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In this letter, the authors propose a new entropy measure for analysis of time series. This measure is termed as the state space correlation
entropy (SSCE). The state space reconstruction is used to evaluate the embedding vectors of a time series. The SSCE is computed from
the probability of the correlations of the embedding vectors. The performance of SSCE measure is evaluated using both synthetic and real
valued signals. The experimental results reveal that, the proposed SSCE measure along with SVM classifier have sensitivity value of
91.60%, which is higher than the performance of both sample entropy and permutation entropy features for detection of shockable
ventricular arrhythmia.
1. Introduction: Entropy is a powerful tool to measure the
dynamic characteristics of a signal or time series data [1]. The
regularity of a time series data is assessed using entropy measures
[2–4]. If the time series data is regular, then it has lower entropy
value. The sample entropy (SE) and the permutation entropy (PE)
measures have been widely used to assess irregularity in
electrocardiogram (ECG), heart rate and electroencephalogram
(EEG) signals [5–8]. These entropy measures are evaluated based
on the state space reconstruction of time series data [2–4]. The
SE and the PE measures have some limitations to quantify
irregularity or randomness in a signal or time series data [1]. The
SE is not suitable for longer duration signals, as it requires more
computations for real time implementation. The PE is
computationally faster than SE, but it does not consider the
amplitude variations in a time series. Therefore, new entropy
measures are required for time series by exploiting correlations
and amplitude variations.

The information associated in a time series data is divided in the
embedded vectors [2]. The regularity of the patterns in a time series
can be exploited based on the correlation of the embedded vectors.
In this letter, we introduce the state space correlation entropy
(SSCE) as a new measure for analysis of time series data. The ef-
fectiveness of the proposed SSCE measure is verified using real
valued signals and synthetic signals. The rest of this letter is orga-
nised as follows. In Section 2, the proposed SSCE measure is
defined. The results and discussion are presented in Section
3. Finally, the conclusion of this letter is drawn in Section 4.

2. State space correlation entropy: The univariate signal or time
series data, x [ RN is given by

x = [x(1), x(2), . . . , x(N )] (1)

The algorithm for evaluation of SSCE measure includes five steps.

(i) State space reconstruction: In this step, the (N − m) embedded
vectors from the time series data (x) are evaluated. The ith embed-
ded vector is given by

ui = [x(i), x(i+ 1), . . . , x(i+ m− 1)] (2)

where ui [ Rm, 1 ≤ i ≤ N − m and m is the dimension of each em-
bedded vector.
(ii) State space covariance matrix evaluation: The (N − m) embed-
ded vectors are arranged to form state space matrix. This matrix is
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defined by

Y = [u1, u2, . . . , uN−m] (3)

The dimension of the state space matrix is m× (N − m). The state
space covariance matrix is defined as

C = YTY (4)

(iii) Correlation vector evaluation: The state space covariance
matrix captures the correlations of the embedded vectors of time
series. The upper triangular and the lower triangular elements of
the matrix (C) are identical. The diagonal elements of ‘C’ matrix
capture the autocorrelation of the embedded vectors. In this work,
the upper triangular elements of the state space covariance matrix
are extracted. The correlation vector (z) is formulated by using
the upper triangular elements of the state space covariance matrix.
(iv) Probability evaluation: The histogram of the correlation vector
is evaluated using number of bins as K = 10. Then, the probability
of each bin is evaluated based on the normalisation of the histogram
of the correlation vector. The probability of kth bin is defined as

Pk =
nk
n

(5)

where nk is the number of elements in kth bin and 1 ≤ k ≤ 10. ‘n’ is
the total number of elements in correlation vector.
(v) SSCE Evaluation: The SSCE is defined as

SSCE = −
∑K

k=1

Pk log2Pk (6)

The dimension of embedded vector is the important parameter for
evaluation of SSCE. If m is small, then the number of embedded
vectors of the time series are high. In such scenario, the temporal
variations in the time series may not be perfectly detected [1]. In
this study, m = 5 is considered for analysis of real valued and syn-
thetic signals.

