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Abstract

To conduct a patient-specific computational modeling of the aortic valve, 3D aortic valve anatomic 

geometries of an individual patient need to be reconstructed from clinical 3D cardiac images. 

Currently, most of computational studies involve manual heart valve geometry reconstruction and 

manual FE model generation, which is both time-consuming and prone to human errors. A 

seamless computational modeling framework, which can automate this process based on machine 

learning algorithms, is desirable, as it can not only eliminate human errors and ensure the 

consistency of the modeling results, but also allows fast feedback to clinicians and permits a future 

population-based probabilistic analysis of large patient cohorts. In this study, we developed a novel 

computational modeling method to automatically reconstruct the 3D geometries of the aortic valve 

from CT images. The reconstructed valve geometries have built-in mesh correspondence, which 

bridges harmonically for the consequent FE modeling. The proposed method was evaluated by 

comparing the reconstructed geometries from ten patients to those manually created by human 

experts, and a mean discrepancy of 0.69 mm was obtained. Based on these reconstructed 

geometries, FE models of valve leaflets were developed, and aortic valve closure from end systole 

to mid-diastole was simulated for seven patients and validated by comparing the deformed 

geometries to those manually created by human experts, and a mean discrepancy of 1.57 mm was 

obtained. The proposed method offers great potential to streamline the computational modeling 

process and enables the development of a pre-operative planning system for aortic valve disease 

diagnosis and treatment.
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1. INTRODUCTION

Noninvasive cardiac imaging modalities, such as echocardiography, cardiac magnetic 

resonance imaging, and computed tomographic imaging (CT) are now used extensively for 

heart valve disease diagnosis and risk evaluation. Although most valvular disease evaluation 

is performed on two-dimensional images, patient cardiac image data can offer 3D 

volumetric, time-resolved data, allowing the 3D reconstruction of anatomical heart valve 

geometries. When integrated with computational models, such as finite element (FE) 

models, native heart valve function can be investigated, and pre-operative planning tools can 

be developed to assess a particular interventional procedure for individual patients (1).

Computational models (2–9) have been developed to investigate the structural biomechanical 

interaction between the native aortic root and a deployed transcatheter valve during the 

transcatheter aortic valve replacement (TAVR) procedure. One of the limitations of these 

studies is that the development of a 3D aortic valve computational model from 3D clinical 

image data often requires manual annotation software (e.g. Avizo or Mimics), which is 

tedious and time-consuming, preventing fast feedback to clinicians and accurate model 

prediction. More importantly, all current models lack mesh correspondence, i.e., different 

number of nodes and different element connectivity between different patients, preventing 

patient-population based computational analysis. Thus, an image analysis method for 

automatic 3D aortic valve geometry reconstruction with built-in mesh correspondence will 

greatly facilitate computational modeling of the aortic valve.

Currently, most of the studies on automatic cardiac image segmentation and geometry 

reconstruction (10–16) focus on shape estimation of the left and right atriums and ventricles, 

the ventricular outflow tract, and the aorta. There are a few works related to valve shape 

estimation. Zheng et al. (17) developed a method for aorta segmentation and landmark 

detection from 3D C-Arm CT images, which was aimed for 3D visualization during 

transapical aortic valve implantation. Pouch et.al. (18) proposed a method based on 

intensity-based image registration to estimate aortic leaflet shapes from 3D 

echocardiographic images requiring only three landmarks chosen by the user. Ionasec et al. 

(19) proposed a new method for geometry reconstruction of the mitral-aortic complex from 

3D CT images, utilizing a large number of aortic valve shapes (more than 600) manually 

delineated from 3D images to serve as training data. To ensure that the meshes have no 

tangled faces, Palmer et al. (20) developed an aortic root segmentation method with shape 

constraints and mesh regularization. The primary motivations for these aortic valve shape 

reconstruction methods have been for real-time visualization of valve function in the clinical 

setting and measurement of key anatomical parameters such as aortic root diameter, not for 

accurate computational modeling of aortic valve biomechanics.
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The objective of this study was to develop a computational framework for patient-specific 

modeling of the aortic valve (AV). To achieve this goal, we developed a machine learning 

based image analysis method to automatically reconstruct the 3D geometries of the aortic 

valve from clinical 3D CT images, and performed FE analysis using the reconstructed 

geometries. The spatial distribution of the nodes on each aortic valve mesh generated by this 

method, is highly uniform. All the meshes have correspondence between different patients, 

which is desirable for the FE model development process and can facilitate a population-

based probabilistic analysis of the aortic valve biomechanics.

2. METHODS

2.1 Image analysis method for aortic valve shape reconstruction

Figure 1 depicts the overall AV shape reconstruction process starting from a 3D CT image of 

a patient. Briefly, the surface of the aortic root is first obtained via a standard level-set based 

image segmentation algorithm described in detail in (21–23). Given the aortic root surface, 

six landmarks are detected by the landmark detectors (section 2.1.4) developed using 

machine learning techniques and a novel shape dictionary learning (SDL) algorithm to build 

dictionary-based statistical shape models (D-SSM) (section 2.1.3). Then, the leaflet 

attachment curves between the detected landmarks are found by the curve detectors (section 

2.1.5) similar to the landmark detectors. Finally, given the detected leaflet attachment 

curves, the leaflet shape model is fitted to the input image (section 2.1.6) using a novel linear 

coding (LC) based algorithm for shape model fitting, to obtain the leaflet geometry 

represented by single-layer triangle meshes. All the algorithms were implemented in C++ 

and Matlab.

