIN1 variants differently
than ERC tumors. Specifically, the ER¡ tumors express AXIN1
with a higher ratio between variant 2 and variant 1 (Fig. 2A).

The mechanism underlying the positive correlation between
RUNX1 and AXIN1 in ER¡ breast cancer remains to be eluci-
dated. Unlike in ERC breast cancer cells, RUNX1 does not reg-
ulate AXIN1 mRNA in ER¡ breast cancer cells (Fig. 3).
Additionally preliminary studies demonstrated indifference of
RUNX1 expression to IWR1-mediated upregulation of AXIN1
(data not shown) suggesting that AXIN1 does not regulate
RUNX1 expression. We cannot rule out regulation of AXIN1
by RUNX1 in vivo through a mechanism not supported in our
culture models (Fig. 3). It is also possible that RUNX1 and
AXIN1 are both regulated, independently, by a common
upstream pathway.

Even though RUNX1 does not regulate AXIN1 in ER¡

breast cancer cells (Fig. 3), and even though its correlation with
AXIN1 expression (Fig. 1) is easier to interpret given the ratio
between the AXIN1 isoforms (Fig. 2), the molecular mecha-
nisms underlying the oncogenic role of RUNX1 (Table 1 and
refs.51-53) are poorly understood. To fulfill its oncogenic role,
RUNX1 might employ mechanisms similar to those employed
by RUNX2 in promoting cancer aggression.2,4,5,43,54-62 Indeed,
about 2 thirds of the RUNX1 transcriptome is shared with the
RUNX2 transcriptome in estrogen-deprived MCF7 cells.1 Con-
ceivably, these shared genes contribute to aggressive disease
and high mortality of patients with ER¡ /RUNX1C tumors.
The present study contends that high AXIN1 expression in
these tumors does not provide sufficient tumor suppression
because of the differential enrichment for variant 2 of AXIN1.

Table 1. Association between RUNX1 or AXIN1 and Ki67.

ER-negative tumors (N D 34)

Ki-67 status

RUNX1 Status Negative / Mild Positive / Strong

Negative 13 6
Positive 3 11

Odds RatioD 7.94
95% CI: (1.69, 39.42)

p D 0.01

(N D 34)

Ki-67 status

AXIN1 Status Negative / Mild Positive / Strong

Negative 11 5
Positive 5 13

Odds Ratio D 5.7
95% CI: (1.3, 25.05)

p D 0.02

Figure 3. RUNX1 regulates both AXIN1v1 and AXIN1v2 in an estrogen-dependent manner. MCF7/shRx1dox (A-C) and MDA-MB-231/shRx1dox cells (D) were maintained in
either 10% charcoal-stripped serum (A-B) or complete (estrogen-containing) 10% serum (C-D), and treated with dox to silence RUNX1 (A-D) and E2 (only B) for 48 h.
Expression of AXIN1 transcripts v1 and v2 was measured by RT-qPCR and corrected for 18S RNA levels (Mean § SEM of 3 independent experiments). �p < 0.05 by t-test.
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