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ABSTRACT
Eukaryotic protein synthesis is a multifaceted process that requires coordination of a set of translation
factors in a particular cellular state. During normal growth and proliferation, cells generally make their
proteome via conventional translation that utilizes canonical translation factors. When faced with
environmental stress such as growth factor deprivation, or in response to biological cues such as
developmental signals, cells can reduce canonical translation. In this situation, cells adapt alternative
modes of translation to make specific proteins necessary for required biological functions under these
distinct conditions. To date, a number of alternative translation mechanisms have been reported, which
include non-canonical, cap dependent translation and cap independent translation such as IRES mediated
translation. Here, we discuss one of the alternative modes of translation mediated by a specialized
microRNA complex, FXR1a-microRNP that promotes non-canonical, cap dependent translation in
quiescent conditions, where canonical translation is reduced due to low mTOR activity.
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Introduction

MicroRNAs are well recognized as one of the major regulatory
small non-coding RNAs in eukaryotic cells. MicroRNAs gener-
ally repress gene expression by suppressing mRNA translation
and by degradation of mRNA.1 Specifically, microRNAs can
regulate translation by binding to the 30 untranslated regions
(30UTRs) of target mRNAs.2-4 They can associate with mem-
bers of the Argonaute (AGO) protein family to form micro-
RNA-protein complexes (microRNPs).5,6 The microRNP
conventionally associates with an important co-factor, GW182,
as well as other effector proteins.1,7-9 Together, this canonical
microRNP deadenylates or removes the poly(A) tails of
mRNAs, as well as represses mRNA translation.1,8,10-14 Impor-
tantly, microRNA-mediated repression and deadenylation
involves the role of canonical translation factors like poly(A)
binding protein (PABP) and helicases that are associated with
conventional translation.1,8,10,11,15 Besides repression, micro-
RNAs can activate the translation of specific mRNAs in distinct
cellular conditions.16-26 In quiescent (G0) mammalian cells and
immature Xenopus laevis oocytes, we previously uncovered that
microRNAs can activate translation of specific mRNAs such as
TNFa and MYT1 respectively.16,25 The translation activation
machinery includes a specific microRNP comprising an
Argonaute family member protein AGO2, and a distinct spliced
isoform of an RNA binding protein, Fragile-X-mental-retarda-
tion-syndrome-Related protein 1a (FXR1-iso-a)27,28 that pro-
motes translation,16,17,29,30 instead of the repressive GW182
co-factor present in the conventional microRNP.1 Additionally,
microRNAs have been reported to activate translation in the

absence of GW182 in Drosophila embryo extracts21 and in
other cellular conditions.26

Until recently, the detailed mechanism of microRNA medi-
ated translation upregulation in these cellular states remained
elusive. Our recent study delineated the mechanism of micro-
RNA mediated translation upregulation in quiescent mamma-
lian cells and Xenopus laevis immature oocytes, where
canonical (cap and poly(A) dependent) translation is reduced.31

Under these cellular conditions, FXR1a-associated microRNP
(FXR1a-microRNP) interacts with PARN and DAP5/p97 that
serve as alternate, non-canonical translation factors31 to medi-
ate specialized translation of specific poly(A) shortened target
mRNAs associated with this complex (Fig. 1). Importantly,
microRNAs have been reported to activate translation in a 50
cap and poly(A) independent manner in other specific cellular
conditions21,26 with absence of GW182—consistent with our
findings in quiescent cells and early oocytes.

Canonical translation mechanism

In proliferating cells in eukaryotes, most mRNAs are generally
translated via the canonical translation mechanism. Canonical
translation, often called cap dependent translation, depends
on the recognition of mRNA 50 caps by the canonical cap
binding protein, eukaryotic translation initiation factor 4E
(eIF4E), and its association with eIF4F complex and the 43S
pre-initiation complex (PIC).32-34 EIF4F consists of a scaffold-
ing protein, eukaryotic translation initiation factor 4G
(eIF4G), and a DEAD box RNA helicase, eIF4A. 43S PIC
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consists of the 40S small ribosomal subunit, the eukaryotic
translation initiation factors (eIFs) eIF1, eIF1A, eIF3, eIF5 and
the ternary complex comprising initiator methionyl-tRNA
(Met-tRNA), eIF2 and GTP.32,35,36 The 43S PIC complex is
recruited to the 50 cap of the mRNA and connected to the cap
through eIF4G in the eIF4F complex.34 EIF4G not only con-
nects with eIF3 and recruits the 43S PIC but also enhances
the binding of eIF4E to the cap, thus facilitating cap depen-
dent translation.32,34,36-39 EIF4G also connects with PABP at
the 30 end of the mRNA, thereby connecting the 50 and 30
ends of the mRNA, which is thought to enhance transla-
tion.40-43 Therefore, canonical translation can be regulated via
interference with eIF4E and eIF4G interactions.