2.1.1 Image data—Full phase cardiac multi-slice CT (MSCT) scans were collected from 

patients at Hartford Hospital (Hartford, CT) (24). Institutional Review Broad approval to 

review de-identified images was obtained for this study. Image data from ten patients (4 

females and 6 males) between the ages of 48 and 85 years, who did not have severe aortic 

stenosis, calcification, or bicuspid aortic valve, were selected for this study. The MSCT 

examination was performed on a GE LightSpeed 64-channel volume computed tomography 

scanner. The spatial resolution of the image data was 0.49×0.49×1.25 mm, and the temporal 

resolution was less than 200 ms depending on the heart rate and pitch. Typically, image data 

encompassing 10 phases over the cardiac cycle were obtained for a patient.

2.1.2 Generation of training set of aortic valve shapes with mesh 
correspondence—The training set of aortic valve shapes was generated in two steps: 1) 

segmentation of aortic valve images and manual generation of aortic valve meshes; and 2) 

automatic remeshing to establish mesh correspondence.

Step 1 Manual Annotation: First, 1) Aortic valve surface geometries were manually 

segmented from CT images by human experts using image visualization software Avizo 

(FEI, Burlington, MA): the aortic root was segmented by using intensity thresholding and 

pixel editing, and the leaflets were segmented by using the brush tool. 2) The segmentation 

results were imported in Hypermesh (Altair Engineering Inc., MI) to generate surface 
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meshes by identifying the leaflet attachment curves and then stitching the meshes of leaflets 

and the mesh of the root surface together. 3) The resulting meshes were superimposed with 

the raw image data to check for potential discrepancies, and 1)&2) were repeated if 

necessary until the meshes reached the desired quality visually judged by the operator. This 

approach is very similar to those (6, 25–27) in the literature. These meshes (Figure 2a&d) do 

not have correspondence between different patients: each mesh has a different number of 

nodes and different element connectivity.

Step 2 Automatic Remeshing: We developed a remeshing method based on cut-planes (28) 

to build aortic valve meshes with correspondence between patients (Figure 2a–c). Briefly, 

the boundary curve of the random leaflet mesh from Step 1 is evenly resampled into a set of 

points (i.e., nodes), and a set of cut-planes are used to cut the leaflet surface to produce a set 

of intersection curves at these points. Each of the cut-planes is perpendicular to the plane 

defined by three anatomical landmarks: two commissure points and one hinge point (Figure 

2c), and pass two points of the resampled boundary curve: one point on the lower boundary 

(left-commissure to hinge to right-commissure) and one point on the upper boundary (left-

commissure to right-commissure). By resampling these intersection curves and triangulating 

the sampled points, a new leaflet mesh is built consistently, and mesh correspondence 

between patients is maintained by the fixed mesh topology.

A similar approach is used for remeshing the aortic root surface, shown in Figure 2d–f. The 

aortic root surface is cut with a set of parallel planes (i.e. cut-planes) spaced at equal 

distances to produce a set of intersection curves. The bottom cut-plane contains the three 

hinges of the three leaflets. To align the cut-planes to the landmarks, the normal vector N of 

a cut-plane is adjusted by N = aN1 + (1 − a)N2, and a = 1 − dist1/(dist1 + dist2) if the cut-

plane is below or level with the plane determined by the three commissures of the three 

leaflets. Here, N1 is the normal vector of the plane determined by the three hinges, N2 is the 

normal vector of the plane determined by the three commissures, dist1 is the distance 

between the cut-plane and the average position of the hinges, and dist2 is the distance 

between the cut-plane and the average position of the commissures. If the cut-plane is above 

the plane determined by the commissures, then its normal vector is equal to N2. By 

resampling these intersection curves and triangulating the sampled points, a new root surface 

mesh is built consistently with mesh correspondence between patients.

2.1.3 Algorithms for building dictionary-based statistical shape model—In this 

study, we developed a novel shape dictionary learning (SDL) algorithm based on sparse 

coding with locality-induced sparseness (29, 30) which is a technique in machine learning, 

to build a dictionary-based statistical shape model (D-SSM) without any assumption of 

shape distributions. The SDL algorithm is used for building landmark detectors (section 

2.1.4) and leaflet attachment curve detectors (section 2.1.5).

