Table 4. Generalized additive model fitted to simplex words from the English Lexicon Project using discrimination-based predictors.
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
Intercept | -1.3186 | 0.0024 | -543.1538 | < 0.0001 |
Age = young | -0.3224 | 0.0034 | -93.9030 | < 0.0001 |
B. smooth terms | edf | Ref.df | F-value | p-value |
te(G2L prior, G2L a-diversity) | 3.0008 | 3.0016 | 44.5369 | < 0.0001 |
te(L2L prior, L2L l-diversity): Age = old | 4.5693 | 5.3621 | 5.3898 | < 0.0001 |
te(L2L prior, L2L l-diversity): Age = young | 6.9382 | 8.3329 | 17.1926 | < 0.0001 |
te(sem-typicality, sem-density) | 7.1147 | 8.8957 | 5.4650 | < 0.0001 |
s(G2L activation): AgeSubject = old | 2.4596 | 3.1492 | 2.6914 | 0.0430 |
s(G2L activation): AgeSubject = young | 1.0003 | 1.0005 | 8.0608 | 0.0045 |
s(Written Spoken Frequency Ratio) | 4.2019 | 5.2811 | 8.1942 | < 0.0001 |
s(Concept Frequency) | 8.1445 | 8.8031 | 27.3368 | < 0.0001 |
te: tensor product smooth, s: thin plate regression spline smooth. (AIC = −6220.1; -ML = −3106.6; R-sq. (adj) = 0.752)