Cap binding by eIF4F complex is a key regulatory event in
canonical translation initiation, which is controlled by impor-
tant pathways, including mechanistic/mammalian target of
rapamycin (mTOR) kinase activity.44-47 mTOR complex 1
(mTORC1) kinase activity phosphorylates eIF4E-binding pro-
teins (eIF4EBPs or 4EBPs).44,48 Phosphorylated 4EBP dissoci-
ates from eIF4E, allowing eIF4E-eIF4G interaction and eIF4F
complex formation.36,49,50 Reduced mTOR activity leads to
hypo-phosphorylation of 4EBPs. Hypo-phosphorylated 4EBP

binds to eIF4E with high affinity, blocking the interaction of
eIF4G with eIF4E, and thus inhibits canonical translation
through: disruption of recruitment of eIF3 and PIC by eIF4G,
decreased cap binding affinity of eIF4E without eIF4G, and
decreased synergy with PABP at the 30 mRNA end. Canonical
translation is reduced when the cells are under distinct cellular
stresses—like growth factor depletion, nutrient deficiency and
hypoxia—primarily due to low mTOR activity in these condi-
tions.48,51-58

MicroRNA mediated translation requires decrease of
mTOR activity

G0 is a reversible state of cell cycle arrest that cells enter in
response to environmental stress or developmental cues.59-62

mTOR activity, which is known to play an important role in
cell proliferation, is reduced in G0.54,55,63 In serum starved G0
mammalian cells and immature Xenopus laevis oocytes, canon-
ical cap and poly(A) dependent translation is compromised
due to shortened poly(A) tails on mRNAs and low mTOR
activity that leads to 4EBP mediated inhibition of eIF4E-eIF4G
interaction.31 Poly(A) tails of mRNAs are shortened due to

Figure 1. During normal proliferation, when mTOR kinase activity is high, cells depend on canonical cap dependent translation for global protein synthesis. However,
under specific conditions such as quiescence, canonical protein synthesis is reduced due to low mTOR activity that causes dephosphorylation and thereby, activation of
4EBPs. Activated 4EBPs inhibit canonical cap dependent translation by binding eIF4E (the canonical cap binding protein) and preventing its interactions with eIF4G. In
order to maintain the cellular state, cells operate alternative translation mechanisms to express specific genes. In quiescence, apart from low mTOR activity and 4EBP
dephosphorylation—in certain cell lines and in immature oocytes where FXR1 levels are increased—a specialized FXR1a-microRNP complex mediates one such alterna-
tive mechanism. Similar to the conventional repressive microRNP, FXR1a-microRNP contains AGO2 and microRNAs but lacks the canonical microRNP repression effector,
GW182. Instead, in FXR1a-microRNP, AGO2 interacts with a specific spliced isoform of the RNA binding protein FXR1a that does not participate in microRNA mediated
repression142,143 and promotes specific mRNA translation.17,29,30 MicroRNA bound AGO2 directs recruitment of the complex to 30UTRs. Poly (A) tails are decreased in these
low mTOR conditions to avoid binding PABP that can recruit GW182 and promote microRNA-mediated deadenylation and repression. Increased deadenylation is brought
about by PARN deadenylase in G0 cells, which is attributed to increased cap binding by PARN in G0.65 FXR1a-microRNP interacts with p97/DAP5, a non-canonical transla-
tion factor that brings in eIF3–40S ribosome subunit in place of eIF4G.103-113 FXR1a-microRNP also interacts with PARN that binds mRNA 50 caps in G0 in place of eIF4E,
thus connecting p97-FXR1a-microRNP that is recruited to the 30 UTR, with the 50cap to replace the canonical 50-30 eIF4E-eIF4G-PABP link.31 These alternate cap binding
and ribosome recruitment factors promote specialized translation of specific poly(A) shortened mRNAs associated with FXR1a-microRNP in quiescent conditions, where
canonical translation is reduced.
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increased activity of Poly(A) ribonuclease (PARN),31,64-66