A shape dictionary is a collection of different shapes, where a shape d(m) in the dictionary D 
= [d(1), …, d(m), …, d(M)], is a mesh describing the geometry of an object, and can be 

represented by a column vector containing all the point coordinates of the mesh. A D-SSM 

is a dictionary of representative shapes that can well describe a shape distribution. The SDL 

algorithm consists of two parts: Part-1 is to build an initial shape dictionary, and Part-2 is to 
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refine the shape dictionary. Part-1 and Part-2 both use the same training data. The details of 

the SDL algorithm Part-1 and Part-2 are provided in the tables Algorithm-1 and Algorithm-2 

in the appendix, respectively. Here we briefly describe the key concepts of the SDL 

algorithm. Randomly selected training shapes may be used to assemble an initial dictionary; 

however, the shapes in the initial dictionary must exhibit a large range of variation. In some 

cases, the randomly selected training shapes can be very similar to each other, resulting in 

bad initialization. Thus, in Part-1 of the SDL algorithm, training shapes are selected such 

that the average similarity between the selected shapes in the initial dictionary is minimized. 

Starting from the initial shape dictionary, in Part-2 of the SDL algorithm, the dictionary is 

updated such that it can better represent the shape distribution than the initial dictionary. At 

each training cycle, a shape in the dictionary is updated by a weighted linear combination of 

this shape and several other training shapes. Therefore this shape in the dictionary can 

represent not only itself but also some other shapes in the training set, and as a result, the 

whole dictionary can better represent the shape distribution. Note that the SDL algorithm is 

in an on-line style (31), i.e. it uses a small subset of the training shapes at each training 

cycle, which can reduce computer memory usage.

2.1.4 Landmark detection—We built landmark detectors to automatically locate the 6 

anatomical landmarks at 3 commissures and 3 hinges (Figure 1c and Figure 2c), given the 

aortic root surface. To locate the commissures, first, we built a single-commissure detector 

that can find the commissures individually; and then, to improve computational efficiency, 

we built a joint-commissure-detector upon three single-commissure detectors, to find the 

three commissures simultaneously. Hinge detectors were built in the same way. The details 

of commissure detectors are described as follows.

Detecting a single landmark point is equivalent to detecting the local shape of the heart near 

that point. Using the SDL algorithm in section 2.1.3, a dictionary of local shapes around the 

commissures was built. An example of local shapes is given in Figure 3b. For each local 

shape d(m) in the dictionary, a standard logistic-regression based classifier (32) was trained 

by using the image features extracted at the points of that local shape. Training samples of 

image features can be obtained by sampling the image region around the aortic root. Once 

the classifier is trained, given the image features extracted according to the local shape d(m) 

at a candidate point pc, the classifier will output a confidence value hm(pc) which will be 

high if the point pc is near a commissure. The single-commissure detector is a set of such 

classifiers, and it outputs the maximum confidence value at a candidate point pc, i.e., 

max{h1(pc), …, hm(pc), …}. The output hm(pc) of the classifier associated with d(m) is given 

by

(1)
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where , and  is a spatial point, and {λ0, …, λJ} are 

scalar coefficients determined by logistic regression (32, 33). The function  is 

defined as

(2)

Here,  and  are image intensities at two spatial points  and . Recall that 

d(m) is also a mesh composed by some points from the root surface mesh and some points 

from the leaflet meshes as shown in Figure 3(b). If the point  of d(m) is from the root 

surface mesh, then  (i.e.  inside the root) and  where 

 is the mesh normal at point  and ρ is set to 2mm in experiments. If the point  is 

from the leaflet meshes, then  and . σm is the standard deviation 

of local pixel intensities, which is calculated by using the pixel intensities sampled at the 

points . ε is a scalar determined by a brute-force search approach.

A joint-commissure-detector was built to find the three commissure points simultaneously 

for computational efficiency, and it is obtained by simply arranging three single-

commissure-detectors along a circle with three local coordinate systems as shown in Figure 

3a. Given the diameter of the circle (i.e. aortic root diameter) and three candidate points on 

the circle, the joint-commissure-detector outputs the average of the confidence values from 

the three single-commissure-detectors positioned at the candidate points. After scanning the 

root surface with a range of feasible diameters, the joint-commissure-detector will find three 

points with the highest confidence value as the commissure points.

2.1.5 Leaflet attachment curve detection—Once the landmarks (three commissures 

and three hinges) are found, the leaflet-sinus attachment curves (Figure 1d) between these 

landmarks are obtained by evaluating candidate curves on the aortic root surface and 

selecting the best one. The candidate curves are generated by connecting the points on the 

aortic root surface mesh between a commissure point and a nearby hinge point in different 

ways. The optimal curve is then identified by using a point detector similar to the single-

landmark detectors in section 2.1.4. The point detector was built to evaluate the likelihood of 

a point being on the attachment curves. The score of a candidate curve is the sum of the 

detector outputs (confidence values) at individual points of the curve. Between two 

landmarks, the candidate curve with the highest score is selected and then resampled at 

equal intervals to obtain the same number of points as the leaflet attachment curves on the 

leaflet meshes.

2.1.6 Leaflet shape model fitting—Following leaflet attachment curve detection, the 

leaflet shape dictionary (i.e. shape model) is fitted to the input 3D CT image, I, to infer the 
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unknown shape, X, of the leaflets in the input image, using a linear coding (LC) based 

algorithm we developed. The algorithm has four steps.