3. Results and discussion: The performance of the proposed SSCE
measure is evaluated using ECG, EEG, speech and synthetic
signals. The ECG signals from Creighton University ventricular
tachy-arrhythmia and MIT-BIH malignant ventricular arrhythmia
are used in this work [9, 10]. The sampling frequency of each
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Fig. 1 Within-class variations (boxplot) of SSCE measure for synthetic,
EEG, ECG and speech signals of different classes
a Within-class variations of SSCE for different noise time series
b Within-class variations of SSCE for different emotion class in speech
signals (A-Anger, AN-Anxiety, B-Boredom, D-Disgust, H- Happiness,
N-Neutral and S-Sadness)
c Within-class variations of SSCE for seizure and non-seizure classes using
EEG signals
d Within-class variations of SSCE for shockable ventricular arrhythmia
(SVA) and non-shockable ventricular arrhythmia (NSVA) classes using
ECG signals
ECG signal is 250 Hz. In this study, the ECG signals are segmented
into frames using a window of size 8 s (2000 samples). The rapid
ventricular tachycardia and ventricular fibrillation are considered
as shockable ventricular arrhythmia (VA) class [6, 11]. Similarly,
for non-shockable VA class, the ventricular ectopic beats,
ventricular escape rhythm and normal sinus rhythm are
considered [12]. The EEG signals from seizure and non-seizure
classes are taken from a publicly available database [13]. The
sampling frequency of each EEG signal is 173.61 Hz. Here, 512
samples of each EEG signal from seizure and non-seizure classes
are considered. The speech signals for different emotion classes
(anger, anxiety, boredom, disgusted, happiness and sadness) are
taken from EMO-DB database [14]. The sampling frequency of
each speech signal is 16 KHz. In this work, the speech signal for
each sentence is divided into frames of size 20 ms
(20× 16 = 320 samples). The synthetic signals such as white
noise, pink noise, red noise, blue noise and violet noise data are
considered [1].
Table 1 μ ± σ values of SE, PE and SSCE for different classes

Signals Classes SE

EEG seizure 0.34+ 0.13
non-seizure 0.98+ 0.25

ECG SVA 0.14+ 0.02
NVA 0.08+ 0.02

speech neutral 0.50+ 0.31
anger 0.37+ 0.18
anxiety 0.66+ 0.55
boredom 0.39+ 0.28
disgust 0.55+ 0.35

happiness 0.34+ 0.28
sadness 0.41+ 0.16
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The SSCE measure is evaluated for EEG, ECG, speech and syn-
thetic signals. Fig. 1 shows the within-class variations (boxplot) of
SSCE measure for synthetic, EEG, ECG and speech signals of dif-
ferent classes. It is observed that, the mean and the standard devi-
ation values of SSCE for white noise, pink noise, red noise, blue
noise and violet noise time series are 3.16+ 0.08, 3.21+ 0.05,
3.31+ 0.03, 3.29+ 0.02 and 3.23+ 0.05. The white noise time
series is regular than other noises [1]. This may be the reason for
lower mean value of SSCE in white noise time series. The mean
and the standard deviation values of SE, PE and SSCE measures
for different emotion classes are shown in Table 1. It is evident
that, the mean value of SSCE for anger class is higher than other
classes of speech signal. The intensity of anger class is higher
than those of the other emotional classes [15]. Since, the proposed
entropy measure is related to the signal intensity (amplitude), the
anger emotion have higher SSCE value than other emotion
classes in speech signal. From Table 1, it is also observed that for
seizure class the SSCE measure has higher mean value compared
with non-seizure class. The PE and the SE have lower mean
values for seizure class. The dynamic complexity of the neural ac-
tivity is simpler in seizure class compared with non-seizure class
[16, 17]. The SSCE measure only captures the correlations of the
embedded vectors in the state space of time series. If the embedded
vectors of a time series data are similar, then the correlation prob-
ability is high. For high correlation probability, the SSCE has less
value. The probability density function (PDF) plot of SSCE for
seizure and non-seizure classes are shown in Fig. 2. It is evident
that, the PDF characteristics of SSCE measure is different for
seizure and non-seizure cases. The probability value at fifth bin is
higher for non-seizure class compared with seizure class. This
may be the reason for higher mean value of SSCE measure for
seizure class.

The mean (m) and the standard deviation (s) values of SE, PE
and proposed SSCE measures for shockable VA (SVA) and non-
shockable VA (NSVA) classes are also shown in Table 1. It is
observed that, the mean value of SSCE is higher in shockable
VA class compared with non-shockable VA class. The PE has a
lower mean value for the shockable VA class. The abnormal pat-
terns (other than normal heart rhythm) are observed in shockable
VA [6]. The beat-to-beat variations in ECG are higher for normal
heart rhythm compared with shockable VA case [6]. Due to this
reason, the mean value of SSCE measure is high for shockable
VA class. The statistical significance of PE, SE and SSCE measures
for classification of ECG signals are evaluated using t-test [1]. It is
observed that, the p-values of PE, SE and SSCE are less than 0.001
and all these features are statistically significant for the detection of
shockable VA from ECG. The support vector machine (SVM)
model is used to classify the SSCE, the PE and the SE features of
ECG episodes into shockable VA and non-shockable VA classes
[11]. In this study, the SE, the PE and the SSCE features are eval-
uated from 526 shockable VA and 678 non-shockable VA ECG
PE SSCE p-value