blocking the role of poly(A) and PABP in canonical translation.
Our laboratory and other groups have shown that translation of
certain mRNAs occurs in these conditions, despite reduced
canonical translation, suggestive of alternative modes of trans-
lation.25,31,67,68 Several alternative translation mechanisms have
been reported under different cellular states such as cap inde-
pendent internal ribosome entry site (IRES) mediated transla-
tion.53,67-74 In G0, a specialized FXR1a-microRNP mediates
alternative translation of specific mRNAs (Fig. 1).31 FXR1a-
microRNP recruits targets for translation activation in the
nucleus exclusively, which enables selection of specific mRNAs
for translation activation.75 FXR1a-microRNP activates transla-
tion of reporter mRNAs bearing microRNA target sites in the
30UTR, and of specific endogenous mRNAs like TNFa and
MYT1 in G0 mammalian cells and Xenopus immature oocytes
respectively.17,25,31 Proliferating THP1 cells, treated with
mTOR inhibitor Torin1 that blocks 4EBP phosphorylation and
thereby, canonical translation—recreating conditions similar to
G0 cells—show microRNA mediated translation activation of
reporter mRNAs.31 Similarly, overexpression in proliferating
cells of phosphorylation defective 4EBP mutant (eIF4EBP-
T37A) that cannot dissociate from eIF4E, led to increase in
microRNA mediated reporter translation.31 These data indicate
the requirement for active, dephosphorylated 4EBP to inhibit
canonical cap dependent translation and enable this alternative
mechanism.

Poly(A) tail shortened/unadenylated mRNAs are
targets of microRNA-mediated translation

The poly(A) tail is not required for microRNA mediated
repression but is known to enhance microRNA mediated
deadenylation and repression through PABP, which inter-
acts with and enhances recruitment of the repressive
GW182 factor of canonical microRNPs.1,11,76,77 Only unade-
nylated or poly(A) shortened (shorter than a PABP site)
reporter mRNAs were translationally upregulated in the
presence of the microRNA in G0 THP1 cells and in imma-
ture oocytes.31 Measurement of poly(A) tail length of the
validated endogenous targets of activation, using poly(A)
tail assay, showed shortened poly(A) tails of these targets.31

Poly(A) tails, under normal proliferating conditions,
enhance canonical translation by recruiting PABP, which
interacts with the canonical translation initiation complex
via eIF4G,40,42 as well as promotes recruitment of the
repressive microRNP.11,78,79 Polyadenylated reporter
mRNAs did not show microRNA mediated activation; how-
ever, polyadenylated reporter mRNAs could function in
translation activation upon expression of Poly(A) binding
protein interacting protein 2 (PAIP2),31 which can inhibit
PABP associations with the poly(A) tail and with
eIF4G.80,81 Therefore, shortened poly(A) tails may allow
these targets to avoid repression by preventing PABP inter-
actions in canonical translation that is reduced in these
conditions, as well as by precluding PABP-GW182 interac-
tion to favor recruitment of the FXR1a-microRNP—which
promotes non-canonical translation.

PARN is essential for FXR1a-microRNP mediated
translation as a cap binding protein and an active
deadenylase

Poly(A) ribonuclease (PARN) is a 30 exonuclease of the DEDD
class, which acts as a dimer to mediate degradation of poly (A)
tails.82 PARN is an unusual deadenylase with mRNA cap bind-
ing activity.83-85 Biochemical and structural studies revealed
that PARN binds to the 7-methylguanosine cap (m7G) of
mRNAs via specific tryptophan residues.86-89 Cap binding
enhances the deadenylation activity of PARN.83,89 PARN is
localized to both the nucleus and cytoplasm and is known to
play a role in gene expression regulation.64,90-92 PARN plays an
important role during oocyte development by regulating poly
(A) tail length and thereby, translation.64,93 Besides its role in
early development, PARN has been implicated in certain can-
cers, in Dyskeratosis congenita, and in pulmonary fibrosis.94-97

PARN is phosphorylated and its levels are increased in acute
lymphocytic leukemia (ALL), and acute myeloid leukemia
(AML).98 Similarly, PARN levels are altered in lung cancers,95

suggesting a clinical significance of PARN in cancer apart from
development.

