Table 1.
Analytical and simulation results for critical exponent ν of linear chains (ρ = 1, νpath = ν) for different solvent conditions and spatial dimensionality d. “ is the relative discrepancy between the actual and the true values (in boldface) of ν over the difference between the latter and the ideal value. Currently available exact values or best estimates (in boldface) are reported as symbols in Fig. 3, where predictions of Flory theory are shown as lines.
Linear chains | ||||||
---|---|---|---|---|---|---|
| ||||||
d | ν | δν |
|
Technique | Reference | |
Dilute solution in a good solvent | ||||||
| ||||||
2 | 3/4 = 0.75 | 0 | 0% | Flory theory | Flory (1969)74 | |
2 | 3/4 = 0.75 | – | – | Exact calculation | Nienhuis (1982)44 | |
2 | 0.74963±0.00008 | −0.00037 | −0.2% | Monte Carlo | Li, Madras & Sokal (1995)56 | |
3 | 3/5 = 0.6 | 0.0123 | 14% | Flory theory | Flory (1969)74 | |
3 | 0.588±0.001 | 0.0003 | 0.3% | Renormalization group | Le Guillou & Zinn-Justin (1977)40 | |
3 | 0.5877±0.0006 | – | – | Monte Carlo | Li, Madras & Sokal (1995)56 | |
| ||||||
Dilute solution in a θ-solvent | ||||||
| ||||||
2 | 2/3 = 0.667 | 0.0952 | 133% | Flory theory | Flory (1969)74 | |
2 | 367/726 ≈ 0.5055 | −0.0659 | -92% | ε-expansion | De Gennes (1975)39 | |
2 | 4/7 ≈ 0.5714 | – | – | Exact calculation | Duplantier & Saleur (1987)47 | |
2 | 0.57±0.02 | −0.0014 | -2% | Monte Carlo | Wittkop, Kreitmeier & Göritz (1996)57 | |
3 | 1/2 = 0.5 | 0 | 0% | Flory theory | Flory (1969)74 | |
3 | 1/2 = 0.5 | – | – | ε-expansion | De Gennes (1975)39 | |
3 | 0.50±0.02 | 0.00 | 0% | Monte Carlo | Wittkop, Kreitmeier & Göritz (1996)57 | |
| ||||||
Melt | ||||||
| ||||||
2 | 1/2 = 0.5 | 0 | 0% | Flory theory | Isaacson & Lubensky (1980)11 | |
2 | 1/2 = 0.5 | – | – | Conformal theory | Duplantier (1986)46 | |
3 | 1/2 = 0.5 | – | – | Flory theory | Isaacson & Lubensky (1980)11 |