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Abstract

Papillomavirus life cycle is tightly coupled to epithelial cell differentiation, which has hindered the 

investigation of many aspects of papillomavirus biology, including virion assembly. The 

development of in vitro production methods of papillomavirus pseudoviruses, and the production 

of “native” virus in raft cultures have facilitated the study of some aspects of the assembly process. 

In this paper we review the current knowledge of papillomavirus assembly, directions for future 

research, and the implications of these studies on new therapeutic interventions.
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1. Introduction

The main evolutionary driving force for a virus is to infect a cell in order to replicate and 

spread. To accomplish this, viruses need to produce infectious virions, and therefore 

assembly and genome packaging are often highly regulated processes. The capsid assembly 

reaction must be orchestrated from a limited number of virion proteins and result in the 

encapsidation of the viral genome. Viruses with DNA genomes have the specific problem of 

selectively packaging their genomic DNA in the presence of a vast excess of cellular DNA. 

Virus assembly is an important subject, not only for the understanding of the basic molecular 

mechanisms that underlie the process, but also to provide insight into ways that 

pharmacological inhibitors might interrupt the process, thereby inhibiting viral replication 

and transmission. The study of virus assembly has also been valuable in the development of 

gene delivery techniques, since viruses can be used as vectors to selectively package specific 

nucleic acids and efficiently transfer them into cells.

In vivo, papillomavirus replication and assembly is dependent on and integrated with the 

terminal differentiation of stratified squamous epithelium, making the study of the process 

particularly challenging. However, considerable progress had been gained during the past 
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years, primarily by employing simplified in vitro experimental systems. These systems 

include pseudoviruses, papillomavirus capsids that have encapsidated reporter genes in 

monolayer culture, and also production of “native” papillomaviruses in organotypic raft 

cultures. Herein we review the current knowledge on the assembly of papillomaviruses.

2. Papillomavirus structure

Papillomaviruses are small non-enveloped viruses that package an approximately 8kb 

circular dsDNA genome. The viral capsid is composed by only two proteins, L1, the major 

capsid protein and L2, the minor capsid protein.

The T=7 icosahedral viral capsid is primarily comprised of 360 copies of L1 that are 

arranged in 72 pentamers, of which 12 are pentavalently coordinated and 60 pentamers are 

hexavalently coordinated (Baker et al., 1991; Klug and Finch, 1965; Trus et al., 1997). 

Interpentameric disulfide bonds, and also intrapentameric in the case of bovine 

papillomavirus 1 (BPV1), between L1 molecules stabilize the papillomavirus capsids (Buck 

et al., 2005a; Cardone et al., 2014; Conway et al., 2011; Ishii et al., 2003; Li et al., 1998; 

Modis et al., 2002; Sapp et al., 1998; Wolf et al., 2010). The capsid is also stabilized by C-

terminal arms that invade the neighboring pentamers and fold back to the original pentamer 

(Wolf et al., 2010). L1 can self-assemble into virus like particles (VLPs) in the absence of 

L2 (Kirnbauer et al., 1992).

Atomic level structures of L1/L2 capsids have not been generated. However, cryoelectron 

microscopy reconstructions and antibody binding studies suggest that each L1 pentamer 

interacts with a single molecule of L2 (i.e., 72 copies of L2 per virion) (Buck et al., 2008; 

Cardone et al., 2014). L2 fills the central lumen of the L1 pentamer and a stretch of about 60 

N-terminal amino acids may be exposed on the capsid surface (Kawana et al., 2001; Kondo 

et al., 2007; Liu et al., 1997; Roden et al., 1994). Whether this portion of L2 protrudes from 

the central lumen of the pentamer or from elsewhere in the capsid shell is unknown. The 

interactions between the two viral capsid proteins appear to be mostly hydrophobic (Finnen 

et al., 2003; Okun et al., 2001). L2 plays key roles in the infectious entry process (Aydin et 

al., 2014; Day et al., 2004; Holmgren et al., 2005; Unckell et al., 1997) and, for some 

papillomavirus types, for genome packaging (Buck et al., 2004; Holmgren et al., 2005; Zhao 

et al., 1998; Zhou et al., 1993).

