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Abstract

Diverse molecular mechanisms that confer acquired resistance to EGFR tyrosine kinase inhibitors 

(TKIs) in lung cancers with sensitive EGFR mutations have been reported. However, it is not 

realistic to analyze for all these mechanisms at the time of resistance in clinical practice and 

establish adequate treatment targeting these numerous resistance mechanisms. Therefore, we 

believe that we should move our research focus from the exploration of “established” diverse 

resistance mechanisms to the elucidation of molecular mechanisms that enable cancer cells to 

remain alive at the early phase of the treatment. Here in this review, we summarize up-to-date 

molecular mechanisms that maintain residual tumor cells against EGFR TKI monotherapy in lung 

cancers with EGFR mutations. We classified these mechanisms into three categories. The first is a 

pre-existing minor subpopulation with a resistance mechanism such as a pretreatment T790M 

mutation that can be detected by highly sensitivity methods. The second is the reversible drug-

tolerant state that is often observed in cell line models and accounts for the lack of complete 

response and continued survival of cells exposed to EGFR TKIs in patients. And the last is the role 

of the microenvironment, including survival signaling from fibroblasts or dying cancer cells and 

the role of poor vascularization. Primary double-strike cancer therapy, or even initial multiple-

strike therapy, to cancer cells that cotarget EGFR and survival mechanism(s) simultaneously 

would be a promising strategy to improve the outcomes of patients with EGFR mutations.
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On the basis of data from six phase III trials that compared gefitinib,1,2 erlotinib,3,4 or 

afatinib5,6 with chemotherapy as initial treatment of patients with advanced NSCLC with 

sensitive EGFR mutations (exon 19 deletion or L858R mutation), EGFR tyrosine kinase 

inhibitor (TKI) monotherapy has become the standard frontline treatment for these 

patients.7–9 However, acquisition of resistance to these EGFR TKIs at a median of 9 to 13 

months is inevitable, thus restricting the improvement of patients’ outcomes. Despite the fact 

that almost all cancer cells in these patients harbor “sensitive” EGFR mutations10,11 and 

most patients have tumor shrinkage, complete responses are rare and all patients progress, 

indicating that a large number of cancer cells survive with the inevitable acquired resistance.

To understand and ultimately overcome the molecular mechanisms underlying the acquired 

resistance, a number of studies analyzed tissue specimens obtained from patients in whom 

acquired resistance developed.12–17 Analyses of cell line models or xenograft models of 

development of acquired resistance against chronic exposure to these drugs have also shed 

light on mechanisms of acquired resistance.18–23

Resistance mechanism–based second-line treatment would be one of a number of reasonable 

treatment strategies to further improve patients’ outcomes. However, our experience with the 

HCC827 lung adenocarcinoma cell line model24 indicates that cancer cells are flexible 

enough to always find a way to survive. Therefore, we believe that we should move our 

research focus from the exploration of “established” diverse resistance mechanisms to the 

elucidation of molecular mechanisms that enable cancer cells to remain alive at the early 

phase of the treatment (mechanisms that allow survival of residual tumor cells25). Upfront 

polytherapy that cotargets residual tumor cells may improve treatment outcomes, as shown 

in highly active antiretroviral therapy, a combination of antiretroviral agents with different 

mechanisms of action against highly flexible human immunodeficiency virus.26 Highly 

active antiretroviral therapy has changed a fatal disease, acquired immunodeficiency 

syndrome, into a chronic disorder in developed countries. Similar strategies involving a 

combination of agents with different mechanisms of action to prevent the emergence of 

resistance have also been applied in the treatment of tuberculosis27 and hepatitis C virus.28

Here in this review, we summarize up-to-date molecular mechanisms that allow survival in 

the presence of EGFR TKI monotherapy in lung cancers with EGFR mutations. As shown in 

Figure 1, we classified these mechanisms into three categories, including a preexisting minor 

subpopulation with a resistance mechanism (Fig. 1A), a reversible drug-tolerant state (Fig. 

1B), and the microenvironment (Fig. 1C and D).