0.67+ 0.07 1.72+ 0.46 < 0.001
0.84+ 0.05 1.60+ 0.36
0.47+ 0.08 1.86+ 0.36 < 0.001
0.64+ 0.11 0.62+ 0.43
0.64+ 0.11 1.71+ 0.46 < 0.001
0.77+ 0.10 2.04+ 0.59
0.70+ 0.13 1.96+ 0.60
0.63+ 0.13 1.76+ 0.52
0.70+ 0.14 1.90+ 0.46
0.69+ 0.13 1.98+ 0.74
0.65+ 0.16 1.45+ 0.45
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Table 2 Performance of SVM classifier

Features Accuracy, % Sensitivity, % Specificity, %

SE 92.08 88.66 97.77
PE 80.01 81.29 78.21
SSCE 93.75 91.09 97.87

Fig. 2 PDF plot of SSCE measure for seizure and non-seizure classes

Fig. 3 Variations of SSCE and SE measures with the dimension of
embedded vector (m)
a Variation of SSCE with dimension of embedded vector
b Variation of SE with dimension of embedded vector
episodes. The 80% ECG instances are used for training of the SVM
classifier and the remaining 20% (205 number of ECG feature
instances) are considered for testing. The parameters of SVM
used in this work are the regularisation parameter as C = 0.05 and
the standard deviation of the radial basis function (RBF) kernel as
s = 0.1. The accuracy, the sensitivity and the specificity values
of the SVM classifier are shown in Table 2. It is observed that,
the accuracy, the sensitivity and specificity values of SVM classifier
with proposed SSCE features are 93.33, 91.60 and 95.87%, respect-
ively. The accuracy and the sensitivity values of SVM classifier
with proposed SSCE features is higher than the performance of
PE and SE features. In this work, for SE features, the number of
true positives (TPs), true negatives (TNs), false negatives (FNs)
and false positives (FPs) are 88, 133, 2 and 17 using the SVM clas-
sifier and SSCE features with number of bins as K = 10. Similarly,
for SVM classifier with SE features, the number of TPs, TNs, FNs
and FPs are 93, 131, 4 and 12, respectively. The specificity is eval-
uated based on the number of TN and FP episodes [7]. The number
of TNs for SE features are higher than SSCE features using SVM
classifier. The variation of the number of bins (K) of SSCE
measure with accuracy, sensitivity and specificity values for detec-
tion of shockable VA is shown in Table 3. For SSCE features with
K = 14, the specificity value of SVM is higher than the performance
of SE features. The number of bins equal to 14 is found to be the
optimal parameter for SSCE for detection of shockable VA from
ECG. The input parameter of both SSCE and SE measures is the
dimension of embedded vector. The variations of SSCE and SE
Table 3 Performance of SVM using SSCE features with different bins

Bins Accuracy, % Sensitivity, % Specificity, %

8 92.08 90.80 93.87
10 93.33 91.60 95.87
12 90 88.27 92.63
14 93.75 91.09 97.87
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measures with the dimension of embedded vector (m) are shown
in Figs. 3a and b, respectively. It is evident that, for shockable
VA (SVA) and non-shockable VA (NVA) classes, the mean value
of SSCE remains constant by varying the embedded dimension.
For non-shockable VA case, there is not much variation in the
mean values of SE with respect to the embedded dimension.
However, for shockable VA case, the mean value of SE slightly
degraded with an increase in the dimension of embedded vector.
There is not much variation in the accuracy, sensitivity and specifi-
city values of SVM by changing the dimension of the embedded
vectors for SSCE and SE measures. The performance of SE, PE
and SSCE measures is also evaluated using multiclass SVM classi-
fier for classification of stress speech. It is observed that, the overall
accuracy values for multiclass SVM using SE, PE and SSCE fea-
tures are obtained as 57.32, 60.43 and 61.76%, respectively. For
boredom and sadness classes, the accuracy values of SVM are
high using SSCE features compared with SE and PE features.
The proposed SSCE measure is implemented in MATLAB 2010
with a desktop computer of 4 GB RAM. The simulation times for
evaluation of SE, PE and SSCE measures for an EEG signal with
512 samples are 0.04, 0.05 and 0.02 s, respectively. For an ECG
signal with 2000 samples, the simulation times for evaluation of
SE, PE and SSCE features are 0.32, 0.17 and 0.28 s, respectively.
The above observations infer that, the proposed SSCE measure is
effective for analysis of various physiological signals.

4. Conclusion: In this letter, a new entropy measure has been
proposed to quantify regularity in a time-series data. The measure
is defined as the SSCE. The effectiveness of the proposed
entropy measure has been evaluated using ECG, EEG, speech
and synthetic signals. The proposed SSCE measure has better
performance for detection of shockable VA from ECG signal than
SE and PE measures. In future, the SSCE measure may be used
for detection of other cardiac ailments from ECG and for
prediction of epileptic seizure from EEG.
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