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Abstract

Randomly branched polymer chains (or trees) are a classical subject of polymer physics with
connections to the theory of magnetic systems, percolation and critical phenomena. More recently,
the model has been reconsidered for RNA, supercoiled DNA and the crumpling of topologically-
constrained polymers. While solvable in the ideal case, little is known exactly about randomly
branched polymers with volume interactions. Flory theory provides a simple, unifying description
for a wide range of branched systems, including isolated trees in good and &-solvent, and tree
melts. In particular, the approach provides a common framework for the description of randomly
branched polymers with quenched connectivity and for randomly branch/ng polymers with
annealed connectivity. Here we review the Flory theory for interacting trees in the asymptotic limit
of very large polymerization degree for good solvent, &-solutions and melts, and report its
predictions for annealed connectivity in &-solvents. We compare the predictions of Flory theory
for randomly branched polymers to a wide range of available analytical and numerical results and
conclude that they are qualitatively excellent and quantitatively good in most cases.
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Different swelling modes for branched polymers (a) with quenched (b) and annealed connectivity
(c) are explained by the Flory theory.

1 Introduction

Randomly branched polymers, or trees for brevity, are of interest in a number of scientific
fields. Branched polymers can be synthesised by deliberately incorporating monomers with
higher functionality into the polymerisation processes as a means of modifying materials
properties:2. In industrial applications they represent the norm rather than the exception,
since most polymerisation processes for linear chains also introduce a certain amount of
branching, a feature that strongly affects the dynamics®.

In the same way as random walks can be used as models for linear polymers, random trees
are models for branched polymers. In this article, we use the term “tree” not only for the
model, but also as a convenient short-hand notation for the object.

Theoretical models for trees date back to the early days of polymer physics?, and have been
successfully employed since then in the description of a wide range of phenomena including
percolation® and gelationl. More recently, these models have been reconsidered in the
context of biological molecules. In fact, the large RNA's of some viruses (Fig. 1a) behave in
many ways like branched polymers owing to the presence of (small) multi-loops in the
secondary structure which effectively act as branching points®-8. Similarly, supercoiled
circular DNA inside the bacterial nucleoid folds into plectonemic structures®19 which can
branch on larger scales (Fig. 1b). In Statistical Mechanics, the closely related subject of
lattice animals'1~13 has deep connections with magnetic spin systems and has been studied
by field theoretic methods'4-17. Our own (renewed) interest in these systems8-20 js due to
the analogy between their behavior and the crumpling of topologically constrained ring
polymers21-25 (Fig. 1c) and, ultimately, chromosomes26-30,

While there is a number of exact results for ideal, non-interacting trees*32:33, even the
simplest theory of the systems described above may not ignore the excluded volume
interactions between the constituents of the trees. The treatment of these interactions is
notoriously difficult even for linear polymers34. In practicel:3%, descriptions are often limited
to the level of scaling arguments3® and Flory theory3”. In the case of branched chains, there
is a single exactly known exponent for isolated three-dimensional self-avoiding trees!?,
highlighting the need for approximate treatments. Here we focus on Flory theories!1.18:33.38
which provide a unifying description of the rich behaviour of a wide range of tree systems.
Our aim is twofold: firstly, we provide a pedagogical, comprehensive review of the theory;
secondly, we compare the predictions to available theoreticall416:3%-49 and
computational®®-63 results to gauge the reliability of the approach. We find that predictions
of Flory theory are qualitatively excellent. The predicted values of the Flory exponent v
describing the scaling of polymer size with its mass are quantitatively accurate and agree
with best numerical estimates in many cases.

The work is structured as follows. In Section 2 we introduce the model and discuss the
theoretical difficulties arising from branching. Furthermore we briefly review the
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observables and exponents, which serve to characterize the connectivity and spatial
configuration of randomly branched polymers. In particular, we carefully distinguish
between randomly branched polymers with quenched connectivity (in short, guenched
trees), whose connectivity remains “frozen” after their initial preparation, and randomly
branch/ng polymers with annealed connectivity (in short, annealed trees), whose
connectivity can adapt to the environmental conditions. Section 3 is devoted to a review of
Flory theory. We discuss the underlying ideas and work out the predictions for isolated trees
in good and &-solvent as well as for tree melts. In all cases, we discuss trees with annealed
connectivity as well as trees with the quenched connectivity of ideal random trees. In
Section 4 we compare the results to available theoretical and numerical estimates of the
asymptotic exponents. Finally, in Section 5 we draw the conclusions by also commenting
briefly on the theoretical limitations of the Flory theory.

2 Interacting trees

Trees are spatially embedded graphs, which are free of closed paths or loops. Ideal random
trees are composed of A/+ 1 nodes or monomers, which are randomly connected by NV
bonds. We treat these bonds as having a uniform (Kuhn) length, /«. In the absence of
branching, ideal trees reduce to freely jointed chains of contour length, L = /,/N, and mean-
square end-to-end distance, {(7x — 75)%) = /xL. The subject of this article are interacting
random trees, i.e. trees whose nodes/monomers interact with each other via short-range
excluded volume interactions.

The theory of branched polymers is more difficult than linear ones for at least three reasons.
First, branched polymers are considerably more compact than their linear counterparts and
therefore volume interactions play a more important role. Indeed, for isolated non-
interacting randomly branched polymers, the root-mean-square gyration radius scales with

polymerization degree NVas RN(R§>1/2~N1/4 compared to A2 for ideal linear polymers®.
Second, to characterise a branched polymer, or an ensemble of randomly branched
polymers, one has to describe two aspects — their connectivity (or topology of branching, or
internal geometry) as well as their conformations (or embedding in space). The latter, in the
simplest case, is commonly characterised through the root mean square gyration radius,

R~<R§)1/ ?or root-mean-square spatfal distance between monomers, just as in the linear
polymer case. But the former is peculiar for branched systems only. A useful measure of
connectivity is the average value of the confour distance between all possible pairs of
monomers /, f, L ~ ([’,-j), which is equally a measure of the average length of linear paths on
the tree. Thus, even the simplest theory of branched polymers has to operate with two
distinct observables, Rand L. And the third inherent peculiarity of branched systems is the
necessity to distinguish between annealed (randomly branching) and quenched (randomly
branched) polymers, or trees3®. Let us explain this point in more detail.

