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Abstract

The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted

by power-lines (in extremely low frequency range), mobile cellular systems and wireless net-

working devices (in radio frequency range) on human health have been intensively

researched and debated. However, how exposure to these EMFs may lead to biological

changes underlying possible health effects is still unclear. To reveal EMF-induced molecular

changes, unbiased experiments (without a priori focusing on specific biological processes)

with sensitive readouts are required. We present the first proteome-wide semi-quantitative

mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic

stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and

WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled

mammalian cells followed by reliable statistical analyses of differential protein- and path-

way-level regulations using an array of established bioinformatics methods. Our results indi-

cate that less than 1% of the quantitated human or mouse proteome responds to the EMFs

by small changes in protein abundance. Further network-based analysis of the differentially

regulated proteins did not detect significantly perturbed cellular processes or pathways in

human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our

extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not sup-

port the notion that the short-time exposures to non-ionizing EMFs have a consistent biologi-

cally significant bearing on mammalian cells in culture.
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Introduction

Modern society is becoming more and more dependent on electrical power to fuel a wide

range of equipments including communication devices. This has resulted in an increase of

exposure to extremely low frequency (ELF) and radio frequency (RF) electromagnetic fields

(EMFs). There has been a long-running debate on the health effect of these non-ionizing

EMFs [1]. However, prior to formulating useful and testable hypotheses on the potential

adverse or beneficial influence of EMF exposure on human health it is imperative that the bio-

logical effects on the cells are detected unambiguously [2–5].

Cells are the building blocks of organs and organisms and in order to survive they have

evolved the ability to respond to a wide range of stimuli presented from the environment. Cel-

lular responses are mediated through molecular signaling pathways, which consist of receptors

for the signal that activate transducers, which in turn stimulate affecters that illicit the appro-

priate molecular response [6]. Classic examples of such responses to environmental cues are

growth factor signaling and the DNA damage response. Specifically, response to growth fac-

tors occurs through receptor molecules on the cell surface that through conformational

changes induce post-translational modification of proteins in the cytoplasm. This eventually

results in the activation of nuclear transcription factors that turn on/off the genes whose prod-

ucts (or their absence) mount the appropriate cellular response. In case of the DNA damage

response, nuclear DNA is the ‘receptor’ because when its integrity is disturbed by DNA dam-

aging agents, such as ionizing radiation or tobacco smoke, it triggers cell cycle arrest and

downstream biological effects such as apoptosis or repair of the DNA lesions [7–9].

By triggering a cellular response non-ionizing EMFs could influence health. However, cur-

rently it is unclear if and how cells can sense these EMFs. Cellular sensing of EMFs requires

changes in the molecular constituents of the cell in order to activate a signaling pathway. As of

to date, no unambiguous and reproducible molecular changes including a perturbed biological

pathway(s) have been detected in cells exposed to ELF- or RF-EMFs. With advances in tran-

scriptomics, several studies analyzing changes in gene expression in bacteria, yeasts, neurons,

white blood cells, keratinocytes and cancer cells in response to ELF or RF exposure have been

published to date [10–17]. In addition, the proteomes of human monocytes, lymphoblastoid B

cells and endothelial cells in response to RF exposure have also been analyzed [18–20].

Taken together, these studies did not identify common, consistently affected molecules

and/or cellular pathways. Therefore, the inevitable conclusion is that the effects on molecular

changes induced by these EMFs are probably subtle, otherwise a consistent signaling pathway

(s) would already have been identified, for example, as in case of the cellular response to ioniz-

ing radiation [7]. Clearly, if a cellular response is to be detected, the most sensitive and specific

methods have to be applied, otherwise it will be very unlikely that an EMF signature can be

identified, in particular given the stochastic variation in the intracellular ratios of molecular

constituents that is characteristic of biological systems [21].

In this study, we have taken advantage of newly available techniques in liquid chromatogra-

phy-mass spectrometry (LC-MS) to analyze the proteomes of mammalian cells in response to

ELF- and RF-EMF exposures. With technological advances in LC-MS and computational

methods to analyze the resulting data, it has become possible to identify and to quantify thou-

sands of proteins in a single shotgun proteomics experiment. Semi-quantitative proteomics

with metabolic labeling of proteins such as the stable isotope labeling with amino acids in cell

culture (SILAC) is a firmly established and accurate method to interrogate the complex and

dynamic nature of proteomes [22]. In a typical SILAC experiment, tens of thousands of pep-

tides and thousands of (non-redundant) proteins are reliably identified and quantified from

mass spectrometry data, for example, using the widely-used MaxQuant/Andromeda software
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[23, 24]. We present the proteome-wide analyses of human fibroblasts and osteosarcoma cells,

and of mouse embryonic stem cells exposed to ELF- and RF-EMFs. Our study indicates that if

there is an effect of these EMF exposures, it is smaller than technical variation in a rigorously

controlled triple-state SILAC approach. We find that less than 1% of the quantitated human or

mouse proteome is differentially regulated in response to these EMFs and discuss the possible

biological significance of this subtle response.

Materials and methods

Cell lines and culture conditions

To prepare cell lysates for triple-state (triplex) SILAC LC-MS analysis, human osteosarcomas

(U2OS), human fibroblasts (VH10) and mouse embryonic stem cells (IB10) were grown in

medium containing stable isotope-labeled arginine and lysine. Growth medium consisted of

arginine- and lysine-free DMEM (PAA laboratories), supplemented with 10% dialyzed fetal

bovine serum (FBS), 50 units/ml penicillin, 50 μg/ml streptomycin and 2 mM ultraglutamine

(all from Gibco, Life Technologies), 1x non-essential amino acids (Lonza), 200 μM labeled

arginine and 400 μM labeled lysine. The isotope combinations used for labeling were

[12C6,14N2]-lysine (Lys-0) and [12C6,14N4]-arginine (Arg-0) for “Light” labeling; [4,4,5,5 D4]-

lysine (Lys-4) and [13C6]-arginine (Arg-6) for “Medium” labeling; and [13C6,15N2]-lysine

(Lys-8) and [13C6,15N4]-arginine (Arg-10) for “Heavy” labeling Cambridge Isotope Laborato-

ries). In addition, for IB10 cells the medium was supplemented with 1000 U/ml leukemia

inhibitory factor and 100 μM β-mercaptoethanol, and the cells were grown on dishes coated

with 0.1% gelatin. Cells were grown for at least five generations at 37˚C and in a humidified

environment containing 5% CO2, and either directly used for treatment, or stored in liquid N2.

To prepare samples obtained from independent ELF exposures for immunoblot analysis,

VH10 cells were grown in DMEM supplemented with 10% FBS, 50 units/ml penicillin, and

50 μg/ml streptomycin (Gibco, Life Technologies). The cells were grown to 40% confluency on

9 cm dishes before exposure. As control cell line for MutLα expression, HEK293T-Lα cells

[25] were grown in the same medium as the VH10 cells, supplemented with 100 μg/ml Zeocin

(Invivogen) and 300 μg/ml Hygromycin B (Roche). To turn off the expression of MutLα,

HEK293T-Lα cells were exposed to 50 ng/ml doxycycline (Sigma) for one week.

