Skip to main content
. 2017 Feb 27;11:80. doi: 10.3389/fnins.2017.00080

Figure 3.

Figure 3

Dynamics between available energy and total activity of the network. Arrows shows how the system will likely move at each point (the gradient of the system). As we increase the energy requirement re, we move from a state of noisy independent points to a more classic limit cycle. We also observe notable cases: (A) when re = 0γ there is no consumption of energy at all, (B,C) middle ranges, and (D) when re is high enough, the system reaches the 0 activity level thus breaking the cycle's dynamics.