According to accepted terminology, quenched trees are the ones in which the topology of
branches, or simply the value of L, is fixed during synthesis and does not change afterwards.
In contrast, the topology of annealed trees, or their L parameter, is not fixed by synthesis, but
instead varies in response to external conditions and fluctuates due to thermal motion. Note
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that linear chains in this context can be thought of as a trivial limit of quenched tree with L ~
N. As one example, chemically synthesized branched polymers have almost always
quenched connectivity. RNA can rearrange its secondary structure, therefore, it should be
viewed as annealed branching polymer (Fig. 1a). Also ring polymer placed in a lattice of
immobile uncrossable obstacles (Fig. 1c) behaves like an annealed branching polymer21.22,

Considering sufficiently large polymers (A >> 1), we will be interested in this article only in
scaling relations. We first define the usual scaling exponent v, which characterizes the
dependence of polymer size, R, on the degree of polymerization N

R~NT3 (1)

1/v = dfis the corresponding fractal dimension. Next we define the index p, which
characterizes the branching topology and relates the parameter L to the degree of
polymerization N:

L~N*. (2)

Finally, we define the scaling exponent vyath relating chain size /£and characteristic
chemical length L:

RNLVpat,h : (3)

this index tells us how a typical linear chemical path in the tree, viewed as a linear polymer,

is embedded in space; l/l/path:d?ath is the fractal dimension of a typical single chemical
path of the tree in space.

It is immediately clear from the definitions that in general,
Vpath=V/P- (4)

Furthermore, since chemical paths on a tree cannot include more steps than monomers
present, we have p < 1. Similarly, the spatial extension of trees and path cannot exceed their
total contour length, so that v< 1 and vpa < 1.

There are not very many cases where critical exponents vand p are known exactly. For
isolated, non-interacting trees v = 1/4 (compared to v = 1/2 for linear chains) while p = 1/2,
and this is true for both quenched and annealed cases?. For isolated, self-avoiding lattice
trees with annealed connectivity in ¢= 3, the analogy to lattice animalsl# allows to obtain
the exact result v = 1/2 but it gives no prediction for p.
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3 Flory theory

Flory theories 3764 are formulated in terms of a balance between elastic and interaction
contributions to the free energy

<@:<ge[+<g’\inter' (5)

Although physically appealing, this representation of the free energy is itself an
approximation; in reality, these terms in the free energy are not independent from one
another. As a result, although minimization of Flory free energy (5) yields very good
approximations for the gyration radius for linear polymers, and, as we will see also for
branched ones, the value of the free energy corresponding to this minimum itself is severely
in error. Therefore, we can not overemphasize the fact that one must exercise great caution
to use Flory theory for the right purpose. Elucidating corresponding applicability limits for
various randomly branched systems is one of the goals of this article. Although not
explicitly discussed here, it is worth mentioning that Flory theories have been equally
formulated for regularly (opposed to randomly) branched polymers such as: star
polymers85:66 dendrimers87:68 and dendronized polymers and forests68.

Returning to Eq. (5), the interaction free energy, & nzer 1S assumed to be independent of the
connectivity and depends only on the overall density of the monomer cloud, i.e., on . In
contrast, the elastic energy of trees, &7, is very sensitive to the monomeric connectivity. It
depends not only on the spatial distance between nodes, R, but also on their typical contour
distance, L. We, therefore, begin with the discussion of this elastic free energy.

3.1 Entropic elasticity of trees

3.1.1 Quenched trees—For quenched branched polymers the parameter L is controlled
by the synthesis condition and does not change in reaction to external forces or
intermolecular interactions. For a given connectivity, to increase the spatial distance between
any two nodes, the linear paths connecting them need to elongate/straighten in space, as
sketched in Fig. 2. Qualitatively, as a consequence, the smaller L, the more energy is
required to reach a given average spatial distance, /. Quantitatively, the corresponding
elastic free energy is%:

Fa R

2
kT I.L (6)

B

This expression is highly non-trivial, as it looks like stretching free energy of a single linear
chain of L//, segments, each segment corresponding to a Kuhn statistical unit’? of linear
size = /x; in other words, it looks like it accounts for the deformation of only one chemical
backbone out of many branches present in the polymer, while in reality all branches swell in
fractal manner. A rigorous proof of Eq. (6) is given in’1, where it is shown that, up to
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Fa R?
logarithmic corrections, kBTleTu with g~ L/l being the largest eigenvalue of the
Kramers matrixT associated to the quenched branched polymer.

3.1.2 Annealed trees—In contrast to quenched polymers, annealed branching polymers
swell or respond to stretching in two different ways, sketched in Fig. 2 (right): they extend
their linear sections and reconfigure their branching topology, described by two terms for the
elastic free energy:

ZF., R? + L?
kT 1.L ]\U?{7 @)

B

The first term is the same as in the quenched polymer case, and it describes the same mode
of swelling, while the major novelty is the second term, which describes entropy of
reconfiguring the tree topology.