In G0, PARN cap binding and deadenylase activity
increases, which causes deadenylation of mRNAs.65 This was
attributed to the decreased phosphorylation of 4EBP, which
allows dephosphorylated 4EBP to disrupt the eIF4E-eIF4G
interaction that binds the cap much more strongly than eIF4E
alone (nanomolar range compared with low micromolar
range).65,89,99 PARN interacts with FXR1a-microRNP in G0
and in immature oocytes, indicating a role in microRNA-medi-
ated translation activation (Fig. 1).31 This interaction with the
30UTR bound FXR1a-microRNP likely enables increased cap
binding on these target mRNAs by PARN, facilitating PARN
further to compete for cap binding on these target mRNAs.
PARN has been recently observed to interact with AGO2100

and can trim and process non-coding RNAs.101,102 PARN
depletion leads to increased lengths of poly(A) tails of reporters
and endogenous target mRNAs, resulting in loss of activation
of reporters as well as decreased levels of endogenous target
proteins.31 Re-establishing PARN expression rescues micro-
RNA-mediated activation of reporters and protein levels of
endogenous targets.

Interestingly, un-adenylated reporters that should not need
the deadenylase function of PARN do not show activation in
cells depleted of PARN. Therefore, in addition to its deadeny-
lase activity, PARN is required for an additional role in micro-
RNA dependent translation upregulation in quiescent
conditions.31 PARN binding to m7G caps is increased (»2.5-
fold) in G0 THP1 cells while binding of the canonical cap
binding protein, eIF4E, is reduced (»25%).31,65 Point muta-
tions in PARN that inactivate either cap binding or deadeny-
lase activity prevent microRNA mediated activation, which
revealed that both cap binding and deadenylase activities of
PARN are required for microRNA mediated activation in
these conditions.31 Together, these data indicate that in G0,
PARN functions to not only shorten poly(A) tails of target
mRNAs but also as an alternate cap binding protein that con-
nects the 30 UTR bound FXR1a-microRNP with 50 caps. These
interactions replace the canonical eIF4E-eIF4G-PABP 50-30
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link—that is disrupted by active 4EBP and poly(A) shorten-
ing—to mediate non-canonical translation of associated, spe-
cific mRNAs.31

DAP5/p97 is essential for FXR1a-microRNP mediated
non-canonical translation

Death-associated protein 5 (DAP5, p97 or NAT1) is an EIF4G
homolog that mediates non-canonical translation.103-106 P97
lacks eIF4E and PABP binding sites, but possesses a similar
eIF3 binding site to that of canonical translation factor eIF4G,
which can recruit eIF3 and thereby, 40S ribosome subunits to
initiate translation.105,107 P97 has been shown to mediate cap
independent, IRES driven translation during cellular stress and
specific conditions107-113 where p97 is recruited via mRNA
interactions. P97 mediates cap dependent alternative transla-
tion in quiescent conditions, where canonical translation factor
eIF4G—that brings in the 40S ribosome subunit to initiate
translation—cannot be recruited due to interference with the
cap complex by active 4EBPs.31 P97 interacts with FXR1a-
microRNP and PARN in G0 to mediate non-canonical transla-
tion of specific mRNAs associated with FXR1a-microRNP
(Fig. 1).31 Depletion of p97 results in loss of FXR1a-microRNP
mediated activation of reporters as well as of endogenous tar-
gets in G0 cells and in immature oocytes. Loss of p97 also
affects oocyte development due to decreased translation of the
microRNA target MYT1 that is required to maintain the imma-
ture state. Consequently, p97 depletion results in loss of the
immature state and premature maturation of oocytes.31 Restor-
ing p97 rescues reporter and endogenous target mRNA transla-
tion, including the endogenous target MYT1 protein levels and
thereby, the immature oocyte state.31 These data suggest a role
for p97 and this specialized translation mechanism in oocyte
development.

