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Phenotypic plasticity is expected to play a major adaptive role in the

response of species to ocean acidification (OA), by providing broader toler-

ances to changes in pCO2 conditions. However, tolerances and sensitivities

to future OA may differ among populations within a species because of

their particular environmental context and genetic backgrounds. Here,

using the climatic variability hypothesis (CVH), we explored this conceptual

framework in populations of the sea urchin Loxechinus albus across natural

fluctuating pCO2/pH environments. Although elevated pCO2 affected the

morphology, physiology, development and survival of sea urchin larvae,

the magnitude of these effects differed among populations. These differences

were consistent with the predictions of the CVH showing greater tolerance

to OA in populations experiencing greater local variation in seawater

pCO2/pH. Considering geographical differences in plasticity, tolerances

and sensitivities to increased pCO2 will provide more accurate predictions

for species responses to future OA.
1. Introduction
In an era of rapid environmental changes such as ocean acidification (OA), there

is a pressing need to understand how organisms will respond to greater and

less predictable variations in environmental conditions [1]. Intuitively, pheno-

typic plasticity seems a suitable strategy to cope with these changes by means

of behavioural, physiological, life-history and morphological adjustments [2].

These plastic responses have long been recognized as important mechanisms

by which organisms maximize fitness in heterogeneous environments [3], facili-

tating the persistence of natural populations by providing broader tolerances to

environmental conditions [4]. Despite this central role of phenotypic plasticity,

standard models aimed to predict the effect of climatic change on species persist-

ence and distribution (i.e. the climate envelope models) do not incorporate

differences in plastic responses among populations [5]. Geographical differences

in plasticity may reflect contrasting selective pressures resulting from habitats

with different environmental heterogeneity [6]. In this context, the climatic varia-

bility hypothesis (CVH) offers a powerful conceptual framework with which to

view the impact of future climate change (e.g. OA) on species persistence, by link-

ing physiology, climate and biogeographic distributions [5]. The CVH states that

in more variable environments, organisms should have broader ranges of
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environmental tolerance and/or greater physiological flexibil-

ities that enable them to cope with fluctuating environmental

conditions [7].

Environmental variability is an intrinsic characteristic of

coastal ecosystems along the southern Pacific coast of South

America, where spatio-temporal changes in CO2, pH, temp-

erature, nutrients and other factors are the result of

dynamic processes such as upwellings, riverine discharges

and biological activity [8]. In this region, populations of

marine organisms are exposed to natural variability in pH/

pCO2 with fluctuating CO2-supersaturated surface waters

almost year-round in the northern section (188 S–308 S),

seasonal CO2-supersaturated waters southward (308 S–398 S)

and CO2-undersaturated surface waters in the southernmost

section (more than 428 S) [9]. Like in other coastal regions,

this natural variability can be far greater in magnitude than

the predicted change due to OA [10], and may have prompted

the evolution of a broad range of mechanisms by which coastal

organisms can maintain the homeostasis for biological pro-

cesses (e.g. calcification) [11]. Homeostatic capacity and

tolerances to CO2/pH changes are known to differ across geo-

graphical regions [12], highlighting the importance of this

component in the understanding of species susceptibilities to

future OA. In order to test the CVH, we explored morpho-

physiological and developmental responses to elevated

pCO2, in natural populations of a keystone species of the

Pacific coast of Chile, the sea urchin Loxechinus albus. We

predict that populations experiencing greater local variation

in CO2/pH (i.e. continuous and seasonal upwelling sub-

regions) will be less susceptible to OA than populations

from less variable CO2/pH environments.
2. Material and methods
Adult sea urchins were collected from nine localities along

the upwelling system and fjords of the Pacific coast of Chile,

spanning approximately 4500 km (electronic supplementary

material, figure S1). Animals were maintained in flowing

seawater aquaria (13–148C) and fed ad libitum with kelp until

experiments. Gametes were obtained by standard methods [13]

within 2–3 days after collection. From each locality, 20 indepen-

dent crosses of a single male with pooled eggs of three females

were developed to avoid male–female incompatibility. Eggs

were fertilized using filtered (0.1 mm) seawater at ambient

conditions (138C and 390 matm pCO2) and distributed in the

experimental pCO2 treatments (current global: 390 matm and

projected OA: 1200 matm [10,14]) with controlled temperature

(13–148C) at a concentration of approximately 0.7 embryos

ml21. Each cross was cultured separately in two replicate buckets

for each treatment, in which the seawater carbonate chemistry

was maintained using a semi-automatic flow-through CO2-

mixing system [15], modified following [16] (electronic

supplementary material, table S1). Embryos were sampled daily

to record developmental progression (DP) and survival until

early pluteus (4 arms, 80–84 h) when physiological (metabolic

rate (MR) by oxygen uptake-VO2) and morphometric (total

larval length and postoral arm length) analyses were performed

(see the electronic supplementary material). Traits were analysed

using linear mixed models in the ‘lme4’ package of R v.3.3 (R

Core Team, 2016), with CO2 treatment and subregion as fixed fac-

tors and locality as random factor. Significance tests were

performed with the ‘lmerTest’ package. Post hoc comparisons

for mixed effects models were done with the ‘multcomp’ and

‘lsmeans’ packages. DP curves were fitted and analysed with

GraphPad Prism software (GraphPad, San Diego, CA, USA).
3. Results
There were significant effects of high pCO2 on total larval