This term can be derived formally from the partition function of all trees of //bonds and
with the L bonds between two arbitrary fixed ends. The derivation employs the
diagrammatic recursive method presented in Refs. 32:33 with the simplifying assumption3®
that only ends and branchings are allowed (no bifunctional units or linear parts).
Suggestively, an intuitive way to understand the second term in Eq. (7) is to imagine tree-
like graphs as drawn on an abstract Cayley tree. Then L//kis just a “gyration radius” in that
space, and (L//x)2/ Nis just the usual elastic free energy of a Gaussian polymer.

Since L for annealed polymer is a fluctuating quantity, free energy Eq. (7) reduces after
optimization of L at fixed /to obtain

e(m1,)"”

and

TThe method of the Kramers matrix%: 771,72 allows for a systematic treatment of the elasticity of a quenched branched polymer. The
Kramers matrix Gis an N x N matrix, every element of it G4 corresponds to two bonds in the graph, kand m. These two bonds
delineate one portion of the tree with AK(4) monomers on one side of bond &; another portion with AM(/m) monomers on the other side of
bond /m, with the rest of the monomers between two bonds, and then Gm = £K(K) M(m)I =, where the sign+ or — is chosen according
to a simple rule. The trace of the Kramers matrix gives the mean square gyration radius of the tree without volume interactions
(Kramers theorem, seel). And if the tree swells (or is being pulled) much in excess of this average, than the corresponding elastic free
Fa 3R 3 (R\? 3

. . i ~ In<—> +=Inu |
energy can be expressed in terms of the largest eigenvalue of the Kramers matrix,” &, 71’ 2l12<,u 2 L 2 ;in
this form, the expression is amenable to numerical implementation for RNA’. But as far as scaling is concerned, a separate argument
is required to establish the connection between gand L, and it shows L//k ~ 4, up to logarithmic corrections /.
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cg\el < R >4/3
BT \LNTT) g

This result is consistent with the fact that R ~ /xAM4 (see*32:33) for ideal, non-interacting
treest.

3.2 Relation between exponents

The fact that the interaction free energy in Flory approximation is independent of branching,
1.e. it does not depend on L, yields an interesting testable prediction. To understand it, let us
imagine for a moment, say, three annealed trees with the same A/and /x, but placed in
different environments: for instance, one tree may be placed alone in a solvent of a certain
quality, another tree is surrounded by other trees in a melt or in a concentrated solution, and
the third tree is subjected to some external forcing — such that all three happen to have the
same overall size R. Then we expect all of them to have also the same value of L. To make
this quantitative, let us return to the minimization of free energy (7) with respect to L, Eq.
(8). If we write R~ AVand L ~ AP, then we arrive at the following general relation between
indices vand p:

71+2V.
3 (10)

in the light of Eq. (4), this is also equivalent to

3v

Vpath:m- (11)

Egs. (10) and (11) are plotted in Fig. 4 as the red and green line, respectively. It is worth
repeating that these relations follow from the assumed independence of interaction energy
from the branching parameter L. To illustrate these relations, let us see how they work in
various simple cases. If a system is fully extended, which means v =1, then it is predicted
not to branch, p =1, and to have a fully stretched stem, vpa = 1. For the radius of ideal
randomly branched polymers, v/9€al = 1/4, one recovers the Zimm-Stockmayer result p'deal =

1/2* and Gaussian path statistics, v =1/2.

fone may be puzzled by the fact that free energy (9) is minimal at £=0. One way to think about it is to realize that typical fluctuation
corresponds to 7/~ kBT. A better way is to remember that at very small £a more accurate expression must be used for # ¢y, it can

T R\ (1. nur\*

be approximated as k, 7"\ [, N'1/4 R , it is minimal at the expected finite 7. The additional term, which
blows up at very small 7, is never important in real physics, because even a minimal excluded volume will drive branched polymer to
larger R. But if one wants to treat purely mathematical problem of ideal trees without any excluded volume, than extra term of free
energy arises from low probability (high entropy cost) of placing all monomers in a small volume.
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Relations (10)-(11) suggest a peculiar way to view the problem, by considering index v as
an independent variable. This way, we look in parallel to physically different systems and
even having different space dimensions, but as long as they have the same v— they should
have p and vpatn given by equations (10)-(11) —as long as Flory theory assumption of 7 jnzer
being independent of branching is correct. From that point of view, it is easy to establish that

ideal v—1 v—1 ideal . .
Vpath = Vpath =5 5y g /TP atany v<1, where Vi =1/2 and pideal =
1/2; we can interpret this saying that path stretching contributes more to the overall swelling
than rearrangement of branches, as long as the trees are not fully stretched, i.e., as long as v
<1 (note that at v =1 automatically also p = vpath = 1). Similarly, we can consider the case

when vis close to vid€al = 1/4, which corresponds to weakly swollen trees; in that case, Egs.

(10) and (11) imply that vpaeh — vis ~ 2(p — p*)=4(v — v/4*) /3,

3.3 Flory theory for trees with volume interactions

In his original formulation for linear chains in good solvent3’, Flory considered the two-
body repulsion between segments, described by the second virial approximation. To cover
also higher order collisions, 8-conditions, and melts, we use the more general form

y(pT) 1 NP

inter vp

kyT Nt PRP-1d (q9)

for the pth moment of the virial expansion. Screening in a melt is accounted for by setting x

= 111 while for isolated chains in dilute solution x = 0. Eq. (12) reduces to the standard
g[inter N2

form, k,T ~V27pd, for p= 2 and x= 0. As repeatedly stated above, interaction free energy

in Flory approximation does not depend on L.

Next we minimize the total Flory free energy with respect to 7.

3.3.1 Quenched branched polymer—For branched polymers with quenched
connectivity, the variational free energy per chain includes the elastic contribution, Eq. (6),
and the interaction term, Eq. (12). Substituting L ~ AP, and minimizing the sum with respect
to Rwe find

ptp—z
(p—1)d+2  (13a)

1 ptp—z
p(p—1)d+2  (13h)

Vpath=
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where Eq. (13b) follows directly via Eq. (4). Note that p here is controlled by how the
macromolecule was synthesized.