Highly-controlled in vitro EMF exposures

Labeled mammalian cells were subjected to low frequency (ELF) and radio frequency (RF:

WiFi and UMTS) electromagnetic fields with sham-exposed cultures as controls. For the ELF

exposure experiments, cells were incubated for 15 hrs in two shielded coil systems (chambers)

of the IT’IS sXcELF apparatus [26, 27]. The apparatus was placed inside a Heracell 240I incu-

bator (Thermo Scientific), which ensured constant environmental conditions (37˚C, 5% CO2,

95% humidity) by two fans in both Mu-metal chambers. Temperature differences between the

ELF exposed and sham-exposed cells were kept below 0.1˚C. In one of the chambers cells were

exposed to intermittent ELF signal (cycles of 5 min ON and 10 min OFF using 50 Hz power-

transmission line signal including electrical pollution due to high frequency components from

transients up to 1 kHz, with B = 2 mT RMS) with a non-uniformity of 1% (SD) for all possible

culture dish locations. The other chamber was used for sham exposures, with fields<-43 dB

(<0.05%) compared to ELF exposure. The exposure was carried out in a blinded fashion; the

output files including the coil assignment from the sXcELF apparatus were decoded by IT’IS

after LC-MS analysis. During the exposure, the current in the coils and the temperature in the

chambers were continuously monitored.
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For the RF exposure experiments, cells were incubated simultaneously in three identical

exposure chambers placed next to each other within a well-insulated climate-controlled room.

The exposure chambers consisted of large, stainless steel cabinets with inner dimensions

2.3 × 1.2 × 1.1 m3 (height × width × depth) in which incubator units were fitted in the upper

part of the cabinets, including connections for climate control to the outside of the cabinets.

Constant environmental conditions (37˚C, 5% CO2, 95% humidity) were ensured by cycling

humidified air through the incubators. In two exposure chambers cells were exposed to UMTS

(2.1 GHz, E = 45 V/m RMS) and WiFi (5.8 GHz, E = 9.5 V/m RMS) signals for 24 hrs. It is

noted that the field strength for 5.8 GHz is a factor of five lower mainly because of lower RF-

power in combination with higher propagation and cable losses at 5.8 GHz. The field strength

values were obtained by measurements at the location of the cells without Petri dishes. The

antennae were placed in the bottom part of the chambers, such that the distance between them

and the cells in the incubators was approximately 1.5 meters. This means that for the largest

wavelength (14cm) the cells are at least 10 wavelengths from the antenna panel. Considering

the antenna structure this set-up is expected to provide far-field conditions at the exposed

cells. In the third chamber cells remained unexposed. Further details of the stainless steel cabi-

nets, control of the antennae and the applied electromagnetic field homogeneity measure-

ments for the cabinets will be described elsewhere. The antenna used for UMTS was FPA19-

55V/448 manufactured by European Antennas. The antenna for 5.8 GHz WiFi, FPA16-

2350V/1232, was also obtained from European Antennas. Signal generators (SMBV100) were

from Rohde & Schwarz. The UMTS amplifier (10 W), ZH-2122H was obtained from RF-links,

as was the AMP-7000/X 5.8 GHz WiFi amplifier (5 W). Cells were processed for LC-MS analy-

sis immediately following (sham) exposure to the ELF- and RF-EMFs.

Sample preparation and LC-MS analysis

After EMF exposure, cells were washed twice with ice-cold PBS, harvested and lysed in 250 μl

lysis buffer containing 50 mM ammonium bicarbonate, 7 M urea, 2 M thiourea (Sigma

Aldrich) and Complete™ protease inhibitor cocktail (Roche) at the recommended concentra-

tion in ultra-pure water (Baxter Healthcare). DNA was sheared by passing the lysate 20 times

through a 25G needle. The lysate was cleared by centrifuging for 10 minutes at 14,000 g in an

Eppendorf centrifuge. Total protein concentrations were determined using the NI™ protein

assay kit (G-Biosciences). Equal amounts of protein (150 μg) of the differentially labeled lysates

were mixed for SILAC-based LC-MS analysis consisting of two independent experiments: i)

unexposed “Light” (denoted as L0) and “Medium” (denoted as M0) lysates were mixed with

exposed “Heavy” lysates (denoted as H1), and ii) exposed “Light” (denoted as L1) and

“Medium” (denoted as M1) lysates were mixed with unexposed “Heavy” lysate (denoted as

H1). The resulting protein lysates were reduced, alkylated and digested with trypsin (Promega,

sequencing grade) as described previously [28]. Peptides were fractionated by hydrophilic

interaction liquid chromatography and the fractions were collected for mass spectrometry

analysis.

Peptides were analyzed on an EASY-nLC system coupled with a Q Exactive™ mass spec-

trometer (Thermo Scientific). Peptide mixtures were trapped on a ReproSil C18 reversed

phase column (Dr Maisch GmbH; column dimensions 2 cm × 100 μm, packed in-house) at a

flow rate of 8 μl/min. Peptide separation was performed on ReproSil C18 reversed phase col-

umn (Dr Maisch GmbH; column dimensions 15 cm × 75 μm, packed in-house) using a linear

gradient from 0 to 50% B (A = 0.1% formic acid; B = 80% (v/v) acetonitrile, 0.1% formic acid)

in 180 min at a constant flow rate of 300 nl/min. The column eluent was directly electro-

sprayed into the mass spectrometer. Mass spectra were acquired in continuum mode;
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fragmentation of the peptides was performed in data-dependent acquisition mode by higher-

energy collisional dissociation using the top 15 selection. Additional settings for the mass spec-

trometer operation were as follows: MS resolution at 70,000; MS AGC target 3E6; MS maxi-

mum injection time of 100 ms; MS scan range of 375–1,400 m/z; MS/MS resolution at 17,500;

MS/MS AGC target 1E5; MS/MS maximum injection time of 200 ms; and intensity threshold

5E3.

Protein identification and quantitation

Thermo Xcalibur RAW files (423 GB in total) were analyzed using the MaxQuant software

(version 1.3.0.5) integrated with the Andromeda peptide search engine [23, 24]. Peptide frag-

mentation spectra were searched with trypsin specificity, with legitimate cleavages before pro-

line (Trypsin/P), against the corresponding species-specific library of protein sequences

(89796 human proteins and 53213 mouse proteins from the UniProtKB database release

2015_02 [29]) including reverse sequences and common contaminants in the FASTA format

(http://maxquant.org/contaminants.zip, 247 proteins). Peptides were at least 7 amino acids

long and were allowed to contain up to two missed cleavages and five modifications per tryptic

peptide. Oxidation of methionine and N-terminal acetylation were set as variable modifica-

tions, and carbamidomethylation of cysteine was set as fixed modification. The precursor and

fragment ion mass tolerances were set at 6 ppm and at 20 ppm, respectively. Peptide and pro-

tein identifications were obtained with 1% false discovery rate (FDR) thresholds. Two or more

protein accessions were grouped together whenever the sets of identified peptides of the pro-

teins were either identical or inclusive (subsets). Protein quantifications required at least two

razor and/or unique peptides, including those with the variable modifications.

