Table 10. Generalized additive mixed model fitted to the lexical decision latencies of experiment 2 using classical lexical-distributional predictors.
A. parametric coefficients | Estimate | Std. Error | t-value | p-value |
Intercept | -1.7086 | 0.0391 | -43.7313 | < 0.0001 |
PrimeType = decomposable | 0.0466 | 0.0156 | 2.9907 | 0.0028 |
B. smooth terms | edf | Ref.df | F-value | p-value |
tensor product smooth spelling by vocabulary | 4.4080 | 4.4872 | 2.5166 | 0.0425 |
tensor product smooth PC1 by PC2 | 4.9225 | 5.0632 | 4.8111 | 0.0003 |
by-Participant random slopes for PC2 | 19.4850 | 58.0000 | 0.5139 | 0.0058 |
by-Participant factor smooths for Trial | 155.0738 | 527.0000 | 1.6872 | < 0.0001 |
by-Previous-Target random intercepts | 27.6669 | 139.0000 | 0.2548 | 0.0173 |
by-Prime random intercepts | 20.8703 | 106.0000 | 0.2903 | 0.0213 |
by-Target random intercepts | 23.4921 | 33.0000 | 4.4773 | < 0.0001 |
A: parametric coefficients; B: effective degrees of freedom (edf), reference degrees of freedom (Ref.df), F and p values for the non-linear terms, tensor products and random effects. AIC = 726.0; fREML = 474.8; R-sq. = 0.509.