Every chemical path in the tree cannot be stretched more than its contour length, which
implies vpath < 1, but it cannot also be more compact than Gaussian, meaning vipaeh = 1/2.
These two conditions determine lower and upper critical dimensions, respectively:

p—p—=x Sd§2(p*1’)

p(p—1) p(p—1)" (13c)

Above upper critical dimension excluded volume interactions become unimportant, meaning
Vpath = 1/2 and v = p/2. On the other hand, below lower critical dimension, chemical paths
are completely stretched, vpan = 1, while overall molecule size is such that v=p. An
additional peculiarity of quenched branched systems is that they cannot exist at all in space
dimensions such that v = p < 1/¢. their linear portions are already completely stretched, and
they lack any means to resolve frustrations arising from the interplay of excluded volume
and chain connectivity.

3.3.2 Annealed branching polymer—~For branching polymers with annealed
connectivity, the free energy per chain includes elastic contribution, Eq. (9), and interaction
term, Eq. (12). Minimizing the sum with respect to /and using also Egs. (10) and (11) we
find

e 1+3(p — )
3p—1)d+4"  (14a)

_ (p—1)d+2(p — z+1)
3p—Dd+4 " (14b)

143(p — z)
p—1d+2(p —a+1)"  (14c)

Vpath= (

Implementing again the conditions vpa < 1 and vpatn = 1/2, we can determine upper and
lower critical dimensions:

p—17"7" p-1 (14d)
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As in the quenched case, if d'is above upper critical dimension, the role of excluded volume
is marginal and the system connectivity is completely random, with v=1/4, p = 1/2, and
vpath = 1/2. The situation at the lower critical dimension for the annealed branching polymer
is dramatically different from the quenched case. Annealed tree at low dimension @ not only
stretches its linear sections, but also rearranges its connectivity, increasing L, or increasing
p- As aresult, lower critical dimension corresponds to the situation when not only vpam = 1
(stretched linear sections), but also p = 1 (the tree is effectively simplified to become a linear
trunk) and v =1 (the whole molecule is stretched).

Below, we will explicitly consider various specific cases. All results are summarized in Fig.
3.

3.4 Isolated trees in a good solvent

3.4.1 Quenched case—A single macromolecule in a dilute solution in a good solvent
corresponds to p = 2 (two-body repulsion) and x = 0 (no screening). In this case

y_2tp
d+2’ (153

24p
Vpath=""77 5%

p(d+2)"  (15b)

with critical dimensions

Importantly, p here is controlled by how the molecule was prepared.
For instance, p = 1 corresponds to linear chains, and indeed Egs. (15a)-(15c) reduce in this

case to the classical Flory result (solid green line in Fig. 3, top left panel):

3
d+2’  (16)

V=Vpath=

in 1< d< 4 dimensions.

For random trees with quenched ideal connectivity, o = 1/2, one recovers the Isaacson and
Lubensky!® prediction
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5

"T2dvd7 (17a)

5

Prath T (17h)

3<d<8.  (17c)

In @> 8, excluded volume becomes insignificant, with vpath = 1/2, leading to v = 1/4.
Conversely, in d< 3 linear paths are completely stretched, with v = 1, and molecule size
is entirely controlled by its connectivity, with v= p =1/2, as shown by the solid green line
in Fig. 3 (middle and bottom left panels). Note that this line ends at &= 2 and does not
continue to lower d. In fact, a quenched branched polymer with o = 1/2 faces and
unresolvable frustration between excluded volume and chain connectivity requirements and
can not exist in spaces with dimension lower than d= 2.

3.4.2 Annealed case—For a single (x = 0, no screening) swollen randomly branching
polymers with annealed connectivity in a good solvent (o = 2), Eqgs. (14a)-(14d) reduce to
the prediction of Gutin er al. 38:

7
"T3d+1 (18a)

d+6
P=3d+4"  (18b)

7
"rethTI67 (180)

1<d<8  (18d)

For annealed trees, the limit of full path stretching is only reached in =1 dimensions,
where v = p = vpath = 1. The results for the isolated annealed branching polymer in a good
solvent are depicted by the green solid lines in Fig. 3 (right panels).
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3.5 Isolated trees in a &solvent

3.5.1 Quenched case—For the case of dilute solutions (x= 0, no screening) in a &
solvent (p = 3, three-body repulsion, because v, = 0) we have:

_ 3+p
2(d+1)"  (19a)

5 3+p
ath=5 77 1\
P T2p(d+1)" (19b)

?’*_Pgdg

3
2p P (19c)
For linear chains with p = 1 (solid magenta line in Fig. 3, top left panel):

2
A+l (20)

and the three-body repulsion is only relevant for ¢ < 3 dimensions, while chains become
fully stretched in &= 1 and cannot exist in &< 1 because of the frustration between excluded
volume and chain connectivity.

For trees with ideal connectivity, p = 1/2, one recovers:

TN (1b)

<d<6.

| Ot

(21c)

corresponding to the result by Daoud and Joanny33. The statistics of linear paths suggests
that linear sections of the polymer become fully stretched for d<5/2 and v= p=1/2, as
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shown in the middle and bottom left panels of Fig. 3 in solid magenta lines. As in good
solvent solutions, randomly branched polymers with p = 1/2 in -solutions do not fit in
spaces with dimensionality below = 2.