Critical features of FXR1a-microRNP mediated
translation

Certain mechanistic features are critical for microRNA medi-
ated translation activation in quiescent conditions. These
features include: FXR1a-microRNP recruitment of poly(A)
shortened target mRNAs, avoidance of repressive microRNP
factors, and reduction of canonical translation to enable this
alternative translation mechanism.31

First, FXR1 levels are increased differentially in low mTOR
activity conditions and in G0 in certain cell lines and in imma-
ture oocytes.25,31 Second, FXR1a interacts with AGO2 forming
an altered microRNP that causes activation of specific
mRNAs.16,17,114 FXR1 is a translation activator and is known to
interact with the 60S ribosomal subunit.29 In proliferating cells,
FXR1a overexpression leads to microRNA mediated translation
activation.75 Consistently, proteomic studies in FXR1 depleted
cells revealed decrease in protein levels of certain mRNAs that
are targets of activation and require FXR1 for their polysome
association.31 Third, FXR1 does not interact with GW182 and
does not lead to repression but instead promotes activation of
translation.29,31 In G0 and distinct oocyte stages,115,116 the asso-
ciation of repressor GW182 protein with AGO2 may be
reduced,114,117-119 which may permit activation of specific

mRNAs. Fourth, in order to get translation activation, target
mRNAs and the microRNAs in quiescent conditions have to be
recruited in the nucleus75 by AGO2 and FXR1. mRNAs not
associated in the nucleus with the FXR1a-microRNP are not
translationally upregulated, and could be subject to repression
by the canonical microRNP. Consistently, we find that Cyclin E
mRNA that is not recruited by FXR1a-microRNP in the
nucleus, is repressed in G0.31,75,120 How specific microRNAs
are recruited to this complex remain to be ascertained. Fifth,
mRNAs recruited by the FXR1a-microRNP need to have short
poly(A) tails to avoid PABP and thereby, avoid repression by
GW182 and canonical translation that is inhibited in these con-
ditions. Sixth, FXR1a-microRNP mediated translation requires
low mTOR activity/4EBP active conditions, where canonical
translation is decreased to permit this non-canonical transla-
tion mechanism. In such conditions, PARN, which also inter-
acts with FXR1a-microRNP, shows increased binding to
mRNA caps of such targets. The cap binding activity of PARN
is required for activation, providing an alternative to the canon-
ical cap binding eIF4E-eIF4G interaction that is inhibited by
4EBP in these conditions. Seventh, in low mTOR conditions,
FXR1a-microRNP associates with specific target mRNAs via
their 30UTRs and interacts with p97—that brings in the 40S
ribosomal subunit through interactions with eIF3—as well as
connects to the 50 cap through PARN interaction.16,31 These
features are essential to establish this specialized, non-canonical
mechanism of translation (Fig. 1). Whether these features are
sufficient in other cells and systems remain to be tested. These
data suggest that translation activation of specific, poly(A)
shortened mRNAs is mediated by FXR1a-microRNP that lacks
GW182, and interacts with non-canonical cap binding and
translation factors to promote translation in these distinct,
quiescent conditions with reduced canonical translation.

Importantly, microRNA mediated translation activation has
been previously observed in a Drosophila embryo extract sys-
tem, and in mammalian cells,17,21-23,26 where these features of
requirement for shortened poly(A) tails, altered cap complex,
and lack of GW182 have also been observed.17,21,26,31,114

Together, these studies suggest a common alternative transla-
tion mechanism that is mediated by microRNAs in association
with a distinct complex that lacks microRNP repressors, and
involves avoidance of canonical translation to enable transla-
tion of specific mRNAs.

FXR1a-microRNP mediates translation of important
genes

MicroRNA mediated translation of specific mRNAs plays an
important role in maintaining the quiescent state. In immature
oocytes, FXR1a-microRNP mediates translation of MYT1
kinase, a cell state regulator required for maintaining the
immature oocyte state by phosphorylating CDC2 that inacti-
vates maturation promoting factor.25 Loss of microRNA medi-
ated translation in oocytes therefore, leads to loss of the
immature state, implicating this mechanism in development.

Quiescence is a hallmark of cancer stem cells that can give
rise to cancer recurrences.121-124 In G0 THP1 cells, FXR1a-
microRNP mediates translation of immune genes like TNFa
and CD209, and cell state regulator HES1.31 TNFa and CD209
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are known immune modulators that are implicated in
tumors.125-128 Hes1, a downstream effector of Notch signaling,
is important for stem cell maintenance, prevents quiescent cells
from differentiation and apoptosis, and is implicated in cancer
progression.59,121,129-133 Consistently, components of the
FXR1a-microRNP are implicated in cancer progression: FXR1
is known to promote tumor invasion and progression,30 while
its interacting partners, PARN and p97, are increased in activity
or levels in many cancers.98,134 Targeting components of the
FXR1a-microRNP mechanism or associated microRNAs may
help block translation of critical genes required for maintaining
dormant cancer cells, and might be a promising approach
against cancer recurrence.