Data management and statistical analyses

First, MaxQuant result files, such as the peptide (evidence.txt) and protein lists (pro-

teinGroups.txt), and the searched human/mouse protein sequence library (�.fasta) were

uploaded to and integrated by the PIQMIe proteomics server [30] (http://piqmie.biotools.nl).

Specifically, this web server transformed each EMF exposure data set into a relational database

(SQLite version 3; http://sqlite.org) to facilitate efficient data access and downstream analyses

such as the detection of differentially regulated proteins and of potentially perturbed cellular

processes (pathways) upon EMF exposures.

Furthermore, we implemented an array of established statistical methods for differential

expression analysis as command-line tools in R and Python languages. The analysis relied on

SILAC protein ratios corrected for unequal protein loading (referred to as normalized ratios)

and fully quantitated protein groups associated with six normalized ratios from reciprocal

SILAC experiments: i) four ’treated’ ratios from exposed versus unexposed (sham) samples,

and ii) two ’control’ ratios from exposed versus exposed samples and sham versus sham sam-

ples. The significance of protein fold-changes was assessed using three outlier detection

approaches namely the peak intensity-based significance B [23], standard Z-score and its

robust version called M-score [31, 32]. In addition, we used two rank-based (non-parametric)

methods implemented in the fcros (version 1.2) [33] and RankProd (version 2.42.0) [34, 35] R

packages as well as one linear modeling approach with empirical Bayes estimation imple-

mented in the limma R package (version 3.26.0) [36, 37]. A series of fold-change (FC) and/or

p-value thresholds was applied to each method to detect differentially regulated proteins at

increasing levels of stringency (FC > 1.2 or 1.5; (two-tailed) p-value< 0.1, 0.05 or 0.01, which

corresponds to |Z|> 1.65, 1.96 or 2.58). The p-values were adjusted by the Benjamini–Hoch-

berg method [38] to control the FDR of the analysis.
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Importantly, our experimental design based on triplex SILAC with two label-swaps was

explicitly taken into account in the differential protein expression analysis by “encoding” this

design into a contrast matrix as used in the limma method or using a composite Boolean filter

based on fold-changes in the other methods. Both approaches ensured that only proteins with

consistent changes in the ’treated’ SILAC ratios but with relatively smaller or no changes in the

’control’ ratios were detected as potential candidates. Furthermore, median absolute deviation

(MAD) was used as a robust measure of variability in both ’treated’ and ’control’ SILAC pro-

tein ratios, and also served as proxy to estimate the signal-to-noise (S/N) ratio of the detection

(approximated by MADtreated versusMADcontrol ratio). The greater the S/N ratio the higher the

reliability of detecting differentially regulated proteins.

Finally, differentially regulated proteins detected in the mammalian proteomes in response

to EMF exposures were subjected to an improved model-based protein set analysis using the

mgsa R package (version 1.18.0) [39] in order to infer potentially perturbed biological pro-

cesses (as defined by the UniProt Gene Ontology Annotation database (UniProt-GOA) release

142 for human and release 128 for mouse, March 2015 [40] and cellular pathways (as defined

by two curated pathway databases: the KEGG PATHWAY release 73.0+/03-10, March 2015

[41]; and the Reactome version 52, March 2015 [42]). Specifically, the mgsa analysis was per-

formed separately for mouse and human proteins detected as regulated in response to EMFs:

i) ELF, UMTS or WiFi, ii) ELF and RFs (combined results from UMTS and WiFi exposures)

and iii) all EMFs (combined results from ELF, UMTS and WiFi exposures). Note that the latter

two instances approximate the scenarios in which mammalian cells would be exposed to more

than one type of EMF simultaneously; however, these in vitro EMF exposures were not con-

ducted in our study. In the resulting Bayesian networks, the marginal posterior probabilities

were estimated using a Markov chain Monte Carlo method with 20 independent runs of the

sampler, each with 106 iterations. A cellular process or pathway was inferred as perturbed only

if its marginal posterior probability was greater than 0.5. Note that a higher posterior indicates

stronger support in the Bayesian framework, which is in contrary to the standard hypothesis-

based approaches (in which a lower p-value indicates a higher level of confidence).

Antibodies and quantitative immunoblotting

Cell lysates containing a total amount of 5 μg protein were mixed with SDS sample buffer (2%

SDS, 10% glycerol, 60 mM Tris-HCl, pH 6.8), resolved on an 8% polyacrylamide Tris-Glycine

gel and transferred to an immobilon-P PVDF membrane (Millipore). The membrane was

blocked in 3% skim milk powder (Fluka) in PBS/0.1% Tween20 and cut into sections accord-

ing to the molecular weight marker to be able to probe for individual proteins. Blocked mem-

branes were incubated over night at 4˚C with primary antibody, washed in PBS/0.1% Tween20

and incubated with horseradish peroxidase-conjugated secondary antibody for two hours. Pri-

mary antibodies were mouse-anti-MLH1 (PharMingen, 550838) diluted 1:1000, rabbit-anti-

PMS2 (Abcam, EPR3947) diluted 1:1000, and mouse-anti-α tubulin (Sigma, T5168) diluted

1:2500. Secondary antibodies were donkey-anti-rabbit (Jackson immunoresearch, 711-035-

152) diluted 1:2500, and sheep-anti-mouse (Jackson Immunoresearch, 515-035-003) diluted

1:2500. After washing with PBS/0.1% Tween20, the membrane was incubated with ECL sub-

strate (GE Healthcare) and imaged with the Alliance imaging system (Uvitec Cambridge).

Intensities of observed protein bands were quantified using the Fiji open-source platform for

biological-image analysis [43]. Within each sample, expression levels of DNA mismatch repair

protein MLH1 were normalized against the α-tubulin loading control. To compare the MLH1

levels between samples, the expression levels were normalized against the average value of

unexposed (sham) samples (L0, M0 and H0).
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Data and software availability

All mass spectrometry-based proteomics data were deposited in the ProteomeXchange Con-

sortium [44] through the PRIDE partner repository [45] with the database identifier

PXD002862. The post-processed proteomics data were also made freely available for queries

through the PIQMIe server (http://piqmie.biotools.nl/results/<dataset>, where dataset refers

to one of the six EMF exposures: ELF_human, ELF_mouse, UMTS_human, UMTS_mouse,

WIFI_human or WIFI_mouse). The TIFF images taken from the immunoblots and the inten-

sities of the observed protein bands in these blots are provided in supplementary materials (S1

File). The source codes of the bioinformatics tools (in R and Python languages) developed to

analyze semi-quantitative proteomics data, such as those from in vitro exposures to EMFs, can

be found on GitHub and/or CERN’s Zenodo platform (PIQMIe version 1.0, http://dx.doi.org/

10.5281/zenodo.34090; EMF-DM version 1.0.1, http://dx.doi.org/10.5281/zenodo.166705).