Step-1: Transform all the shapes in the dictionary to the image space by using thin plate 

spline (TPS) transform (34) according to the detected leaflet attachment curves to obtain a 

transformed dictionary: D ̃ = [d(1), …, d(m), …, d(M)]. Each shape d(m) represents the 

geometry of three leaflets inside the aortic root, and consists of three triangle meshes (Figure 

2c).

Step-2: Find a subset of shapes {d(m1), … d(mk), …, d(mK)} in the transformed dictionary, 

which are the most similar to the unknown shape X, by measuring the similarity defined as:

(3)

Here,  is a point, and K is set to 3 in experiments. 

 is the pixel intensity at point  in the filtered image Ig which is obtained by 

first computing the gradient magnitude image from the input image I, and then performing 

isotropic Gaussian-filtering with sigma equal to 2mm. The rationale is that if d(mk) is similar 

to X, then the image gradient magnitude will be high near each point of d(mk), because in a 

3D CT image, the pixel intensity level of the leaflets is much lower than the pixel intensity 

level of the surrounding blood inside the root.

Step-3: Perform linear coding (LC) to infer the unknown shape by

(4)

with the following constraint on the coefficients: , ck ≥ 0. A brute-force search is 

utilized to obtain the optimal coefficients such that the summation of the image gradient 

magnitudes near X̂ is maximized, i.e., maximizing the objective function E(X̂) defined by

(5)

Here, the shape X̂ is a mesh composed of three meshes of three leaflets, where X̂ = [p1, …, 

pi, …, pL] and pi is a spatial point, L is the total number of points, qi is a point inside the 

blood pool, and qi = pi − pni, ni is the leaflet mesh normal at point pi, ρ is set to 2mm in 

experiments, and I(pi) is the image intensity at point pi. Again, the rationale is that if X̂ is 

close to X, then the image gradient magnitude will be high near each point of X̂, because the 

pixel intensity level of the leaflets is much lower relative to that of the surrounding blood 

pool.
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Step-4: Refine the mesh X̂ by iteratively deforming it locally to the image intensity 

boundary along the mesh normal directions and applying a standard mesh smoothing 

algorithm (28). The resulting deformed X̂ is the reconstructed geometry of the leaflets from 

the input image, represented by three triangle meshes as shown in Figure 1e. Since mesh 

correspondence exists among the shapes in the shape dictionary, and the reconstructed shape 

has the same mesh topology as the shapes in the dictionary, then the reconstructed shape has 

the same mesh correspondence.

2.1.7 Validation of the image analysis method—The 3D CT images of the ten 

patients studied were used for validation of the proposed image analysis method in a leave-

one-out approach (32). Accordingly, 1) 9 patient data were randomly selected to create a 

training set (section 2.1.2). 2) The training set was used to train the algorithms of the image 

analysis method (sections 2.1.3–2.1.6). 3) The image analysis method was applied to the 3D 

image of the remaining patient not included in the training set, to automatically reconstruct 

the AV geometry. 4) The reconstructed geometry was compared to that manually created by 

human experts using the point-to-mesh distance metric (18) to calculate the reconstruction 

error, assuming the manually created meshes as the ground truth. The point-to-mesh distance 

metric between two surface meshes S1 and S2 is the average distance between a point (on 

S1, S2) and a surface (S2, S1). The process was repeated ten times to obtain the mean and 

standard deviation of the reconstruction errors.

2.2 Finite Element (FE) modeling of the aortic valve leaflet deformation

Patient-specific FE modeling of the aortic valve was performed for seven patients to analyze 

in vivo valve closure from end systole to mid diastole. To simply the FE study, the aortic 

root deformation was not simulated, thus only the valve leaflets were considered in the FE 

study. By using the proposed image analysis method, the initial geometries of the valve 

leaflets were reconstructed at the end systole phase, where the leaflets are partially open and 

assumed to be in the stress-free state. The triangle meshes were extruded by a uniform 

thickness of 1 mm, which is typical for human aortic leaflets (35), to obtain AV FE models 

with 6-node “brick” elements (1536 C3D6 elements). Then FE simulations of aortic valve 

closure from end systole to mid diastole were performed.

2.2.1. Aortic valve material modeling—Human AV leaflet material properties were 

adopted from a 80 year old female patient in Martin and Sun (35) for this study, as shown in 

Figure 4. The leaflet mechanical behaviors were modeled with a modified Holzapfel-Gasser-

Ogden material model (36). The strain energy function, W, can be expressed as:

(6)

where C10, C01, k1, k2 and D are material constants determined through fitting of the 

experimental data, Ī1 and Ī4i are the strain invariants, κ is a dispersion parameter, and J is the 
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determinant of the deformation gradient. The fiber orientation was defined through Ī4i = m0i 
· Cm0i, where C is the right Cauchy Green tensor, with m01 = [cosθ, sinθ, 0] and m02 = 

[cosθ, − sinθ, 0], and θ is the angle between the fiber and the circumferential direction. The 

material model was implemented into ABAQUS Explicit 6.13 (SIMULIA, Providence, RI) 

(37).