3. Papillomavirus replication

Papillomaviruses have a specific tropism for stratified squamous epithelial cells. Viral 

replication is tightly linked to the differentiation of the epithelium and has traditionally been 

divided into two phases: an early phase where replication of the viral genome occurs and a 

late phase where capsid protein production and assembly occurs (Doorbar et al., 2015). To 

establish a persistent infection, papillomavirus must infect the mitotically active basal cell 

layer. In these cells, steady state viral genome replication can occur, but vegetative genome 

replication, characterized by high copy number amplification, only occurs after the daughter 

of a dividing cell has moved away from the basement membrane into the upper layers of the 

epithelium and commenced the differentiation process. Capsid assembly occurs in the more 
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differentiated keratinocytes and virus release is thought to be a passive process dependent on 

nuclear envelope breakdown and desquamation of dying terminally differentiated 

keratinocytes of the outermost layers of the stratified epithelium. Despite the absolute 

dependence on epithelial differentiation for virus production in vivo, most functional studies 

of papillomavirus assembly have been conducted in replicating cultured cells using 

heterologous vectors to express the capsid proteins and, in many cases, to replicate the target 

genome for packaging. Aspects of the assembly process that are controlled by the 

differentiation process cannot be addressed by these systems and may remain to be 

discovered. Differentiation-dependent mechanisms might be address using organotypic 

“raft” cultures (Ryndock et al., 2015).

4. Papillomavirus capsid assembly

Both papillomavirus structural proteins, L1 and L2, contain canonical nuclear localization 

sequences that facilitate translocation of the proteins into the nucleus where assembly occurs 

(Darshan et al., 2004; Rose et al., 1993; Zhou et al., 1991). For most high-risk human 

papillomaviruses (HPVs), L2 expression and nuclear localization in the suprabasal cells 

appears to precede L1 expression (Florin et al., 2002). In contrast, HPV1 L1 seems to be 

expressed and located in the nucleus throughout the epithelium, while L2 was detected only 

in the upper epidermal cell layers (Egawa et al., 2000). For Mus musculus papillomavirus 1 

(MusPV1) L1 is expressed throughout the epithelium in the cytoplasm and only upon L2 

expression in the upper layers it is transported to the nucleus (Handisurya et al., 2013). 

Therefore, in vivo, MusPV1 L2 appears to recruit L1 to the nucleus.

The transport of the L1 proteins of HPV11, 16 and 45 from the cytoplasm into the nucleus 

was shown to depend on karyopherins (Bird et al., 2008; Darshan et al., 2004; Merle et al., 

1999; Nelson et al., 2000; Nelson et al., 2002; Nelson et al., 2003). L1 is imported into the 

nucleus as pentamers (Bird et al., 2008; Florin et al., 2002; Merle et al., 1999; Nelson et al., 

2002), and assembly into capsids only occurs in the nucleus. Karyopherin binding has been 

implicated in inhibiting capsid assembly in the cytoplasm (Bird et al., 2008). Hsp70 family 

members can trigger disassembly of BPV capsids into pentamers (Chromy et al., 2006), 

which may also help prevent premature assembly in the cytoplasm. L2 nuclear localization 

is required for its incorporation into capsids (Becker et al., 2004). Karyopherins and Hsc70 

have been suggested to be involved in the transport of L2 protein into the nucleus (Bordeaux 

et al., 2006; Florin et al., 2004). Hsc70 has also been proposed to play a role in L2 

incorporation into the capsid or genome packaging (Florin et al., 2004). During assembly, 

the interaction between L1 and L2 appears to be regulated by sumoylation of L2, such that 

sumoylation inhibits L1 interactions (Marusic et al., 2010). Under some experimental 

condition, L2 also promotes L1 capsomer assembly into capsids (Ishii et al., 2005). The 

cellular protein nucleophosmin, also interacts with L2 protein to promote the correct 

assembly of infectious capsids, possibly providing a scaffold for the early processes, as it is 

displaced from L2 by L1 expression, but the precise molecular mechanisms involved are not 

understood (Day et al., 2015). Studies of raft-derived virions suggest that the L2 of some 

HPV types, e.g. HPV16 and 45, may be cleaved by furin during virion production in 

differentiating epithelium, rather than during infection, as has been observed for all types of 
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pseudovirion produced in replicating cells that have been examined (Cruz et al., 2015; 

Richards et al., 2006)

The assembly kinetics of purified L1 pentamers into VLPs have been investigated in cell-

free reactions. Investigations involving multi-angle light scattering concluded that the 

assembly reaction has a concentration-dependent lag phase with pentamer dimerization 

being the key nucleating event. This nucleation was followed by rapid sequential addition of 

single pentamers to form the complete VLP (Casini et al., 2004). It has not been possible to 

study the kinetics of intracellular assembly.