Results

Experimental design

In order to detect cellular responses upon exposures to non-ionizing EMFs, we implemented

an unbiased and highly sensitive mass spectrometry-based proteomics approach. Our semi-

quantitative proteomics experiments involved triple-state SILAC with reverse (swap) meta-

bolic labeling of three mammalian cell lines, each exposed to three different non-ionizing

EMFs (Fig 1).

The choice of mammalian cell lines reflects different biological signatures that are relevant

in response to EMF exposures: the VH10 human fibroblasts, a skin cell line used as a model

for the first tissue that would be exposed to the fields, in particular to EMFs in radio frequency

range; the U2OS osteosarcoma cell line as a sensitive cell line with compromised molecular

regulatory pathways in cancer; and the mouse IB10 embryonic stem cells as sensitive sensors

for subtle disturbances during cellular differentiation, as these cells have the potential to

become any cell type in the adult organism.

We implemented a triple-state SILAC approach with reverse labeling to be able to detect

putative small effects on protein abundance induced by EMF exposures. Changes in protein

abundance between the “Heavy” samples on the one hand and the “Light” and “Medium” sam-

ples on the other hand were statistically evaluated when the changes were consistently

observed in the same direction in both replicates (L0+M0+H1 and L1+M1+H0).

Proteomics data analysis workflow

We developed the PIQMIe proteomics server for reliable management, statistical analysis and

visualization of semi-quantitative mass spectrometry data (Fig 2). In particular, our SILAC-

based EMF exposure data on three mammalian cell lines were analyzed and made available for

queries through web-based graphical and programmatic user interfaces. Importantly, the PIQ-

MIe web service automates common post-processing tasks, which are often performed manu-

ally by researchers such as summarizing peptide/protein identifications and quantifications,

filtering out decoy hits and known contaminants, and/or log-transforming SILAC protein

ratios. Moreover, users can perform specific queries on the resulting database(s), for example,

retrieving proteins newly identified in a proteomics experiment which have previously not

been verified experimentally at the protein level according to the evidence in the UniProtKB

database. Furthermore, we implemented an array of established statistical methods to infer dif-

ferential protein regulation and perturbed cellular pathways in the mammalian cells due to
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Fig 1. Experimental setup to study proteome-wide biological responses to non-ionizing EMFs using semi-quantitative mass spectrometry.

Triple-state (triplex) SILAC proteomics with reverse metabolic labeling of human fibroblasts (VH10), human osteosarcomas (U2OS) and mouse

embryonic stem cells (IB10) exposed to different EMFs with extremely low (ELF) or radio frequencies (UMTS or WiFi). Cells were cultured in media

containing “Light” (Arg-0/Lys-0), “Medium” (Arg-6/Lys-4) and “Heavy” (Arg-10/Lys-8) stable isotopes. Cultures were sham (denoted as L0, M0 and H0) or

exposed (denoted as L1, M1 and H1) to EMFs. Two independent LC-MS experiments of mixtures of cell extracts were performed: two sham and one
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EMF exposure. These methods were directly coupled with the resulting databases to aid in

reproducible analyses of the EMF exposure data.

Summarizing the SILAC-based EMF exposure experiments

The mass spectrometry data obtained from our SILAC experiments were summarized in

terms of identified and quantitated peptides/proteins using the PIQMIe proteomics server

[30]. About one-fourth of the human or mouse proteome (as defined by the UniProtKB data-

base) was identified by the MaxQuant/Andromeda analysis (Table 1, S1–S3 Tables), with

mean coverage of 27.30% for human and of 25.35% for mouse cells. Approximately half of the

identified protein accessions belong to the high-quality and manually curated UniprotKB/

Swiss-Prot entries (53% for mouse versus 48% for human).

Further comparisons of the protein sets identified in different EMF exposures showed high

overlap and/or similarity, as measured by the Jaccard index (J) between the sets (Table 2 and

S1 Fig). In particular, the RF protein sets (UMTS and WiFi) shared higher similarity with each

other than did either RF set with the ELF set, which was in accordance with the experimental

procedures used.

exposed extract in the mixture (L0+M0+H1, indicated as replicate 1), and two exposed extracts with one sham extract in the mixture (L1+M1+H0, indicated

as replicate 2). Note that the L and M samples (duplicates) were treated equally in both experiments and could therefore be used as internal controls to

quantify the experimental variation due to cell culturing, metabolic labeling and/or preparing the samples for mass spectrometry analysis. Further

downstream bioinformatics analyses involved peptide/protein identification and quantitation, and the detection of differentially regulated proteins and

perturbed cellular processes or pathways.

doi:10.1371/journal.pone.0170762.g001

Fig 2. Semi-quantitative proteomics data management and analysis. The SILAC-based mass spectrometry data from EMF exposed mammalian

cells were analyzed by the MaxQuant/Andromeda software. The resulting peptide/protein identifications and quantifications were uploaded to the PIQMIe

proteomics server, which integrated the EMF exposure data with protein information from UniProtKB and made the databases available for user-driven

queries and statistical analyses.

doi:10.1371/journal.pone.0170762.g002
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The protein identifications including their isoforms were further clustered into (non-

redundant) protein groups by the MaxQuant/Andromeda software, resulting in up to 4933

and 5286 protein groups in mouse and human cells, respectively (Table 3). For human samples

the most protein groups were detected in the ELF data set, whereas the least protein groups

were detected in the UMTS data set; and vice versa for mouse samples. In general, the majority

of protein groups (54–86%) was associated with at least one SILAC protein ratio based on two

or more peptide quantitation events. However, there were more proteins quantitated in mouse

than in human cells when exposed to the same EMF, mainly due to more tryptic peptides iden-

tified/quantitated in the mouse samples. Of the two human cell lines, the U2OS cells had gen-

erally more quantitated peptides (up to 29% more) and proteins (up to 18% more) than the

VH10 cells had.

Table 1. Summary of mass spectrometry-based protein identifications in human and mouse proteomes exposed to EMFs.

Proteome Database/section Number of protein accessions ELF UMTS WiFi

Number of protein

ident.(%)

Number of protein

ident. (%)

Number of protein

ident.(%)

Human UniProtKB/Swiss-Prot 42077 12558 (29.85) 10708 (25.45) 11434 (27.17)

UniProtKB/TrEMBL 47719 13861 (29.05) 12249 (25.67) 12740 (26.70)

UniProtKB 89796 26419 (29.42) 22957 (25.57) 24174 (26.92)

Mouse UniProtKB/Swiss-Prot 24724 6919 (27.98) 7518 (30.41) 7044 (28.49)

UniProtKB/TrEMBL 28489 6132 (21.52) 6588 (23.12) 6265 (21.99)

UniProtKB 53213 13051 (24.53) 14106 (26.51) 13309 (25.01)

Note that the splice isoforms are included in the protein counts but decoy hits and contaminants are excluded from the counts; the UniProtKB/Swiss-Prot

section contains highly curated entries (accessions) whereas the UniProtKB/TrEMBL section is unreviewed.

doi:10.1371/journal.pone.0170762.t001

Table 2. Two- and three-way set comparisons of protein identifications from the EMF exposure experiments.

