Skip to main content
. 2017 Feb 24;12(2):e0171935. doi: 10.1371/journal.pone.0171935

Table 9. Generalized additive model for the response latencies in experiment 1, using discrimination-based predictors.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -1.5789 0.0278 -56.7847 0.0000
Experiment = 1a -0.0546 0.0278 -1.9627 0.0497
PrimeType = decomposable -0.0178 0.0094 -1.8919 0.0586
B. smooth terms edf Ref.df F-value p-value
tensor product smooth G2L prior by G2L a-diversity by Spelling 11.1763 13.6993 2.2615 0.0054
tensor product smooth L2L prior by L2L l-diversity 4.6038 4.6664 3.4792 0.0047
by-Target random intercepts 24.5204 30.0000 12.2987 0.0000
by-Prime random intercepts 28.2487 103.0000 0.4863 0.0010
by-Previous-Target random intercepts 43.4725 139.0000 0.4600 0.0002
by-Participant factor smooths for Trial 392.9230 1527.0000 2.0703 0.0000

AIC = 1237.009; fREML = 877.48; R-sq. = 0.494.