Skip to main content
. Author manuscript; available in PMC: 2018 Feb 8.
Published in final edited form as: Soft Matter. 2017 Feb 8;13(6):1223–1234. doi: 10.1039/c6sm02756c

Table 1.

Analytical and simulation results for critical exponent ν of linear chains (ρ = 1, νpath = ν) for different solvent conditions and spatial dimensionality d. “ δνδνidealννtrueνtrueνideal×100 is the relative discrepancy between the actual and the true values (in boldface) of ν over the difference between the latter and the ideal value. Currently available exact values or best estimates (in boldface) are reported as symbols in Fig. 3, where predictions of Flory theory are shown as lines.

Linear chains

d ν δν
δνδνideal
Technique Reference
Dilute solution in a good solvent

2 3/4 = 0.75 0 0% Flory theory Flory (1969)74
2 3/4 = 0.75 Exact calculation Nienhuis (1982)44
2 0.74963±0.00008 −0.00037 −0.2% Monte Carlo Li, Madras & Sokal (1995)56
3 3/5 = 0.6 0.0123 14% Flory theory Flory (1969)74
3 0.588±0.001 0.0003 0.3% Renormalization group Le Guillou & Zinn-Justin (1977)40
3 0.5877±0.0006 Monte Carlo Li, Madras & Sokal (1995)56

Dilute solution in a θ-solvent

2 2/3 = 0.667 0.0952 133% Flory theory Flory (1969)74
2 367/726 ≈ 0.5055 −0.0659 -92% ε-expansion De Gennes (1975)39
2 4/7 ≈ 0.5714 Exact calculation Duplantier & Saleur (1987)47
2 0.57±0.02 −0.0014 -2% Monte Carlo Wittkop, Kreitmeier & Göritz (1996)57
3 1/2 = 0.5 0 0% Flory theory Flory (1969)74
3 1/2 = 0.5 ε-expansion De Gennes (1975)39
3 0.50±0.02 0.00 0% Monte Carlo Wittkop, Kreitmeier & Göritz (1996)57

Melt

2 1/2 = 0.5 0 0% Flory theory Isaacson & Lubensky (1980)11
2 1/2 = 0.5 Conformal theory Duplantier (1986)46
3 1/2 = 0.5 Flory theory Isaacson & Lubensky (1980)11