Human

A B |A| |B| |A \ B| |A [ B| % Overlap J

100 * |A \ B| / MAX(|A|, |B|) |A \ B| / |A [ B|

ELF UMTS 26419 22957 20711 28665 78.39 0.72

ELF WiFi 26419 24174 21503 29090 81.39 0.74

UMTS WiFi 22957 24174 20702 26429 85.64 0.78

Mouse

ELF UMTS 13051 14106 11365 15792 80.57 0.72

ELF WiFi 13051 13309 11108 15252 83.46 0.73

UMTS WiFi 14106 13309 12154 15261 86.16 0.80

Human

A B C - |A \ B \ C| |A [ B [ C| % Overlap J

100 * |A \ B \ C| / MAX(|A|, |B|, |C|) |A \ B \ C| / |A [ B [ C|

ELF UMTS WiFi - 19389 30023 73.39 0.65

Mouse

ELF UMTS WiFi 10570 16409 74.93 0.64

Note that the Jaccard index (J) indicates the similarity between the sets (values between 0 and 1, i.e. complete dissimilarity and identity, respectively); the

overlap score (%) indicates the percentage of protein identifications common to the sets with regard to the largest one; set operations such as union ([),

intersection (\) and cardinality (|. . .|) are indicated in the headers.

doi:10.1371/journal.pone.0170762.t002
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Interestingly, about one-third of the identified mouse proteins—an order of magnitude

more than in the human proteome—have previously not been verified experimentally at pro-

tein level according to the evidence in the UniProtKB database (S4 Table). This result indicates

that the MS-based protein identification of the mouse proteome has not yet reached the point

of saturation compared to the human proteome.

Dissecting the effects of EMF exposures on mammalian cells

Our experimental design enabled to distinguish the variability in SILAC protein ratios

introduced by the EMF exposure from that introduced by the SILAC swap labeling proce-

dure and therefore to infer subtle perturbations in the exposed mammalian proteomes. The

overall correlation analysis of reciprocal SILAC protein ratios (exposed versus sham) from

the replicate experiments consistently resulted in a pattern of inversely associated protein

ratios (Fig 3), as indicated by the negative Pearson’s correlation coefficients (r) for all the

EMF data sets (r between -0.79 and -0.16, 95% CI, p-value < 0.001). Importantly, this

Table 3. Summary of (non-redundant) protein identifications/quantifications in human (VH10 and U2OS) and mouse (IB10) cells exposed to EMFs.

EMF Cell line Number of protein ident. Number of protein quant. (%) Number of decoys Number of contaminants

ELF U2OS 5286 a3237 (61.24) 97 125
b3288 (62.20)
c2927 (55.37)

VH10 5286 a3114 (58.91) 97 125
b3305 (62.52)
c2854 (53.99)

IB10 4583 a3276 (71.48) 71 96
b3389 (73.95)
c3055 (66.66)

UMTS U2OS 4551 a3722 (81.78) 76 134
b3656 (80.33)
c3416 (75.06)

VH10 4551 a3233 (71.04) 76 134
b3023 (66.42)
c2761 (60.67)

IB10 4933 a4199 (85.12) 66 113
b4035 (81.80)
c3812 (77.28)

WiFi U2OS 4841 a3656 (75.52) 71 130
b3803 (78.56)
c3483 (71.95)

VH10 4841 a3294 (68.04) 71 130
b3336 (68.91)
c3028 (62.55)

IB10 4662 a4010 (86.01) 62 112
b3958 (84.90)
c3704 (79.45)

Note that the splice isoforms are included in the protein counts but decoy hits and contaminants are excluded from the counts; the superscripts indicate

protein quantifications with at least one SILAC ratio in replicate 1 (L0+M0+H1)a, replicate 2 (L1+M1+H0)b or with complete SILAC quantifications in both

replicatesc (six protein ratios in total).

doi:10.1371/journal.pone.0170762.t003

Semi-quantitative proteomics of mammalian cells upon exposure to non-ionizing electromagnetic fields

PLOS ONE | DOI:10.1371/journal.pone.0170762 February 24, 2017 11 / 25



Fig 3. Correlation analysis of reciprocal SILAC protein quantifications in three mammalian cell lines exposed to three different EMFs. (A-C)

Three scatterplots based on simulated SILAC protein ratios from reverse labeling experiments—with treated (H1 or L1) versus sham (L0 or H0) samples

on both axes—illustrate three possible scenarios in which the scatter depends on the effect of a treatment (e.g. EMF exposure) versus SILAC reverse

labeling: (A) the scatter is in the direction of the treatment, as indicated by a positive Pearson’s correlation coefficient (r); (B) the scatter does not have an

identifiable trend, as indicated by a value of r close to zero; (C) the scatter is in the direction of the SILAC reverse labeling, as indicated by a negative value

of r. Each scatterplot is divided into four quadrants (I-IV): proteins with inconsistent SILAC reciprocal ratios are located in the I and III quadrants whereas

proteins with consistent up- and down-regulation upon treatment are located in the II and IV quadrants, respectively. (D) The dot plot summarizes

quantitative data from human (U2OS and VH10) and mouse (IB10) cell lines exposed to ELF, UMTS and WiFi (the individual scatterplots are shown in S2–

S4 Figs); the r estimates including the error bars (95% confidence interval) are based on SILAC protein ratios from the H-M (in blue) and the H-L (in red)

reverse labeling experiments. Note that the estimated r values are negative in all EMF exposures and hence correspond to the third scenario illustrated by

the scatterplot (C).

doi:10.1371/journal.pone.0170762.g003

Semi-quantitative proteomics of mammalian cells upon exposure to non-ionizing electromagnetic fields

PLOS ONE | DOI:10.1371/journal.pone.0170762 February 24, 2017 12 / 25



analysis followed by visualization using scatterplots (S2–S4 Figs) suggested that the EMF

exposures had overall a smaller effect on the quantitated mammalian proteomes than the

SILAC swap labeling procedure. However, the correlation analysis did not rule out the

possibility of detecting differential protein regulation in response to the EMF exposures.

Seven out of nine H-L swap experiments shared stronger (inverse) associations than the

H-M swaps (as indicated by a larger absolute |r|, with mean difference of 0.17, 95% CI of

0.04 to 0.30, t(8) = 2.96 and p-value < 0.05 according to the paired t-test), indicating a

label-specific bias and the importance of using double-swap rather than single-swap SILAC

labeling.