2.2.2 Loading and boundary conditions—Aortic valve closure was simulated in 

Abaqus Explicit in a two-step analysis. In the first step, nodal displacements were prescribed 

at each leaflet attachment curve (ATC) of the FE model as kinematic boundary conditions to 

describe the motion of the aortic root from end systole to mid diastole. By using the 

proposed image analysis method, the nodal boundary conditions were determined by the 

reconstructed AV geometries. Since mesh correspondence is established by the image 

analysis method, the displacement of each node on the ATC from end systole to mid diastole 

was obtained by measuring the displacement between corresponding nodes at each 

respective phase. In the second step, a mean transvalvular pressure of 95 mmHg was applied 

to the aortic surface of each leaflet to simulate valve closure. The deformed valve leaflet 

geometry and strain values were extracted and analyzed.

2.2.3 FE model validation—FE model validation was performed by comparing the mid-

diastolic deformed valve leaflet geometries from the FE simulations to those manually 

created by human experts, and point-to-mesh distances were computed to quantitatively 

determine the error in the FE predicted end-diastolic geometries. Again, the manually 

created meshes were assumed as the ground truth. Based on the resolution of the CT images 

(0.49×0.49×1.25 mm), a mean error greater than 2 mm was considered to be significant.

3. RESULTS

3.1 Automatic aortic valve shape reconstruction

The proposed image analysis method was evaluated on clinical 3D CT images at the end 

systole phase from ten patients in a leave-one-out approach (section 2.1.7). The 

reconstruction accuracy was measured by comparing the reconstructed shapes to the 

“ground truth” shapes generated manually by human experts using the point-to-mesh 

distance metric (section 2.1.7). We also tried to compare the proposed method with the 

related methods in the literature. However, direct comparisons with those methods are 

problematic because different methods are designed for different applications with different 

imaging modalities. Nonetheless, the results of the related methods are cited directly from 

the corresponding papers.

The landmark detection accuracy achieved with our proposed method is compared with that 

obtained by Zheng et al. (17) in Table-1. The results demonstrate the ability of the landmark 

detectors built upon the local shape dictionaries. The aortic valve shape reconstruction 

accuracy obtained in this study, 0.69±0.13 mm, is compared to that obtained by the method 

proposed by Ionasec et al. (19) in Table-2: the results demonstrate the ability of the linear 

coding based shape inference algorithm. We also tested the proposed method with manually 

obtained landmarks, i.e. landmark detectors were disabled (Proposed* in Table-2).

Liang et al. Page 9

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2 Aortic valve FE model simulation

The deformed FE valve meshes of the seven patients at mid diastole were obtained and 

compared to those manually created by human experts. As reported in Table-3, the average 

point-to-mesh distance was 1.57 mm. The distributions of the distances for five patients with 

less than 2 mm average point-to-mesh distance are plotted in Figure 5. The distances were 

the largest at the regions near the belly (center of the leaflet) and the nodule near the free-

edges.

The strain distributions of the five valve models with average point-to-mesh distance less 

than 2 mm are shown in Figure 6. The stress-strain patterns were different among all the 

patients or among the three leaflets of each individual patient due to the asymmetrical 

geometries. Overall, the maximum principal strain was more uniform in the belly region 

with average values ranging 0.18 to 0.25 during valve closure. Peak strain of 0.34 was 

observed at the commissural regions. Figure 7 shows the valve maximum principal stress 

from the five patients at the same aortic valve closure phase. The stresses were 172 – 354 

kPa at the center of the belly regions, and were highest near the commissural regions, 475 – 

596 kPa. Compressive stresses were observed at regions near the leaflet attachment line and 

at free-edge regions where leaflets were coapted and became slightly corrugated.

4. DISCUSSION

Advantage of the proposed image analysis method

Reconstruction of the aortic valve shape from 3D CT images is challenging because the 

thickness of the leaflets is small, ~1 mm, which is much smaller than 2 pixels in the 3D CT 

images with resolution 0.49×0.49×1.25 mm, and the aortic valve shape varies across 

different patients. Simple algorithms such as intensity thresholding are insufficient for AV 

segmentation, and the level-set based image segmentation algorithms (21, 22) can 

automatically identify the surface of relatively large objects such as the aortic root surface, 

but are not effective for small and thin leaflets. Thus, we developed a novel image analysis 

method with several algorithms assembled in a pipeline (Figure 1). The method utilizes 

machine learning techniques for building shape models and training classifier-based 

detectors to leverage prior knowledge about aortic valve shapes.

In this study, we proposed a SDL algorithm for building a D-SSM of the AV local shapes 

used for classifier-based detectors. These shape dictionaries eliminate the need for feature 

location searching during the training of the classifiers, and therefore only a relatively small 

amount of training data is required, compared to the related methods (17, 19) which used 

hundreds of training images. Once the type of image features is determined (e.g. image 

gradient), image feature selection is used to find the optimal locations in the images to 

extract those image features. In the literature (13, 17, 32, 38), feature selection is usually 

conducted in a brute-force search manner, and a substantial amount of training data is 

required to find the features that are statistically significant. Using our method, since we 

have the dictionaries of the local shapes, we only need to extract image features at the points 

of the local shapes, and image features at other locations are simply irrelevant or 

unnecessary. In this study, the type of features were pre-determined, i.e., handcrafted. 
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Recently, deep learning methods have been successfully used for image segmentation (39–

42), in which features are learned automatically. We will combine deep learning and the D-

SSM in future work.