3.5.2 Annealed case—For trees with annealed connectivity, Eqgs. (14a) to (14b) reduce to

5

"TRdr2 (22a)

d+4
P=3d42"  (22h)

oD
path*d+47 (22C)

1<d<6. (22d)

To the best of our knowledge these relations have not been reported in the literature before
and are plotted as magenta lines in Fig. 3 (right panels).

3.6 Melts of branched or branching polymers

3.6.1 Quenched case—Eqgs. (13a)-(13b) can also be applied to melts of branched
polymers. In melts, volume interactions are screened implying that x =1 in the virial-type
expansion of the interaction energy term, Eq. (12) 1118, which becomes

yi(nptizn NP

kBiTNVP (ﬁ) . Close inspection to these terms shows that interactions are
estimated to be irrelevant, if vd'> 1. Even without swelling, this is the case in o> 4
dimensions, where v/@a/¢/= /4 > 1 suggests ideal tree behavior. Conversely, in d< 4
dimensions, for 1/4 < v< 1/dall terms of the series need to be taken into account, implying
that the series is dominated by high-order interactions with p— 0033, In particular, the p —

oo limit of Egs. (13a)-(13b) gives:

V=

d’ (23a)
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Vpath:d_v

P’ (23b)

<d<

D=

2
P (23c)

The v = 1/d'result means that trees in the melt are “territorial”3%:73, and each of them
behaves as a compact object. As before, p is the property of the system in question. For
instance, for the melt of linear chains, p = 1, the interval between lower and upper critical
dimension, 1 < d< 2, does not include 3 (solid blue line in the top left panel of Fig. 3); that
means the well known textbook fact that linear chains in a regular 3¢’ melt are approximately
Gaussian (Flory theorem). At dimensions below 2 they swell, at &= 1 they are completely
stretched, and cannot be placed in d< 1.

In contrast to linear chains, randomly branched polymers with ideal connectivity o = 1/2 in
the regular 3d'melt are “territorial”’3, they do not obey Flory theorem and their linear sub-
chains are predicted to exhibit a non-trivial statistics. The results for quenched tree melts are
shown as solid blue lines in the middle and bottom left panels of Fig. 3. As before, the lines
stop at d= 2, because quenched polymer cannot be placed in space of lower dimension.

3.6.2 Annealed case—For trees with annealed connectivity, screening is still important,
meaning x = 1, as well as many-body interactions, suggesting again the limit p — oo, The
results read:

1
T4 (24a)
_de2
T 3d 7 (24b)
L3
path—d+27 (240)

1<d<4. (24d)

Interestingly, territorial behavior with v = 1/3 is expected for both, randomly branched and
randomly branching, polymers in = 3. However, the annealed trees are expected to be less
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strongly branched, p = 5/9 > 1/2, with less strongly stretched linear paths, vpa = 3/5 <
2/318. The results for annealed tree melt are given as solid blue lines in Fig. 3 (right panels).

3.7 Examples of other preparation protocols

We emphasized repeatedly that connectivity of a quenched polymer, described by L or p, is
controlled by the preparation conditions, but we explicitly considered only two examples: p
=1 (linear polymer) and p = 1/2 (ideally branched polymer). Let us give a couple more
examples and illustrate the application of our results.

Suppose we prepare (synthesize) branched polymer in a &-solvent, then quench its
connectivity, and then change solvent quality to good while keeping the solution very dilute.
We have everything to describe this situation. Since the molecule is prepared in a &-solvent,
its connectivity is annealed under &-conditions and, therefore, it is characterized by index o
given in Eq. (22b) at d= 3, namely p = 7/11. Now, with this value of p fixed, the molecule is
placed in good solvent conditions. We thus have to insert o = 7/11 into Egs. (15a) and (15b)
to obtain v=29/55 ~ 0.53 and vpath = 29/35 ~ 0.83. We see that linear sections of the tree
are significantly stretched, which is natural given how this tree was prepared.

As a second example, suppose we prepare branched polymers in a good solvent, quench
their connectivity, and then concentrate the resulting macromolecules to form a melt. To
describe this situation, we first look at Eq. (18b) at &= 3, and find that the molecule in a
good solvent will have p = 9/13. In this case, the space dimension &= 3 is above upper
critical for melts, which is (see Eq. (23c)) 2/p = 26/9 ~ 2.89. As a consequence, such melts
are expected to be ideal with vz, = 1/2 and v = p/2.

In a similar way we can consider also many other preparation protocols. Curiously, it should
not be possible to generate randomly branched polymers with quenched ideal statistics along
these lines. in d< 3 all annealed branching systems exhibit swelling with p > 1/2.

4 Comparison of Flory Theory predictions to theoretical and simulation

results

Flory theory37 owes its simplicity to uncontrolled approximations, the neglect of spatial
correlations arising from the connectivity of the chains and to Gaussian estimate of polymer
elasticity. To gauge the utility of the approach, its predictions need to be compared to exact
solutions 14444647  o_expansions 39 renormalisation group calculations 14:40:41,43.49
dimensional reduction?®, series expansions!6:48 exact enumerations#2:50-52.54 Monte

Carlo 93:55-63 and Molecular Dynamics %2 simulations. Tables 1 to 4 list available
benchmark results for linear chains and for trees with annealed and with quenched ideal
connectivity. Typically, analytical approaches only provide access to the overall asymptotic
behaviour as characterised by the exponent v. In contrast, numerical investigations extract
estimates for v, p, and vpath from data for polymers of finite size.

To set the stage, let us briefly review the situation for linear chains. The results presented in
Table 1 show that Flory theory works remarkably well, with the only exception of 2d/chains
in &-solvent. The theory correctly predicts (i) v =1 for all interacting systems in &= 1, (ii)
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the hierarchy vsaw = vg = vinel for all @, and (iii) the upper critical dimensions dsaw = 4,
dp =3, and gt = 2 for the three media types. The values of the predicted exponents are
mostly exact. Exceptions are self-avoiding walks in = 3 dimensions, where the Flory
estimate of vz= 3/5 slightly exceeds the best estimates*® of v~ 0.588, and linear chains in
&-solvents in d= 2, where the deviation between the Flory estimate, v£= 2/3, and the exact
value of v=4/74 is larger.