Next, we assessed the feasibility of detecting differential protein expression by comparing

the variability of SILAC protein ratios for treated versus control conditions, and by estimating

the signal-to-noise ratio (S/N) in the filtered versus unfiltered triplex SILAC data. This analysis

showed that by applying the composite fold change-based filter on protein quantifications the

S/N ratio (refer to Materials and Methods) increased significantly across all EMF exposure

data sets, thereby enabling improved detection of potentially regulated proteins upon the

EMFs (Fig 4 and S5 Fig). For example, the S/N ratio of the partially filtered SILAC data

(denoted as WiFi:consistent) of human U2OS cells remained relatively low compared to that

of the unfiltered data set (denoted as WiFi:unfiltered). However, the S/N ratio improved signif-

icantly for the fully filtered data set (denoted as WiFi:composite) because of the triplex SILAC

design. Therefore, our triplex SILAC experiments with two label-swaps (H-L and H-M)

enabled more reliable downstream analyses of the EMF exposure data than would a simpler,

duplex SILAC design with one label-swap.

Differential protein regulation and perturbed cellular pathways

Instead of relying on results obtained by a single method, we used an array of established statis-

tical methods to infer, as reliably and sensitively as possible, differentially regulated proteins in

the mammalian proteomes in response to non-ionizing EMFs (Table 4). This ensemble-based

approach resulted in the detection of 45 differentially regulated proteins, of which 18/14/13

proteins were potentially affected by the ELF/UMTS/WiFi exposure, respectively. However,

most of these proteins were associated with changes smaller than 1.5-fold (p-value< 0.1). Hav-

ing SILAC data on three distinct mammalian cell lines per EMF exposure enabled to assess the

biological reproducibility and/or consistency of differential protein regulation across multiple

cell lines of the same and/or different species.

According to this protein-centric analysis, the majority of the differentially regulated pro-

teins were identified in a single cell line, except the human exocyst complex component 2

(EXOC2) and the quinone oxidoreductase-like protein 1 (CRYZL1) including its mouse

ortholog. While the down-regulation of EXOC2 upon UMTS exposure was consistent in both

VH10 and U2OS human cells, the regulation of CRYZL1 was inconsistent; the human

CRYZL1 protein was down-regulated upon UMTS exposure whereas its mouse ortholog was

up-regulated upon ELF exposure. Furthermore, we ranked the statistical methods according to

the numbers of regulated proteins detected: RankProd returned the largest set (38 proteins),

followed by fcros (21 proteins), M-score (19 proteins), fold-change assessed with peak inten-

sity-based significance B (4 proteins), Z-score (2 proteins) and limma/TREAT (1 protein).

About one-third of the differentially regulated proteins were confirmed by two distinct classes

of—mostly outlier detection and rank-based—methods while the remaining majority of the

proteins were singletons. Among the proteins inferred by the majority of statistical methods

were the human DNA mismatch repair protein MLH1, lysophospholipid acetyltransferase 7

(MBOAT7) and the mouse ribonuclease 3 (DROSHA).
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Fig 4. Variability of SILAC protein ratios in human U2OS cells upon ELF, UMTS and WiFi exposures. Median absolute deviation

(MAD) is used as a robust measure of variability in SILAC protein ratios. Note that unfiltered refers to an unfiltered SILAC data set containing

all quantitated protein groups; (in)consistent refers to a filtered SILAC data set of protein groups with (in)consistent ratios in both reverse

labeling experiments, this fold-change filtering procedure is only possible because of the duplex SILAC design; composite refers to a filtered

SILAC data set of protein groups with greater ’treated’ ratios than ’control’ ratios (in total there are four ’treated’ ratios from exposed versus

sham samples, and two ’control’ ratios from exposed versus exposed samples and sham versus sham samples), this (composite) fold-

change filtering procedure requires triplex SILAC design. The results for the human VH10 and mouse IB10 cells are shown in S5 Fig.

doi:10.1371/journal.pone.0170762.g004
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We selected the protein MLH1 from the set of all differentially regulated proteins (Table 4)

as the best candidate to validate the results from the LC-MS analysis for the following reasons:

i) it was detected by nearly all statistical methods (except limma) as being up-regulated in

VH10 human fibroblasts upon ELF exposure, ii) had the largest and most significant fold-

change and iii) was identified as an integral part of the Gene Ontology term association net-

work that we describe below. Specifically, MLH1 is involved in DNA mismatch repair, which

is an important process required for maintaining genome stability. Loss of DNA mismatch

repair in humans predisposes to Lynch syndrome with a high incidence of colonic and endo-

metrial cancers [46]. MLH1 forms a stable heterodimeric MutLα complex with the PMS2 pro-

tein; however, PMS2 becomes unstable in the absence of MLH1 [46] (Fig 5A). First, we

Table 4. Differentially regulated proteins detected upon EMFs in human (VH10 and U2OS) and mouse (IB10) cells using an array of statistical

methods.