We proposed a LC based algorithm to infer the unknown shape of the AV from image data 

by using the leaflet shape dictionary. The shape dictionary is spatially transformed to the 

image space according to the detected leaflet attachment curves, and then the transformed 

shapes become more similar to the unknown shape than the original shapes. The transformed 

dictionary represents the shape distribution conditioned on leaflet attachment curves, which 

is better than the original dictionary. Therefore, again, this means only a relatively small 

number of training shapes are required. As pointed out by Palmer et al. (20), mesh self-

intersection could occur during mesh deformation and can be solved by using mesh 

regularization. The LC based algorithm can also ensure that AV meshes have no self-

intersection because a linear combination of meshes of similar shapes will not lead to self-

intersection as long as the individual meshes have no such issue.

The D-SSM approach is very generic for shape modeling. Coupling with the LC based shape 

inference algorithm, the D-SSM approach may be used for geometry reconstruction of other 

objects from medical images. A D-SSM represents the probability distribution of shapes 

from a certain population. The traditional principle component analysis based statistical 

shape model (PCA-SSM) (34, 43) assumes a Gaussian distribution, and therefore may not 

represent irregular distributions in real situations. Based on sparse coding with locality-

induced sparseness (29, 30), D-SSM models do not assume any particular distribution and 

are capable of representing any kind of distribution.

Finite element modeling of the human aortic valve

The built-in mesh correspondence is highly attractive for FE analysis. From one simulation 

to another, only the nodal coordinates and boundary conditions had to be updated: the 

material property, element and surface definitions (for the pressure loading conditions) could 

remain unchanged. The mesh correspondence facilitated the definition of patient-specific 

ATC boundary conditions from end systole to mid diastole. We found that the dynamic 

motion of the aortic roots described by the displacement of the ATC in the model was 

crucial for achieving proper AV closure. Without changing the ATC locations, the leaflets 

were not able to close properly.

The simulation results were consistent with AV FE results presented in the literature. The 

physiological stress-strain distributions of the patient valves during closure were not uniform 

among the three leaflets or within a single leaflet. This finding is consistent with results by 

Grande et al. (44) where they found varying stresses and strains across the leaflet area. They 

reported average leaflet peak stresses of 482 kPa at the belly near the coaptation surfaces for 

all leaflets. In our models, stresses at the belly regions were lower, between 60 – 279 kPa. 

The peak stresses ranging from 121 – 457 kPa were found at the commissure regions in our 

models; however, Grande et al. (44) found peak stress of 537 kPa at the free margin, where 

we found much lower stresses ranging 8 – 80kPa. This discrepancy could be in part due to 

differences in their model (44) versus ours including: the thickness definition - varying 

thickness across valve leaflet versus our uniform thickness assumption, the constitutive 
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models used - linear elastic versus our nonlinear hyperelastic model, and the source of the 

experimental tissue property data used - animal versus our human data. Our finding of 

highest stress at the commissure region was in agreement with the FE study of 10 human AV 

models by Labrosse et al. (27), who consistently found highest stress at the top of the 

commissures with a magnitude of 1,007 ± 719 kPa. The relatively lower stress on the free-

edge region observed in this study was in agreement with a study by Conti et al. (45) where 

the leaflet free-margin zone stresses ranged from 0 – 12 kPa for the non-coronary leaflet and 

between 0 – 42 kPa for the right and left coronary leaflets. The maximum stresses in the 

belly regions of the leaflets of 603 – 759 kPa reported in (45), were consistent with our 

results. However, the minimum stresses reported in (45) were lower compared to in our 

models (<12 kPa versus 20 – 23 kPa). This discrepancy could be due to differences in the 

aortic valve leaflet material property definitions—in (45) the leaflets were prescribed the 

highly compliant response of the porcine aortic valve, whereas the leaflets were prescribed 

the much stiffer response of the aged human aortic valve in this study.

Clinical relevance

This work integrates the automatic extraction of 3D aortic valve geometries from clinical 

image data and the generation of FE models with mesh correspondence, in the development 

of a seamless computational modeling framework for efficient patient-specific AV analyses. 

One potential application of this framework is to model the TAVR deployment process. 

Patient-specific TAVR computational models could be used to investigate the biomechanical 

interaction between the device and the surrounding tissue in order to determine the proper 

TAVR device, sizing, and positioning for an individual patient to maximize the likelihood of 

success. There are several patient-specific TAVR computational models presented in the 

literature (2–7); however, these models were developed without automatic segmentation of 

image data and automatic FE model generation. The clinical image-to-AV model procedure 

developed in this study will be expanded in future studies to include valve calcification and 

surrounding tissues. Ultimately, we hope this procedure could facilitate efficient and 

accurate model prediction, making simulation-based pre-TAVR planning a clinical reality.