Taken together, the findings suggest a general mechanism for papillomavirus assembly 

where (i) papillomavirus genome is replicated to high copy number in the nucleus (ii) L2 

and L1 pentamers are recruited to the nucleus and (iii) the capsid assembles once all 

components are present in the nucleus. The major difference among papillomavirus types 

appears to be in the relative timing of L1 and L2 expression: for some papillomavirus types 

L2 seems to precedes L1 and for others L1 precedes L2. It is unclear why these different 

patterns of L1 and L2 expression have evolved.

After capsid assembly in the nucleus, the redox gradient in the upper layers of the 

differentiating epithelium in raft cultures allows disulfide bond formation between L1 

molecules, leading to capsid maturation (Conway et al., 2009). Based upon studies of 

monolayer culture cell-derived capsids, this maturation is a slow process that does not seem 

to be dependent on L2 incorporation into the capsid or DNA packaging (Buck et al., 2005b). 

Maturation leads to a more compact and stable capsid that is resistant to protease digestion 

(Buck et al., 2005b).

5. Papillomavirus genome packaging

Viral genome incorporation into the papillomavirus capsid is not well understood at present. 

It is interesting to note that, when compared to other viruses, papillomaviruses are rather 

inefficient regarding the length of DNA that can be packaged. Phage P2, for example, has 

icosahedral capsids of 60nm (similar to papillomaviruses), but packages a linear dsDNA of 

about 33kb, which is considerably longer than the 8kb of papillomaviruses. In some dsDNA 

phages, for example phage P22, and for other viral families, such as adenoviruses and 

herpeviruses that have a tightly packaged DNA genome, the nucleic acids are generally 

“injected”, in an ATP-dependent manner, into the viral pro-capsid through a specialized 

portal vertex (Zhang et al., 2012). Other viruses with smaller genomes tend to directly 

assemble the capsid around the viral genome. Examples of this mechanism include SV40 

and Tobacco Mosaic Virus (Butler, 1999; Coca-Prados and Hsu, 1979; Roitman-Shemer et 

al., 2007; Turner et al., 1988).

Most viral genomes contain packaging signals that are recognized by viral proteins during 

assembly to allow for selective encapsidation of the viral nucleic acids. For papillomaviruss 

no such sequence has been identified. Both L1 and L2 have positively charged sequences at 

their N- and/or C-termini that bind DNA, but they do so in a sequence independent manner, 

presumably by ionic interactions with the DNA’s phosphate backbone (El Mehdaoui et al., 
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2000; Li et al., 1997; Touze et al., 2000; Zhou et al., 1994). The only sequence postulated to 

enhance DNA packaging by papillomavirus capsids is nucleotides 1506-1625 of BPV1, 

inclusion of which enhances DNA packaging by BPV1 and HPV6b under specific in vitro 

conditions (Zhao et al., 1999). However, it is well established that papillomaviruses can 

efficiently package a variety of double stranded DNAs entirely unrelated to the 

papillomavirus genome, as long as the genome size of 8kb is not exceeded (Buck et al., 

2004; Kawana et al., 1998; Stauffer et al., 1998), indicating that a specific viral packaging 

sequence is not required for nucleic acid encapsidation, at least in replicating cells. These 

findings imply that a different mechanism must be employed by papillomaviruss in order to 

achieve preferential packaging of their genomes.

A recent in vitro study suggested that papillomavirus genome incorporation may occur 

through a previously unrecognized size discrimination mechanism (Cerqueira et al., 2015). 

The viral capsid appears to undergo repeated rounds of assembly and disassembly in the cell 

nucleus sampling both cellular DNA loops and the viral genome. Consistent with this model, 

gentle lysis of cell nuclei in which L1 and L2 are expressed followed by endonuclease 

treatment, results in the extensive generation of capsids that have incorporated cellular DNA 

fragments of less than 8kb (Cardone et al., 2014). Since under normal physiological 

conditions cellular DNA would be too large to be completely contained within the particle, 

these protocapsids cannot complete the assembly reaction and so they remain unstable. This 

is evident experimentally, as the unstable assembly intermediates are subject to partial 

disassembly and disassociation from the DNA. In contrast, protocapsids that assemble 

around a viral genome-sized DNA can complete the full assembly reaction, leading to the 

formation of a stable virion that is no longer subject to disassembly. The nuclear factors that 

participate in the intracellular assembly and disassembly reactions have not been 

conclusively identified.