A first, visual inspection of the values listed in Tables 2 to 4 suggests that Flory theory
works almost as well for trees as for linear chains. This is confirmed by Figure 3, where we
compare the results (symbols) to the predictions of Flory theory (lines) for the relevant
exponents v, p, and vpath as a function of dimension, d. Different sets of panels are devoted
to linear chains, trees with quenched ideal connectivity and trees with annealed connectivity.
The theory correctly predicts (i) v =1 for all types of annealed trees in d= 1, (ii) the
hierarchy vgaw = vg= vimelr for all @ and (iii) the upper critical dimensions dsaw = 8, dg =
6, and dhelt = 4 for the three solution types. Moreover, all known values for the exponents
fall in between these bounds, see Tables 1-4. In spite of its simplicity, it is indeed quite
remarkable that Flory theory correctly anticipates all observed trends.

The key element of the Flory theory for annealed trees is the description of the tree elasticity
summarised in Sec. 3.1.2, which implies that the swelling of annealed trees results from a
combination of modified branching and path stretching. This and the dominance of the path
stretching mode (Sec. 3.2) are qualitatively confirmed by the benchmark results wherever
independent information is available for the exponents p or vpath. Interestingly, the
benchmark results are in good agreement with the predicted relations, Egs. (10) and (11),
between the exponents for annealed trees (Fig. 4). The same holds for the comparison of
annealed trees and trees with quenched /deal connectivity, p = 1/2. The latter are predicted to
exhibit /ess overall swelling than trees with annealed connectivity, even though they are
expected to be stretched more strongly on the path level (Egs. (17a) and (17b) vs. Egs. (18a)
and (18c)). These features are directly observed in numerical simulations®8-:62 and confirm
that trees with annealed and quenched ideal connectivity fall into different universality
classes8,

Nevertheless, Flory theory is no more exact for trees than for linear chains. For instance,
there is a tendency to overestimate the exponent vin good and &-solvents. For example,
Flory theory predicts v = 7/13 instead of the exact result!4 v = 1/2 for self-avoiding trees
with annealed connectivity in &= 3 dimensions. The absolute deviations is much larger for
trees (0.038) than for linear chains (0.012), but the relative errors of the predicted effects,
(7/13 - 1/2)/(1/2 - 1/4) = 15% and (3/5 — 0.588)/(0.588 — 1/2) ~ 14%, are of comparable
magnitude. Another example are annealed branching polymers in dilute &-solutions in =2
dimensions. Flory theory predicts v = 5/8 instead of the best numerical result®!
0.5359+0.0003 for trees with annealed connectivity. In this case, the absolute errors are
comparable for annealed trees (0.089) and linear chains (0.095), but the relative error for
annealed trees, (5/8 — 0.5359)/(0.5359 — 1/4) = 31%, is much smallerthan for linear chains,
where Flory theory is off by (2/3 — 4/7)/(4/7 — 1/2) ~ 133%.
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5 Summary and conclusion

In the present article, we have reviewed the Flory theory of branched polymers with volume
interactions as pioneered in Refs.11.18:33.38 and completed the theory for the case of
annealed branching polymers in dilute 8-solvent solutions. An important point is the
distinction38 between annealed and quenched trees. To reduce the number of unfavorable
contacts, the latter can only swell by modifying the conformational statistics of linear paths
to values vpan > 1/2 (Fig. 3, middle panels). The former have the additional option to
increase their overall size by adjusting the branching statistics, o > 1/2 (Fig. 3, right panels).
The predicted behaviour for trees is considerably richer than for linear chains 7, which
represent the limiting case of trees with quenched connectivity characterised by p =1 (Fig.
3, left panel).

The predictions of Flory theory are shown to be in excellent qualitative agreement with
available theoretical and numerical results (compare symbols to solid lines in Figs. 3 and 4).
While quantitative predictions from Flory theory need to be taken with a grain of salt, the
approach thus provides a simple and unifying description of the average swelling behaviour
of a wide range interacting tree systems.

However, there are other quantities such as entropies®® and internodal contact
probabilitiesb2:63, which Flory theory fails to describe even for linear chains’>. A
forthcoming article’8 discusses how to go beyond Flory theory and the Gaussian
approximation by analyzing the distribution functions characterising the tree conformations
and connectivity.

Acknowledgments

RE, MR, and AYG are grateful for the hospitality of the Kavli Institute for Theoretical Physics (Santa Barbara,
USA\) and support through the National Science Foundation under Grant No. NSF PHY11-25915 during their visit
in 2011. AR acknowledges grant PRIN 2010HXAW?77 (Ministry of Education, Italy). MR acknowledges financial
support from the National Science Foundation under grants DMR-1309892, DMR-1436201, and DMR-1121107,
the National Institute of Health under grants P01-HL 108808 and 1UH2HL 123645, and the Cystic Fibrosis

Foundation.
References
1. Rubinstein, M., Colby, RH. Polymer Physics. Oxford University Press; New York: 2003.
2. Burchard W. Adv Polym Sci. 1999; 143:113.
3. Bacova P, Hawke LGD, Read DJ, Moreno AJ. Macromolecules. 2013; 46:4633-4650.
4. Zimm BH, Stockmayer WH. J Chem Phys. 1949; 17:1301-1314.
5. Stauffer, D., Aharony, A. Introduction to percolation theory. Taylor & Francis Inc; 1994.
6. Liu L, Hyeon C. Biophys J. 2016; 110:2320. [PubMed: 27276250]
7. Kelly J, Grosberg AY, Bruinsma R. J Phys Chem B. 2016; 120:6038-6050. [PubMed: 27116641]
8. Singaram SW, Gopal A, Ben-Shaul A. J Phys Chem B. 2016; 120:6231-6237. [PubMed: 27104292]
9. Marko J, Siggia E. Phys Rev E. 1995; 52:2912-2938.

