Table 9. Generalized additive model for the response latencies in experiment 1, using discrimination-based predictors.
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
Intercept | -1.5789 | 0.0278 | -56.7847 | 0.0000 |
Experiment = 1a | -0.0546 | 0.0278 | -1.9627 | 0.0497 |
PrimeType = decomposable | -0.0178 | 0.0094 | -1.8919 | 0.0586 |
B. smooth terms | edf | Ref.df | F-value | p-value |
tensor product smooth G2L prior by G2L a-diversity by Spelling | 11.1763 | 13.6993 | 2.2615 | 0.0054 |
tensor product smooth L2L prior by L2L l-diversity | 4.6038 | 4.6664 | 3.4792 | 0.0047 |
by-Target random intercepts | 24.5204 | 30.0000 | 12.2987 | 0.0000 |
by-Prime random intercepts | 28.2487 | 103.0000 | 0.4863 | 0.0010 |
by-Previous-Target random intercepts | 43.4725 | 139.0000 | 0.4600 | 0.0002 |
by-Participant factor smooths for Trial | 392.9230 | 1527.0000 | 2.0703 | 0.0000 |
AIC = 1237.009; fREML = 877.48; R-sq. = 0.494.