EMF Cell

line

FC FC+sigB Z-

score

M-score RankProd fcros limma Combined

(union) set

Number of

proteins

ELF VH10 2MLH1,
1WDR75

2MLH1 MLH1 MLH1,

UBE2A,

WDR75

2MLH1,
2LEPREL2,
1NUMB, 1WDR75,
1GINS1

2MLH1 - ": MLH1, UBE2A,

WDR75,
aLEPREL2,
aNUMB, aGINS1

6

U2OS 1AMPH,
1DNMT1

- - METAP2,

DNMT1,

NT5C2

1DHX33, 1AMPH,
1TBL3, 1MVK,
1DNMT1, 1LIMD1

2AMPH,
1DHX33,
1MVK,
1DNMT1

- ": MVK, TBL3,
bDHX33

8

#: AMPH, DNMT1,

METAP2, NT5C2,
bLIMD1

IB10 1Rhot1 - - Glmn, Rhot1 2Glmn, 1Cryzl1,
1Ap1m1

- - ": Glmn, Rhot1,

Cryzl1, Ap1m1

4

UMTS VH10 1SPAG7 - - SPAG7 2EXOC2,
2CRYZL1,
1SPAG7, 1DPY30

2EXOC2,
1KDM1A,
1SPAG7

- ": SPAG7 5

#: EXOC2,

DPY30, KDM1A,
aCRYZL1

U2OS 1TWISTNB,
1MBOAT7

1TWISTNB,
1MBOAT7

- MBOAT7,

EXOC2,

MOGS, PKP2

2TWISTNB,
1MBOAT7,
1H2AFY

2TWISTNB,
1MBOAT7

- #: MBOAT7,

EXOC2, MOGS,

H2AFY, bPKP2,
bTWISTNB

6

IB10 1Calcoco1,
1Pcf11,
1Acbd6

- - Acbd6,

Calcoco1

2Acbd6,
1Calcoco1,
1Pcf11, 1Wipi2

2Acbd6,
1Calcoco1,
1Pcf11

- ": Calcoco1,

Pcf11

4

#: Acbd6, Wipi2

WiFi VH10 1LEO1,
1PNPO

- - - 1LEO1, 1PNPO,
1ANKRD28,
1KRAS

1LEO1, 1PNPO 1PNPO ": ANKRD28 4

#: LEO1, aPNPO,
aKRAS

U2OS 1AKAP8L - - AKAP8L 2AKAP8L,
1NUCKS1

2AKAP8L,
1NUCKS1

- #: AKAP8L,
bNUCKS1

2

IB10 2Drosha,
1Zfp57,
1Atxn7l3b

2Drosha Drosha Atxn7l3b,

Drosha,

Zfp57

2Drosha,
1Atxn7l3b, 1Zfp57,
1Nde1, 1Wwc2,
1Asf1a, 1Scaf8

2Drosha,
1Zfp57,
1Atxn7l3b,
1Nde1

- ": Drosha,

Atxn7I3b, Wwc2,

Nde1, Asf1a

7

#: Zfp57, Scaf8

Three classes of statistical methods used: i) outlier detection using protein fold-changes (FC) assessed with peak intensity-based significance B (sigB), Z-

score and M-score; ii) rank-based (non-parametric) RankProd and fcros; and iii) an improved linear modeling approach with empirical Bayes estimation,

limma/TREAT. A non-statistical FC-based approach (without p-value estimation) was also included. (") Up- and (#) down-regulated proteins detected with

varying degrees of stringency: FC > 11.2 or 21.5, and/or (adjusted) p-value < 0.1, 0.05 or 0.01
a,b indicate a protein with incomplete (or no) SILAC quantifications in human aU2OS or bVH10 cells upon the same EMF exposure. Note that only the

leading proteins of the non-redundant groups are listed here and referred by their official gene symbols (http://www.genenames.org). Further details about

the proteins such as UniProtKB accession numbers and SILAC ratios are presented in S5 Table.

doi:10.1371/journal.pone.0170762.t004
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analyzed the amount of MLH1 and PMS2 in the cell extracts which were differentially labeled

with Light/Medium/Heavy amino acids and were used for the LC-MS analysis (Fig 5B and

5C). This revealed that in these samples the increase in the amount of MLH1 upon ELF expo-

sure based on quantitative immunoblot analysis (0.98–1.57-fold) is lower than indicated by the

mass spectrometry-based analysis (1.04–2.81-fold), and is not statistically significant (Fig 5D)

according to the two-way ANOVA analysis (α = 0.05, p-values> 0.05). This result was con-

firmed by quantitative immunoblot analysis of MLH1 levels in VH10 cells which were exposed

to ELF in an independent experiment (Fig 5E–5G). Thus, the DNA mismatch repair protein

MLH1 is not up-regulated upon ELF exposure.

Fig 5. Quantitative immunoblot analysis of MLH1 expression in the VH10 cell line upon ELF exposure. (A) Immunoblot of control cell line

HEK293T-Lα [25] in which expression of DNA mismatch repair protein MLH1 and its binding partner PMS2 is regulated by doxycycline. The presence (+)

and absence (-) of doxycycline is indicated. (B) Immunoblot of extracts from untreated (SHAM) and exposed (ON) VH10 cells labeled with different

isotopes (L, M and H) and used for semi-quantitative mass-spectrometry analysis. Proteins were visualized using antibodies against MLH1, its binding

partner PMS2, and α-tubulin as loading control. (C) Relative MLH1 expression levels (mean ± SD) in extracts from untreated and exposed cells as

determined from 6 immunoblot replicas of the MS samples. (D) Tabulated ratios for relative MLH1 expression levels in differentially labeled VH10 cells as

determined by mass spectrometry (MS) and immunoblot (IB) analyses. (E) Immunoblot of VH10 cells, lysed using either urea or SDS, obtained from an

independent exposure. (F) Relative MLH1 expression levels (mean ± SD) in extracts from an independent exposure as determined from 9 immunoblot

replicas. (G) Tabulated ratios for relative MLH1 expression levels based on immunoblot analysis of extracts from the independent exposure.

doi:10.1371/journal.pone.0170762.g005
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In addition to the protein-centric analysis described above, we also investigated in which

biological processes or related pathways are the differentially regulated proteins involved

(Table 4). To infer potentially perturbed cellular pathways in the exposed mammalian cells, we

performed an improved model-based protein set analysis [39] coupled with three complemen-

tary and curated databases namely UniProt-GOA, KEGG PATHWAY and Reactome. Using

the UniProt-GOA database, this analysis inferred only one significantly perturbed biological

process—referred by the Gene Ontology term ’negative regulation of histone methylation’

(GO:0031061; marginal posterior probability greater than 0.5; 0.65 ± 0.02 SD)–in human but

not mouse cells, and only in the scenario, in which the cells would be exposed to all three

EMFs simultaneously (for the details refer to “Data management and statistical analyses” in

the methods section). Specifically, three down-regulated proteins (with fold-changes between

1.2 and 1.5 and adjusted p-values< 0.1) namely the human H2A histone family member Y

(H2AFY; upon UMTS exposure), lysine-specific histone demethylase 1A (KDM1A; upon

UMTS exposure) and DNA (cytosine-5-)methyltransferase 1 (DNMT1; upon ELF exposure)

were found associated with negative regulation of histone methylation. This ’core’ set of pro-

teins was expanded with other differentially regulated proteins from both species (Table 4)

and visualized in a network of associated biological processes, including those processes with

marginal posterior probabilities below 0.5. In this network, most of the biological processes

were related to chromatin modification and DNA repair (Fig 6) and the majority of protein-

to-Gene Ontology term associations (20 out of 35) were annotated with experimental evidence

from literature. However, unlike the UniProt-GOA, the mgsa analysis did not infer any signifi-

cant pathways according to the KEGG and Reactome databases.

Discussion

In this study we present the first proteome-wide semi-quantitative mass spectrometry analysis

of human and mouse cells exposed to three different non-ionizing EMFs, namely ELF, UMTS

and WiFi, using highly-controlled and standardized in vitro exposure systems. Given the high

numbers of identified and quantitated proteins in the mammalian proteomes, our SILAC-

based experiments were successful and in good agreement with published proteomics studies

[47, 48]. We implemented a triplex SILAC design with two label-swaps (H-L and H-M) that

enabled more reliable protein- and pathway-level analyses of potential cellular perturbations

upon EMF exposures compared to simpler experimental designs (such as duplex SILAC with a

single label-swap). Importantly, the triplex SILAC design was taken explicitly into account in

the differential expression analysis, resulting in improved signal-to-noise ratio of the detection,

which ensured that only proteins with consistent changes in the ’treated’ protein ratios and

with relatively smaller or no changes in the ’control’ protein ratios were selected as putative

candidates.