10. Mondal J, Bratton BP, Li Y, Yethiraj A, Weisshaar JC. Biophys J. 2011; 100:2605-2613. [PubMed:
21641305]

11. Isaacson J, Lubensky TC. J Physique Lett. 1980; 41:469-471.
12. Seitz WA, Klein DJ. J Chem Phys. 1981; 75:5190-5193.
13. Duarte J, Ruskin H. J Physique. 1981; 42:1585-1590.

Soft Matter. Author manuscript; available in PMC 2018 February 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Everaers et al.

14.
15.
16.
17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

Page 18

Parisi G, Sourlas N. Phys Rev Lett. 1981; 46:871-874.
Fisher M. Phys Rev Lett. 1978; 40:1610-1613.
Kurtze D, Fisher M. Phys Rev B. 1979; 20:2785-2796.

Bovier, A., Frohlich, J., Glaus, U. Branched Polymers and Dimensional Reduction. In:
Osterwalder, K., Stora, R., editors. Critical Phenomena, Random Systems, Gauge Theories. North-
Holland, Amsterdam: 1984.

Grosberg AY. Soft Matter. 2014; 10:560-565. [PubMed: 24652534]

Rosa A, Everaers R. Phys Rev Lett. 2014; 112:118302. [PubMed: 24702424]

Ge T, Panyukov S, Rubinstein M. Macromolecules. 2016; 49:708-722. [PubMed: 27057066]
Khokhlov AR, Nechaev SK. Phys Lett. 1985; 112A:156-160.

Rubinstein M. Phys Rev Lett. 1986; 57:3023-3026. [PubMed: 10033934]

Obukhov SP, Rubinstein M, Duke T. Phys Rev Lett. 1994; 73:1263-1266. [PubMed: 10057666]
Michieletto D, Turner MS. Proc Natl Acad Sci USA. 2016; 113:5195-5200. [PubMed: 27118847]
Michieletto D. Soft Matter. 2016; 12:9485-9500. [PubMed: 27781227]

Grosherg A, Rabin Y, Havlin S, Neer A. Europhys Lett. 1993; 23:373-378.

Rosa A, Everaers R. Plos Comput Biol. 2008; 4:e1000153. [PubMed: 18725929]

Vettorel T, Grosberg AY, Kremer K. Phys Biol. 2009; 6:025013. [PubMed: 19571364]

Mirny LA. Chromosome Res. 2011; 19:37-51. [PubMed: 21274616]

Halverson JD, Smrek J, Kremer K, Grosberg AY. Rep Prog Phys. 2014; 77:022601. [PubMed:
24472896]

Kerpedjiev P, Hammer S, Hofacker IL. Bioinformatics. 2015; 31:3377-3379. [PubMed: 26099263]
De Gennes PG. Biopolymers. 1968; 6:715. [PubMed: 5648278]

Daoud M, Joanny JF. J Physique. 1981; 42:1359-1371.

des Cloizeaux, J., Jannink, G. Polymers in Solution. Oxford University Press; Oxford: 1989.
Grosberg, AY., Khokhlov, AR. Statistical Physics of Macromolecules. AIP Press; New York: 1994.
De Gennes PG. J Physique Lett. 1976; 37:L59-L61.

Flory, PJ. Principles of Polymer Chemistry. Cornell University Press; Ithaca (NY): 1953.
Gutin AM, Grosberg AY, Shakhnovich EI. Macromolecules. 1993; 26:1293-1295.

De Gennes PG. J Physique Lett. 1975; 36:L55-L57.

Le Guillou JC, Zinn-Justin J. Phys Rev Lett. 1977; 39:95-98.

Family F. J Phys A-Math Gen. 1980; 13:L325-L334.

de Alcantara OF, Kirkham JE, McKane AJ. J Phys A-Math Gen. 1980; 13:L247-L.251.
Derrida B, de Seze L. J Physique. 1982; 43:475-483.

Nienhuis B. Phys Rev Lett. 1982; 49:1062-1065.

Dhar D. Phys Rev Lett. 1983; 51:853-856.

Duplantier B. J Phys A-Math Gen. 1986; 19:L1009.

Duplantier B, Saleur H. Phys Rev Lett. 1987; 59:539-542. [PubMed: 10035800]

Adler J, Meir Y, Harris A, Aharony A, Duarte J. Phys Rev B. 1988; 38:4941-4954.

Janssen HK, Stenull O. Phys Rev E. 2011; 83:051126.

Gaunt DS, Sykes MF, Torrie GM, Whittington SG. J Phys A-Math Gen. 1982; 15:3209-3217.
Privman V. Physica A. 1984; 123:428-442.

Margolina A, Family F, Privman V. Z Phys B-Condens Mat. 1984; 54:321-324.

Meirovitch H. J Phys A-Math Gen. 1987; 20:6059-6073.

Ishinabe T. J Phys A-Math Gen. 1989; 22:4419-4431.

Janse van Rensburg EJ, Madras N. J Phys A: Math Gen. 1992; 25:303-333.

Li B, Madras N, Sokal AD. J Stat Phys. 1995; 80:661-754.

Wittkop M, Kreitmeier S, Goritz D. J Chem Phys. 1996; 104:3373-3385.

Cui S, Chen Z. Phys Rev E. 1996; 53:6238-6243.