Furthermore, the D-SSM developed in this study will enable large population-based 

computational studies. Given the D-SSM model of the aortic valve, a new aortic valve shape 

of a virtual patient can be generated by using the LC algorithm (section 2.1.6) in three steps: 

1) randomly select a few shapes from the dictionary; 2) randomly choose a set of 

coefficients stratifying the constraint associated with Eq.(4); 3) compute the new shape using 

Eq.(4). By sampling from the shape distribution represented by the D-SSM, we can generate 

a large variety of new aortic valve shapes of virtual patients with mesh correspondence 

between these virtual patients, and use these shapes to build computational models and 

perform probabilistic analysis. Such analyses for TAVR, for instance, would provide insight 

into improved TAVR device design, sizing and positioning guidelines, and patient-screening 

criteria.

Limitations

Only one set of human material properties was used in the FE simulations. The in vivo 
material properties of the 7 patients are likely to be different from the material properties 
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that we obtained from the explanted cadaver heart. In this study, the data from an 80 year old 

female patient was used, which might be representative of aged human valve responses. 

Currently there is a lack of databases of human material properties, thus, we cannot even 

have age- and gender- match between the modeled patient and available ex vivo data. In 

addition, we assumed that AVs have homogeneous properties and a uniform thickness. It has 

been shown that AV tissue properties vary at different regions, e.g., between the belly and 

commissure regions (46). Since the current biaxial testing method can only measure material 

properties of a small region (~5 × 5 mm2), more sophisticated testing and modeling tools are 

needed to characterize regional properties of the aortic valve. The CT data used in this study 

had relatively low resolution. However, the proposed methods are valid for input images 

with higher resolution, and would perform even better because the image features would 

have less noise in higher resolution images. In the future work, we will develop algorithms 

to extract thickness information from higher resolution images, and handle calcifications. 

Also, before the proposed methods can be applied for clinical applications, more patient 

image data are needed for training and validation.

5. CONCLUSIONS

We have developed a machine learning based image analysis method to automatically 

reconstruct the 3D geometries of the aortic valve from 3D CT images. The reconstructed 

valve geometries were directly used in FE models to simulate aortic valve closure on a 

patient specific level. The image analysis method is composed of several novel algorithms, 

including the strategy of image feature extraction to build detectors, the SDL algorithm for 

building D-SSM, and the LC based algorithm for shape inference. The proposed method was 

evaluated on clinical 3D CT images, and the results showed a good agreement with human 

experts. We also showed that by accounting for accurate patient-specific geometries, 

dynamic leaflet attachment curve motion, and experimentally derived human tissue 

properties, we were able to predict human aortic valve closure. Since the D-SSM approach is 

very generic, it may also be used for geometry reconstruction of other objects (e.g. the mitral 

valve). The proposed method offers great potential to streamline the computational modeling 

process and enables the development of a pre-operative planning system for valve disease 

diagnosis and treatment.
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APPENDIX

Algorithm-1

SDL Algorithm Part-1 to build an initial dictionary

Repeat the following steps from training cycle 1 to T, and get the output.
Input at the current training cycle t : (Dt−1 and Rt − 1 are empty at t = 1)

A dictionary  from the previous training cycle t − 1

A vector  describing the “experience” of the dictionary
New training data = [X(1), …, X(n), …, X(N)], each X(n) is a shape in the training set
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Start:

1 assemble a candidate-set X̃ = [X̃(1), …, X̃(i), …, X̃(N+Mt−1)]

X(i) = X(i) if  i ≤ N,  and X(i) = dt − 1
(i − N) if  i > N

2 assemble a vector R̃ = [r̃(1), …, r̃(i), …, r̃(N+Mt−1)].

r(i) = 1 if  i ≤ N,  and r(i) = rt − 1
(i − N) if  i > N

3 calculate the similarity s(i, j) between each pair of shapes in the candidate-set X̃

s(i, j) = 0.5exp( − 0.1‖X( j) − T(X(i) | X( j))‖/σ2) + 0.5exp( − 0.1‖X(i) − T(X( j) | X(i))‖/σ2)

T is a linear (similarity) transform. T(X̃(i)|X̃(j)) is the transformed X̃(i) that best matches X̃(j). σ is 
normalization factor to be set in experiments.

4 calculate each membership w(i|j) of X̃(i) related to X̃(j) as

w(i | j) ∝ s(i, j)δ(i, j)

∑i = 1
N + Mt − 1w(i | j) = 1

δ(i, j) =
1, if  X(i)is one of  the K nearest neighbors of  X( j)

0, if  i = j
0, else

Here, K nearest neighbors are defined by similarity. K is 3 in experiments

5 update the “experience” r̃(i) of X̃(i) as

r(i) ar(i) + ∑ j = 1
N + Mt − 1w(i | j)

a is a pre-defined factor to discount previous experience, and 0 ≤ a ≤ 1. The experience r̃(i) is roughly 
proportional to the number of training shapes that are similar to X̃(i)

6 modify the candidate-set X̃:

The similarities {s(i, j)} of all the pairs are sorted from biggest to smallest. In the candidate set X̃, we 
select a pair of shapes with the highest similarity, and remove one of them from the candidate-set. The 
one that is removed, has less experience than the other. We repeat the selection and removal process until 
the number of shapes in the candidate-set decreases to the pre-defined number Mt. (Mt < N + Mt − 1)

Output: The final candidate-set is the updated dictionary .