The correlation analysis of protein quantifications across all reciprocal SILAC experiments

consistently resulted in a pattern of inversely associated protein ratios (Fig 3) and thus sug-

gested that the effect of the EMFs on the mammalian proteomes is smaller than that of the

SILAC swap labeling. As this analysis did not rule out the possibility of detecting differentially

regulated proteins upon EMF exposures, we performed an extensive differential protein

expression analysis using an array of established statistical methods. This ensemble-based

approach suggested that less than 1% of the quantitated human and mouse proteomes respond

to the EMF exposures by small changes in protein abundance (mostly by less than 1.5-fold).

This indicates that the EMFs have a subtle bearing on the mammalian cells.

Although most of the statistical methods used have primarily been developed to assess dif-

ferential gene expression in one- or two-color microarrays, they have been recently
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benchmarked on and successfully accommodated to semi-quantitative proteomics data, in

particular those obtained from experiments with few replicates [49–51]. Our study also under-

lines the importance of using more than one method for differential protein expression analy-

sis. The numbers of significant protein hits returned by the individual methods were rather

low. Moreover, same proteins inferred by multiple methods were found associated with differ-

ent p-values. By combining the results of different statistical methods we gained sensitivity and

therefore obtained a larger set of potentially regulated proteins than using a single method

alone. Note that it was not our aim to systematically benchmark these methods nor to select a

single “best” method in terms of sensitivity and specificity but to detect proteins whose abun-

dance is most likely regulated by exposure to EMFs.

Fig 6. Network of differentially regulated mammalian proteins associated (annotated) with biological processes. In this network, the proteins and

biological processes (referred by the Gene Ontology (GO) terms) are indicated by oval- and box-shaped nodes, respectively; human proteins (gray) and

mouse (white) proteins detected as differentially regulated upon ELF (solid), UMTS (dashed) and WiFi (dot-dashed) exposures; protein-to-GO term

associations are indicated by edges labeled with GO evidence codes: inferred from direct assay (IDA); inferred from mutant phenotype (IMP); inferred

from genetic interaction (IGI); traceable author statement (TAS); non-traceable author statement (NAS); inferred from sequence orthology (ISO); inferred

from electronic annotation (IEA). For additional details on the proteins refer to S5 Table.

doi:10.1371/journal.pone.0170762.g006
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One of the most prominent candidates based on comprehensive statistical analyses of our

SILAC-based mass spectrometry data, the human DNA mismatch repair protein MLH1, was

selected for the follow-up experimental validation using immunoblot analysis. The immuno-

blot analyses of the same samples as used for the semi-quantitative mass spectrometry experi-

ments, however, did not reveal a significant change in the level of this protein upon ELF

exposure (Fig 5). Furthermore, concomitant up-regulation of its obligatory partner protein

PMS2 was not detected in the immunoblot analysis. Consistent with these results are the fol-

lowing observations that i) the change in the abundance of MLH1 was detected exclusively in

VH10 human fibroblasts based on our mass spectrometry data analysis, and ii) an in vitro
study [52] that assessed the putative effect of ELF exposure on DNA replication and transcrip-

tion, did not detect an effect on the efficiency of DNA mismatch repair. Importantly, this out-

come exemplifies that the possible identification of false positive candidates has to be taken

into account even when setting up high-throughput studies as rigorously controlled as triple-

state SILAC with two label-swaps, and underscores the need for (targeted) experimental

validation.

As we did not confirm the change in the abundance of the DNA repair protein MLH1 in

the follow-up immunoblot experiments, we embarked on an computational approach that

used all available mass spectrometry-based data from our cell lines and/or EMF exposures.

Specifically, all differentially regulated proteins detected in the human and mouse cell lines

were subjected to an improved model-based protein set analysis that, in comparison to single-

term association approaches, takes the statistical dependence between ontological terms into

account in a Bayesian network [39]. The results of this exploratory data analysis are presented

in Fig 6. Interestingly, a single biological process that comes into focus is chromatin metabo-

lism in general and chromatin modification events related to epigenetic control of gene expres-

sion in particular [53].

The analysis suggests that the histone variant macro-H2A.1, which is encoded by the

H2AFY gene, is down-regulated upon UMTS exposure. This histone variant is associated with

repressive chromatin and cellular senescence [54]. Interestingly, the histone chaperone ASF1A

is involved in forming macro-H2A.1 containing chromatin [55]. This histone chaperone is

identified as up-regulated in mouse cells upon WiFi exposure. Furthermore, DNA- and his-

tone-modifying enzymes are implicated by the analysis, such as DNA (cytosine-5-)-methyl-

transferase 1 (DNMT1) and lysine-specific histone demethylase 1A (KDM1A, also known as

LSD1). Deficiencies in the former enzyme have been associated with cancer and developmen-

tal disorders [56], as well as with DNA mismatch repair deficiency, among others, through

reduced expression of the DNA repair protein MLH1 [57]. However, MLH1 expression is not

reduced according to our semi-quantitative mass spectrometry and immunoblot analyses. The

lysine-specific histone demethylase 1A can affect methylation status of histone H3 (namely

H3K4 and H3K9), thereby affecting transcriptional status of genes [58]. Moreover, deficiency

in this histone demethylase (KDM1A) is implicated in cancer and embryonic stem cell differ-

entiation. An interesting link between the DNA- and histone-modifying enzymes is the fact

that lysine-specific histone demethylase 1A (KDM1A)-mediated demethylation of a lysine on

DNA (cytosine-5-)-methyltransferase 1 (DNMT1) stabilizes the latter enzyme [59].

In addition to the lysine-specific histone demethylase 1A, which affects the methylation sta-

tus of histone H3K4, the analysis also pointed to potential down-regulation of the histone

methyltransferase complex regulatory subunit (DPY30) in VH10 human fibroblasts upon

UMTS exposure. This protein is part of different methyltransferase-containing complexes,

including the MLL1/MLL complex, which contains the catalytic subunit MLL1 (also known as

KMT2A) that acts on histone H3K4 [60, 61]. Furthermore, the RNA polymerase-associated

protein (LEO1) is detected as down-regulated in human fibroblasts upon WiFi exposure. As
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part of the PAF1/RNA polymerase II complex, LEO1 is implicated in the regulation of devel-

opment and maintenance of embryonic stem cell pluripotency [62]. In particular, PAF1 com-

plex stimulates transcription of the KMT2A/MLL1 gene and recruits the ubiquitin-conjugating

enzyme 2A (UBE2A) to chromatin [63], a post-translational modification enzyme, which is

detected as differentially (up-)regulated in human fibroblasts upon ELF exposure.

Given the inability to biochemically verify a possible EMF-mediated increase in the levels of

the DNA repair protein MLH1, which represents our strongest candidate emerging from the

semi-quantitative mass spectrometry analysis the significance, if any, of an effect of EMF expo-

sure on epigenetically controlled gene expression, as presented in Fig 6, remains unclear at the

present time. However, if transcriptional programs could be affected by EMFs, then it could be

expected that biological effects of EMF exposure would be very pleiotropic.
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identifications unique by sequence; n_unq_pep_seq_qts–number of non-redundant peptide
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