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To the Editor

In contrast to many world populations, in sub-Saharan Africa GJB2-related nonsyndromic 

hearing impairment (NSHI) is rare (1), and little is known about the contribution to hearing 

impairment (HI) by other known genes. Targeted genomic enrichment (TGE) and massively 

parallel sequencing (MPS), using a platform called OtoSCOPE®, have been shown as an 

efficient tool for comprehensive genetic testing for NSHI (2). In this study, we have 

investigated the clinical utility of this panel to resolve the genetic causes of autosomal 

recessive nonsyndromic hearing impairment (ARNSHI) in familial cases from Cameroon.

The study was approved by the Cameroon National Ethics Committee (REF 123/CNE/SE/

2010), the Human Research Ethics Committee of the University of Cape Town (REF 

455/2014), and the University of Iowa IRB (approval number 1035709). Patients were 

recruited from schools of the deaf in Cameroon (3). Clinical evaluation included a 

comprehensive questionnaire (exposure to noise, ototoxic agents, and familial history) and 

the diagnosis of sensorineural HI according to the current clinical standards (3). All 

probands and affected individuals were examined for syndromic features by a medical 
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geneticist, and an ophthalmologist. Families with at least two individuals with ARNSHI who 

are negative for pathogenic variants in GJB2 and GJB6 were studied.

DNA samples of affected individuals were analyzed at the Molecular Otolaryngology and 

Renal Research Laboratories (MORL) at the University of Iowa’s Carver College of 

Medicine; TGE and MPS were completed as previously described (2). The Exome 

Aggregation Consortium (ExAC) database was used to remove high frequency variants (i.e. 

minor allele frequency ≥ 0.1%) which were unlikely to be pathogenic and to obtain variant 

frequencies in Europeans, Asians and Africans. The conservation and deleteriousness of the 

variants were evaluated using the following bioinformatic tools: Likelihood ratio test (LRT), 

Mutation Assessor (MA), Mutation Taster (MT), PolyPhen2 (PP2), PROVEAN (PR), and 

SIFT (4). Population-specific allele frequencies were obtained by genotyping 250 ethnically 

matched Cameroonian control, using direct Sanger sequencing (Applied Biosystems, Foster 

City, CA). For the five novel variants identified in Cameroonian families, molecular 

modeling was performed using SWISS-MODEL and Phyre2; Specific templates were used 

for each protein or domain within which the novel variant lies (Table S1).

A total of 26 individuals from 10 families with congenital ARNSHI were studied. All the 

affected individuals had nonsyndromic, pre-lingual, bilaterally symmetric profound 

sensorineural HI, with hearing thresholds between 81 and 119 dB (Table S2, Supporting 

Information). In seven out of 10 families (70%), 12 putatively pathogenic variants were 

identified in six NSHI genes (CHD23, LOXHD1, MYO7A, SLC26A4, OTOF, and STRC) 

(Table 1). Five of the 12 variants (41.6%) have not been previously implicated in HI etiology 

whereas the remaining seven variants were shown to be involved in NSHI in populations 

outside of sub-Saharan Africa (Table 1). Most of the variants are not present or ultra-rare in 

the ExAC database, which has data on 60,706 individuals (Table 1). All identified variants 

segregate with the HI phenotype (Fig. S1). In three families (30%), no pathogenic variants 

were identified. For each of these five novel variants (Tables S1), molecular modeling 

revealed potential disruption of folding or inter-domain binding due to these variants, which 

are expected to result in changes to residue interactions within the same protein or with other 

proteins (Table S1, Fig. S2) and may explain the protein dysfunction that leads to hearing 

impairment.

This report is the first from sub-Saharan Africa to reinforce the value of TGE and MPS to 

determine the genetic cause of HI in this population (Table S3) (2, 5). The use of a 

comprehensive deafness-specific panel is state of the art and offers high diagnostic high 

sensitivity and specificity (5). Nevertheless, with small families, future studies in Cameroon 

should consider the use whole exome sequencing, in order to validate the co-segregation of 

an allele and a specific phenotype using the logarithm of the odds (LOD) score method. The 

absence of pathogenic variants in 30% of families suggests that novel hearing loss genes 

may be discovered among Africans, as supported by a recent report describing the lowest 

diagnostic rate for ARNSHI in African Americans (5). In aggregate, these results confirm 

the efficiency of comprehensive genetic testing in defining the causes of NSHI in Cameroon 

and highlight the value of African populations for the identification of novels genes 

associated with NSHI.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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