length (TL: F1,348 ¼ 32.4, p , 0.05), postoral arm length

(POL: F1,348 ¼ 221.7, p , 0.05), size-corrected MR (F1,348 ¼

35.8, p , 0.05), DP (F1,1792 ¼ 11.35, p , 0.05) and survival

(F1,348 ¼ 494.9, p , 0.05) of L. albus. These effects varied

among subregions (significant interaction) for all of the

morpho-physiological (X2
LRT . 15, p , 0.05) and develop-

mental traits (electronic supplementary material, table S2).

Although POL, survival and DP were significantly affected

(F2,348 ¼ 9.03, F2,348 ¼ 33.1 and F20,1776 ¼ 66.2; p , 0.05) by

elevated pCO2 in populations from the three subregions

(figures 1 and 2), the major negative effects were detected

in those within the CO2-undersaturated subregion (post hoc

tratio , 212, p , 0.05). These three populations were the

only ones with negative effects of high pCO2 on TL and

MR (post hoc tratio ¼ 26.5 and 24.4, respectively, p , 0.05;

figure 1a). Under low pCO2 conditions, most of the pheno-

typic traits did not differ among populations and subregions

(TL: F2,177 ¼ 1.08, p ¼ 0.34; POL: F2,177 ¼ 1.12, p ¼ 0.32; MR:

F2,177 ¼ 1.92, p ¼ 0.15; survival: F2,177 ¼ 2.23, p ¼ 0.11; figures 1

and 2). However, DP differed geographically (F8,864 ¼ 6.634,

p , 0.05; figure 2), showing a faster rate in the southernmost

population (figures 1 and 2a).
4. Discussion
This study highlights the role of naturally fluctuating pCO2/

pH environments in determining geographical differences in

phenotypic responses to projected OA. Although elevated

pCO2 affected larval morphology, physiology, development

and survival, the magnitude of these effects differed among

the three main subregions. The lack of clinal trends in pheno-

typic responses to simulated OA suggests that geographical

differences in average pCO2 are not driving differences in

tolerances among sea urchin populations. Instead, phenotypic

differences in L. albus were consistent with the predictions of

the CVH, showing greater tolerance to OA in populations

experiencing greater local variation in seawater CO2/pH

[7,17]. Total larval length, postoral arm length (a proxy of

larval calcification [18]), DP and survival were less affected

(approx. 3% change) in populations within the CO2-supersatu-

rated subregions (i.e. continuous and seasonal; 18–398 S) than

in populations from the CO2-undersaturated subregion

(approx. 9% change; more than 408 S). This geographical

pattern of phenotypic responses may result from spatial differ-

ences in OA-induced energetic costs for maintenance, growth

and survival under elevated pCO2 conditions [19]. In fact,

larval MR was only affected by acidified seawater in popu-

lations within the CO2-undersaturated subregion, supporting

the idea that changes in energy allocation can be the main dri-

vers of the negative effects of OA in L. albus [18,19]. Under

present-day pCO2 conditions, larvae of L. albus showed similar

morpho-physiological characteristics among populations.

Nonetheless, the faster growth rate observed in the southern-

most population is likely due to the rearing temperature,

which was slightly higher (approx. 28C) than the local

conditions during its spawning/growing season (118C) [13].

From a theoretical perspective, geographical differences

in tolerances and sensitivities to high pCO2 may reflect

contrasting selective pressures along the spatial distribution

of L. albus [6]. Within the CO2-supersaturated subregions,
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local selection may have promoted highly plastic phenotypes

with broad tolerance to pH variation [20], and greater fitness

(e.g. survival) under high pCO2 conditions [21] in comparison

with phenotypes from the CO2-undersaturated subregion.

Similar geographical differences in performance and fitness
have been documented in other marine species along upwel-

ling systems (e.g. [12,22]), suggesting that regional differences

in carbonate chemistry may have acted as selective pressures

maintaining phenotypic and genetic variation necessary for

adaptive responses to changing pH [21,22]. Although gene
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flow can impede the adaptive divergence in populations of

L. albus [20], local adaptation may still occur if phenotype-specific

mortality occurs after larval dispersal [23].

In a projected OA scenario, the stronger negative effects

on larval growth and developmental dynamics in popu-

lations from the CO2-undersaturated region can lead to

prolonged pelagic larval duration, increasing the suscepti-

bility to predation and reducing the number of settlers

due to the high mortality in the plankton [18]. For these

populations, greater shifts in skeletal morphology caused

by OA may influence larval feeding and their ability to

disperse [24], affecting the energy transfer across trophic

levels and potentially influencing population dynamics

and predator–prey interactions in marine food webs [14].

In conclusion, our study reinforces the importance of con-

sidering geographical differences in plasticity, tolerances and
sensitivities to increased pCO2 for predicting species responses

to future OA.
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