Madras N, Janse van Rensburg EJ. J Stat Phys. 1997; 86:1-36.

Soft Matter. Author manuscript; available in PMC 2018 February 08.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Everaers et al.

60.
61.
62.
63.
64.

65.
66.
67.
68.
69.
70.

71.
72.
73.
74.
75.
76.

Page 19

Hsu HP, Nadler W, Grassberger P. J Phys A: Math Gen. 2005; 38:775.

Hsu HP, Grassberger P. J Stat Mech: Theory Exp. 2005; 2005:P06003.

Rosa A, Everaers R. J Phys A: Math Theor. 2016; 49:345001.

Rosa A, Everaers R. J Chem Phys. 2016; 145:164906. [PubMed: 27802612]

Bhattacharjee SM, Giacometti A, Maritan A. J Phys: Condens Matter. 2013; 25:503101. [PubMed:

24222476]

Daoud M, Cotton JP. J Phys France. 1982; 43:531-538.

Raphael E, Pincus P, Fredrickson GH. Macromolecules. 1993; 26:1996-2006.

Boris D, Rubinstein M. Macromolecules. 1996; 29:7251-7260.

Kroger M, Peleg O, Halperin A. Macromolecules. 2010; 43:6213-6224.

Daoud M, Pincus P, Stockmayer WH, Witten T. Macromolecules. 1983; 16:1833-1839.

Doi, M., Edwards, SF. The Theory of Polymer Dynamics. Oxford University Press; New York:
1986.

Grosberg AY, Nechaev SK. J Phys A-Math Theor. 2015; 48:345003.

Smrek J, Grosberg AY. J Phys: Condens Matter. 2015; 27:064117. [PubMed: 25563563]
Vettorel T, Grosberg AY, Kremer K. Phys Today. 2009; 62:72.

Flory, PJ. Statistical Mechanics of Chain Molecules. Interscience; New York: 1969.

De Gennes, PG. Scaling Concepts in Polymer Physics. Cornell University Press; Ithaca: 1979.

Rosa, A., Everaers, R. Phys Rev E. 2017. accepted for publication Preprint: http://arxiv.org/abs/
1610.05230

Soft Matter. Author manuscript; available in PMC 2018 February 08.


http://arxiv.org/abs/1610.05230
http://arxiv.org/abs/1610.05230

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Page 20

a) Secondary structure of RNA b) Supercoiled structures of circular DNA <) Topologically-constrained ring polymers
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Fig. 1.

(a§J Due to the Watson-Crick base pair mechanism and neglecting the difference of excluded
volumes between loops and stems, single filaments of RNA have a branched secondary
structure (here, visualized by the FORNA3! software). These structures have been shown®-8
to play a crucial functional role in the RNA behavior inside viral capsids. (b) The increase of
the level of supercoiling in circular polymers (rings) gives rise to the formation of
plectonemes: by neglecting plectonemes torsional properties, rings assume the shape of
branched structures® which reproduce the experimental behaviour of circular DNA inside the
bacterial nucleoid!®. According to the total amount and distribution of supercoiling the ring
may continuously switch between different branched structures. (c) By neglecting the
excluded volume interactions between double-folded strands, a single ring polymer
constrained in a matrix of fixed obstacles?1-23 resembles a branched polymer with annealed
connectivity: in this situation, an “elk” may change into a “camel” and viceversa.
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Fig. 2.

Schematic representation of the two independent swelling mechanisms for interacting trees
(a). (b) With guenched connectivity, branched polymers can swell only by stretching its
linear sections. (c) With annealed connectivity, in addition to stretching linear sections,
branching polymers can also simplify the connectivity which can become somewhat “less
branched” as, for instance, in the combo-like conformation shown in the picture. Then, to
achieve the same overall swelling, an annealed tree has to stretch its linear sections by a
lesser amount than the quenched counterpart.
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Fig. 3.

Exponents p, vpath and v for: linear chains (upper panel on the left, o= 1 and vpath = V),
trees with quenched ideal connectivity (middle and bottom panels on the left, p = 1/2), trees
with annealed connectivity (panels on the right). Solid lines correspond to predictions of
Flory theory: green is for single chains in good solvent (Eq. (16) for linear chains, Egs.
(17a)-(17b) for quenched trees and Eqgs. (18a)-(18c) for annealed trees); magenta is for
single chains in @-solvent (Eqg. (20) for linear chains, Egs. (21a)-(21b) for quenched trees
and Egs. (22a)-(22c) for annealed trees); blue is for chains in melt (Egs. (23a)-(23b) for,
respectively, linear chains and quenched trees with ideal connectivity and Eqs. (24a)-(24c)
for annealed trees). Grey- and yellow-shading regions indicate violations of the following
physical constraints on the values of the exponents: (grey) 1/2 < p<1, 1/2 < vpan < 1 and
1/4 < v< 1 for lattice trees and 1/2 < v< 1 for linear chains; (yellow) the fractal dimension
dr=1/vof any object placed in space must be <d. For annealed trees, given Egs. (4), (10)
and (11), constraints for one exponent map to the corresponding constraints for the others.
This is not the case for quenched trees, where constraints for vpaeh restrict corresponding
values of vto a narrower region. Symbols are for computer simulations and analytical
results boldfaced in Tables 1-4.
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Exponents p and wpaty are plotted as a function of v following the expressions Egs. (10),

(11) for annealed trees (red and green lines) and Vpath:% with o = 1/2 (blue line) for trees
with quenched ideal connectivity. Symbols correspond to numerical results for: (triangles)
annealed dilute trees in good solvent in = 2,3,4,8%%; (squares) annealed and quenched
dilute trees in good solvent in o= 352 and annealed tree melts in o= 2,353,
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