Skip to main content
. Author manuscript; available in PMC: 2018 Feb 8.
Published in final edited form as: Soft Matter. 2017 Feb 8;13(6):1223–1234. doi: 10.1039/c6sm02756c

Table 2.

Analytical and simulation results for critical exponents ρ, νpath and ν of isolated self-avoiding lattice trees in a good solvent for different spatial dimensionalities d. δνδνideal is defined as in Table 1. Currently available exact values or best estimates (in boldface) are reported as symbols in Fig. 3, where predictions of Flory theory are shown as lines.

Annealed branching polymers in dilute solutions in a good solvent

d ρ νpath ν δν
δνδνideal
Technique Reference
2 4/5=0.8 7/8=0.875 7/10 = 0.7 0.0592 15% Flory theory Gutin et al. (1993)38
2 0.637 −0.0038 -1% Renormalization group Family (1980)41
2 0.6408 ±0.0003 Renormalization group Derrida & de Seze (1982)43
2 0.640 ±0.004 −0.0008 -0.2% Exact enumeration Margolina et al. (1984)52
2 0.6394 ±0.0067 −0.0014 -0.4% Exact enumeration Privman (1984)51
2 0.640 ±0.004 −0.0008 -0.2% Scanning method Meirovitch (1987)53
2 0.644 ±0.004 0.0032 0.8% Exact enumeration Ishinabe (1989)54
2 0.74 ±0.01 0.637 ±0.009 −0.0038 -1% Monte Carlo J. van Rensburg & Madras (1992)55
2 0.6412±0.0005 0.0004 0.1% Monte Carlo Hsu et al. (2005)60
3 9/13=0.692 7/9=0.778 7/13 = 0.538 0.0385 15% Flory theory Gutin et al. (1993)38
3 1/2 Exact calculation Parisi & Sourlas (1981)14
3 0.654 ±0.003 0.496 ±0.004 −0.004 -2% Monte Carlo J. van Rensburg & Madras (1992)55
3 0.49 ± 0.01 −0.01 -4% Monte Carlo Cui & Chen (1996)58
3 0.500 ±0.002 0.000 0% Monte Carlo Hsu et al. (2005)60
3 0.64±0.02 0.74 ±0.02 0.48 ±0.04 0.02 -8% Monte Carlo Rosa & Everaers (2016)62
4 5/8=0.625 7/10=0.7 7/16 = 0.438 0.022 13% Flory theory Gutin et al. (1993)38
4 0.425 0.009 5% Series expansion Kurtze & Fisher (1979)16
4 0.450 ±0.035 0.034 21% Exact enumeration de Alcantara et al. (1980)42
4 0.42 0.04 2% Renormalization group Parisi & Sourlas (1981)14
4 0.45 ±0.05 0.034 21% Exact enumeration Gaunt et al. (1982)50
4 0.417 0.001 0.6% Dimensional reduction Dhar (1983)45
4 0.425 ±0.015 0.009 5% Series expansion Adler et al. (1988)48
4 0.611 ±0.002 0.42±0.01 0.004 2% Monte Carlo J. van Rensburg & Madras (1992)55
4 0.416 ±0.003 Monte Carlo Hsu et al. (2005)60
5 11/19=0.579 7/11=0.636 7/19 = 0.368 0.009 8% Flory theory Gutin et al. (1993)38
5 0.359 ±0.004 Monte Carlo Hsu et al. (2005)60
6 6/11=0.545 7/12=0.583 7/22 = 0.318 0.003 5% Flory theory Gutin et al. (1993)38
6 0.315 ±0.004 Monte Carlo Hsu et al. (2005)60
7 13/25=0.52 7/13=0.538 7/25 = 0.28 −0.002 -6% Flory theory Gutin et al. (1993)38
7 0.282 ± 0.005 Monte Carlo Hsu et al. (2005)60
8 1/2=0.5 1/2=0.5 1/4 = 0.25 −0.015 −100% Flory theory Gutin et al. (1993)38
8 0.52 ±0.05 0.265 ±0.006 Monte Carlo J. van Rensburg & Madras (1992)55

Quenched branched polymers in dilute solutions in a good solvent

d ρ νpath ν δν
δνδνideal
Technique Reference

3 1/2 1 1/2 = 0.5 0.05 25% Flory theory Isaacson & Lubensky (1980)11
3 1/2 0.45 ±0.01 Monte Carlo Cui & Chen (1996)58
3 1/2 0.87 ±0.03 0.46 ±0.07 0.01 5% Molecular Dynamics Rosa & Everaers (2016)62