6. Papillomavirus-based gene transfer vectors

The studies to develop efficient methods of producing papillomavirus pseudovirions have 

contributed substantially to our understanding of the fundamental aspects of papillomavirus 

assembly outlined above. Conversely, the emerging understanding of papillomavirus 

assembly has also informed the development of papillomavirus pseudoviruses as gene 

transfer vectors. Papillomavirus pseudoviruses have a number of realized and potential 

applications. Most prominently, they have been used to establish in vitro neutralization 

assays for evaluating prophylactic vaccines (Buck et al., 2005a; Day et al., 2012; Pastrana et 

al., 2004). Other applications include their use as critical reagents for mechanistic studies of 

papillomavirus infection in their target tissues in animal models (Day et al., 2010; Johnson et 

al., 2009; Kines et al., 2009; Roberts et al., 2007), as vaccines to generate intraepithelial T 

cell responses in mucosal tissues (Cuburu et al., 2012), and as cytotoxic gene transfer 

vectors for cancer therapy (Kines et al., 2016). These applications have been greatly 

facilitated by the promiscuous papillomavirus packaging characteristic, in that a wide variety 

of plasmids lacking viral sequences can be efficiently packaged (Buck et al., 2005a). 

However, not all plasmids can be packaged to equal efficiency, and it is unclear why some < 

8kb plasmids are poor substrates of packaging even when present at high copy number in L1 

and L2 expressing cells ((Buck et al., 2005a), unpublished observations). The most widely 
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employed system for the generation of high titer pseudovirions involves the use of codon 

modified L1 and L2 genes, thereby eliminating negative regulatory elements that greatly 

limit expression in replicating cells. When the modified capsid genes are expressed under 

the control of strong heterologous promoters, the limiting factor in pseudovirion production 

becomes the number of pseudogenomes that are available for packaging in the nucleus 

(Buck et al., 2005a; Buck and Thompson, 2007; Buck et al., 2005b). Amplification of the 

pseudogenome to high copy number is achieved by inclusion of the SV40 origin of 

replication in the plasmid and production in 293TT cells, which express SV40 large T 

antigen (LT) and small T (ST) antigens. Maturation of the pseudovirions in crude lysates 

under oxidizing conditions is used to assure that stable preparations are produced. Using this 

strategy, titers of at least 1010 can routinely be produced for multiple HPV and animal types. 

However, there is considerable variability across types, and, for unknown reasons, some 

types produce almost no infectious virions, despite good capsid production and 

encapsidation of the pseudogenome (unpublished results).

The use of this strategy to produce pseudovirus for clinical applications could be curtailed 

by the presence of the LT and ST genes in the producer cells. Since pseudovirions of all 

papillomavirus types encapsidate cellular DNA to some extent, it can be predicted that LT 

and LST DNA will be detected in the pseudovirion preparation, if sensitive assays are 

employed. Since LT and ST are oncogenes, their presence in the pseudovirus preparations 

would raise safety concerns. To address this issue, we are in the process of developing 

strategies of producing the pseudovirions in cell-free systems in which high concentrations 

of purified L1/L2 protein and bacterially-derived peudogenome plasmids are used to drive 

the assembly reaction. In the first iteration, it was found that HPV16 L1/L2 proteins could 

generate high titers of peudovirions in the presence of purified bacterial plasmids, a nuclear 

extract and ATP (Cerqueira et al., 2015). In support of the size discrimination of genome 

packaging described above, assembly was efficient even when assembled VLPs were used in 

the reaction because the nuclear extracts were able to induce partial disassembly of the 

particles. Further refinement of this assembly strategy should result in high titer pseudovirus 

preparations that are suitable for clinical trials.

7. Future perspectives

Although some insights have been made into the papillomavirus assembly processes, many 

questions remain unanswered. How capsid assembly is regulated, which cellular factors are 

required for assembly and what is the sequence of events that occur during assembly are 

questions that remain mostly unknown. A complicating issue is that these features may vary 

among papillomavirus types.

The study of papillomavirus assembly has also become more important as the interest in 

papillomavirus capsids as gene delivery vectors has increased. Attractive features of 

papillomavirus pseudovirions in this regard include their ability to package non-viral DNA, 

their in vivo tropism for basal cells of mucosal and cutaneous epithelia and also their 

striking tropism for a wide variety of cancer cells (Kines et al., 2016). Generation of 

papillomavirus pseudovirions under defined cell-free reaction conditions will likely provide 
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both GMP-compatible stocks for clinical applications and also mechanistic insides into 

assembly process.
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