Skip to main content
. 2017 Feb 24;12(2):e0171935. doi: 10.1371/journal.pone.0171935

Table 4. Generalized additive model fitted to simplex words from the English Lexicon Project using discrimination-based predictors.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -1.3186 0.0024 -543.1538 < 0.0001
Age = young -0.3224 0.0034 -93.9030 < 0.0001
B. smooth terms edf Ref.df F-value p-value
te(G2L prior, G2L a-diversity) 3.0008 3.0016 44.5369 < 0.0001
te(L2L prior, L2L l-diversity): Age = old 4.5693 5.3621 5.3898 < 0.0001
te(L2L prior, L2L l-diversity): Age = young 6.9382 8.3329 17.1926 < 0.0001
te(sem-typicality, sem-density) 7.1147 8.8957 5.4650 < 0.0001
s(G2L activation): AgeSubject = old 2.4596 3.1492 2.6914 0.0430
s(G2L activation): AgeSubject = young 1.0003 1.0005 8.0608 0.0045
s(Written Spoken Frequency Ratio) 4.2019 5.2811 8.1942 < 0.0001
s(Concept Frequency) 8.1445 8.8031 27.3368 < 0.0001

te: tensor product smooth, s: thin plate regression spline smooth. (AIC = −6220.1; -ML = −3106.6; R-sq. (adj) = 0.752)