Future questions

Our studies delineated the mechanism of FXR1a-microRNP
mediated translation in quiescent cells.25,31,75 Several intriguing
questions emerge from these studies and remain to be
addressed. First, it is not known how FXR1a-microRNP selects
its targets for activation in G0. To be a bona fide activation tar-
get of this mechanism, we showed that the mRNA has to be
recruited by distinct FXR1a-microRNPs, and thus associated
with FXR1 and AGO2.31 We found that nuclear recruitment is
required for target mRNAs to be selected by FXR1a-
microRNP.75 However, it is not known whether these target
mRNAs use additional motifs, apart from the microRNA bind-
ing site, to help select these mRNAs for activation. While our
data with luciferase reporters showed that a single microRNA
binding site in the 30 UTR is sufficient to mediate translation
activation, it would be interesting to find out if multiple binding
sites and additional motifs can enhance translation activation
of target mRNAs. Cross-linking immunoprecipitation
(CLIP)6,135 and ribosome profiling136-139 of FXR1a-microRNP
bound target mRNAs, as well as mRNA target site analyses,
will help understand target selection by FXR1a-microRNP. Sec-
ond, it would be important to uncover how microRNAs are
selected for involvement in translation activation. We found
that microRNAs that are involved in activation are associated
with FXR1 and AGO2, in FXR1a-microRNPs—complexes that
are distinct from canonical, repressive microRNPs that involve
GW182 and AGO2. MicroRNAs like miR16 that mediate
repression in association with canonical GW182 and AGO2
complexes,140,141 can also associate with FXR1 in these distinct
FXR1a and AGO2 complexes (FXR1a-microRNPs) in G0 cells
to promote specific mRNA translation.17,31 However, it is not
known how many microRNAs bind FXR1 and how abundant
these microRNAs are in G0 cells. Interestingly, we found that
specific microRNAs associate with FXR1 at different levels—
which could dictate their potential for activation. For example,
less miR16 was found associated with FXR1 compared with
miR369–3p in G0 THP1 cells, and other microRNAs that do
not show activation were consistently, not associated with
FXR1.31 Profiling of FXR1 and AGO2 bound microRNAs in
G0 cells, compared to their levels, and to their association with
canonical, repressive GW182 complexes, will address this ques-
tion. Third, the exact sequence of events, in which FXR1a,
AGO2 and microRNA interact with each other remains to be
investigated. FXR1 interacts with AGO2 in the nucleus and

target mRNAs have to be recruited to FXR1a-microRNPs in
the nucleus in order to mediate translation activation.31,75

However, it is not known whether FXR1a-microRNP recruits
its microRNAs in the nucleus or cytoplasm. It is possible that
microRNAs bind FXR1 in the cytoplasm and are then imported
to the nucleus—where they then interact with AGO2—as FXR1
possesses a nuclear localization signal.28 Alternatively, micro-
RNAs are imported to the nucleus by different means or via
AGO2, and then associate with FXR1a-microRNP in the
nucleus. High-throughput sequencing of FXR1a-microRNP
associated targets and microRNAs in fractionated nuclei and
cytoplasm, as well as in-depth functional analyses in G0 cells,
will help answer these questions.

Conclusions

The majority of proteins in proliferating cells are translated via
canonical cap dependent translation, which is a highly energy-
consuming process. Under conditions of cellular stress like
growth factor deprivation, conventional protein synthesis is
inhibited and is replaced by various alternative translation
mechanisms that express specific genes that are important to
maintain the cellular state. During quiescence, which plays a
critical role in early development and in cancer dormancy, one
of the alternative mechanisms utilized by such cells to translate
specific mRNAs is via a specialized microRNP-mediated trans-
lation mechanism. This novel mode of protein synthesis in qui-
escence is directed by a specific microRNP that has a
translation activator FXR1a instead of the microRNP repressor,
and replaces canonical translation factors with an alternate cap
binding protein, PARN, and a non-canonical factor to recruit
the ribosome, p97/DAP5 (Fig. 1). Understanding the role
played by these non-canonical factors and specialized mecha-
nisms in mediating translation of specific mRNAs will further
our understanding of how these cells maintain their dormant
state, and may lead to new therapeutic strategies against cancer.
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