      The corresponding vector  is from R̃.

Algorithm-2

SDL Algorithm Part-2 to refine the dictionary

Repeat the following steps from training cycle 1 to T, and get the output.
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Input at the current training cycle t :

A dictionary  from the previous training cycle t−1. D0 is the final output of 
the
SDL Algorithm Part-1. M is the number of shapes, and it does not change in SDL Part-2.

A vector  describing the “experience” of the dictionary. R0 = [1, …, 1], i.e., 
every
element is 1.
New training data X = [X(1), …, X(n), …, X(N)], each X(n) is a shape in the training set.
Start:

1 calculate the similarity s(n, m) between each X(n) and each dt − 1
(m)

s(n, m) = 0.5exp( − 0.1‖X(n) − T(dt − 1
(m) | X(n))‖/σ2) + 0.5exp( − 0.1‖dt − 1

(m) − T(X(n) |dt − 1
(m) )‖/σ2)

The above equation is almost the same as the one in the SDL Algorithms Part-1.

2 calculate each membership w(m|n) of dt − 1
(m)

 related to X(n) as

w(m |n) ∝ s(n, m)δ(m, n)

∑m = 1
M w(m |n) = 1

δ(m, n) =
1, if  dt − 1

(m) is one of  the K nearest neighbors of  X(n)

0, if  m = n
0, else

Here, K nearest neighbors are defined by similarity. K is 3 in experiments.

3 calculate the “experience” rt
(m)

 of each dt
(m)

rt
(m) = art − 1

(m) + ∑n = 1
N w(m |n)

a is a pre-defined factor to discount previous experience, and 0 ≤ a ≤ 1. The experience rt
(m)

 is roughly 

proportional to the number of training shapes that are similar to and used to update dt
(m)

4 calculate the shape dt
(m)

 as

dt
(m) = dt − 1

(m) + 1
rt
(m) ∑n = 1

N w(m |n)(T(X(n) |dt − 1
(m) ) − dt − 1

(m) )

Output: The updated dictionary 

      The updated vector 
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Figure 1. 
The shape reconstruction process illustrated by the steps of a) an input 3D CT image 

composed of 2D slices. b) Root surface segmented from the input image. c) Detected 

Landmarks (red dots) on the root surface d) Detected leaflet attachment curves (green 

curves) on the root surface. e) leaflet geometry reconstructed by model fitting. The input 

image a) is used in all the steps from b) to e).
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Figure 2. 
(a) Manually generated meshes of a leaflet and (d) an aortic root surface; automatic 

remeshing achieved by cutting the leaflet (b) and root (e) surfaces using planes and 

resampling the intersection curves to obtain the final meshes of the leaflet (c) and the root 

(f). Three landmark points are used: ①left commissure, ②right commissure, ③hinge. Since 

mesh topology is fixed for all the patients, mesh correspondence is established.
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Figure 3. 
a) Example of the Local Coordinate Systems determined by three candidate points (red). In 

this example, the three candidate points happen to be exactly the same as the commissure 

points; b) A local shape around a commissure, which is composed of the selected mesh-

points (red).
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Figure 4. 
The stress-strain responses of aortic leaflets obtained from biaxial tests of a human cadaver 

heart. The table displays the material parameters and the goodness of fit (R2) obtained from 

model fitting.
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Figure 5. 
3D representation of the point-to-mesh distance errors between the deformed FE meshes and 

those manually created by human experts for five patients. (Unit: mm)
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Figure 6. 
Maximum principal strain distributions in the circumferential (top) and radial (bottom) 

directions during diastole from five patients.

Liang et al. Page 24

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Maximum principal stress distributions during diastole from five patients.
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Table-1

Landmark Detection Accuracy (unit: mm)

Method Modality Resolution Hinge Error Commissure Error

Proposed CT 0.49×0.49×1.25 1.90±1.41 2.00±1.43

Zheng et. al
2012 (17)

C-arm CT 0.7~0.84 isotropic 2.09±1.18 2.17±1.31
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Table-2

Shape Reconstruction Accuracy (unit: mm)

Method CT Resolution valve Landmark Error

Proposed
0.49×0.49×1.25 aortic

auto-detect 0.69±0.13

Proposed* manual 0.65±0.11

Ionasec et
al. 2010 (19)

in slice: 0.28~1
thickness: 0.4~2

aortic & mitral auto-detect 1.36±0.93
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Table-3

Accuracy of Deformed FE geometries

Patient ID Age Error (mm)

1 75 1.25±0.78

2 85 1.52±1.08

3 61 1.35±1.02

4 68 1.33±0.82

5 73 2.03±1.52

6 73 1.43±1.01

7 69 2.09±1.50
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