Preexisting Minor Resistant Subpopulation

The evidence of a preexistent minor subpopulation with T790M mutation12 has been 

reported since 2006,29 with high-sensitivity methods used to detect this resistance 
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mutation.30–34 Patients with the scant T790M mutation should be strictly distinguished from 

rare patients with double mutations (an activating EGFR mutation together with the 

abundant T790M mutation that is detectable in routine clinical molecular testing35), and 

some of them carry T790M mutation as germline mutations.36–38 A recent ultrasensitive 

detection study in which droplet digital polymerase chain reaction was used to identify 

T790M mutation observed that 298 of 373 NSCLCs with activating EGFR mutation (79.9%) 

carried pretreatment T790M mutation. It is of note that the allele frequency of the EGFR 
T790M mutation was between 0.001% and 0.1% in most of the cases (95%),39 and cases 

with abundant T790M allele (≥10%) are very rare (0.5%). It is unclear why cancer cells 

“prepare” this resistance mutation before EGFR TKI therapy. However, a recent study 

suggested that hypermethylation of the CpG dinucleotide in EGFR codon 790 easily leads to 

the C-to-T transition mutation, causing T790M mutation.40 Therefore, it is possible that 

cancer cells may harbor several minor subpopulations with different a EGFR secondary 

mutation, including a TKI-resistant T790M mutation. Several studies have suggested that the 

pre-existing minor T790M mutation is related to decreased efficacy of gefitinib or erlotinib 

monotherapy,30,34 whereas others have observed the opposite results.32

Preexistence of another resistance mechanism, MET proto-oncogene, receptor tyrosine 

kinase gene (MET) amplification, is also reported in clinical specimens by high-throughput 

fluorescence in situ hybridization analyses.41 There are currently no data, as far as we know, 

regarding the preexistence of other resistance mechanisms, such as erb-b2 receptor tyrosine 

kinase 2 gene (ERBB2) amplification, AXL receptor tyrosine kinase activation, or SCLC 

transformation (although the presence of mixed small cell/adenocarcinoma at diagnosis has 

been recognized for many years).

In lung cancer cell lines with activating EGFR mutations, evidence supports the preexistence 

of minor resistant subpopulations, such as T790M mutation in PC9 cells42 and MET gene 

amplification in HCC827 cells.41 H1975 cells, with L858R mutation and T790M mutation, 

are the cell line model for aforementioned double mutations, but not for ones with a 

preexistent minor T790M subpopulation.

It is natural to consider that these preexistent minor subpopulation cells with a resistance 

mechanism are selected through the EGFR TKI therapy (see Fig. 1A) because most of the 

sensitive cells are killed and emerge as acquired resistance. This hypothesis is also supported 

by the fact that each lung cancer cell line with EGFR mutation has its “favorite” resistance 

mechanism: T790M mutation in PC9 cells, MET gene amplification in HCC827 and H4011 

cells, and epithelial-mesenchymal transition (EMT) phenotype in HCC4006 and H1975 

cells.16,21,43–47

Upfront polytherapy, targeting both EGFR and minor subpopulation cells with a resistance 

mechanism, may be a promising treatment strategy to overcome or delay the emergence of 

resistance. At the laboratory bench, studies using upfront polytherapies conferred different 

resistance mechanisms in PC9 cells,48,49 HCC827 cells,14 and HCC4006 cells50,51 as 

compared with their favorite ones. In addition, in our experience, a longer exposure period 

was needed to establish cells resistant to a combination therapy of erlotinib plus a MET 

proto-oncogene, receptor tyrosine kinase (MET) TKI than to erlotinib alone in HCC827 
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cells.14 In a clinical trial, osimertinib, a third-generation EGFR TKI that is able to inhibit the 

T790M mutation, has shown longer progression-free survival (PFS) in the frontline setting 

(19.3 months)52 as compared with data from first- or second-generation EGFR TKIs (9.6–

13.7 months1–6). This may due to the fact that most patients with EGFR-mutated lung 

cancer (79.9%) carry a tumor subpopulation with T790M mutation.39 It is interesting to 

theorize whether a difference in PFS could be found between patients with a minor T790M 

subpopulation and those without T790M at frontline osimertinib treatment. Regarding MET 
gene amplification targeting, clinical trials with tivantinib, a small-molecule MET inhibitor, 

combined with erlotinib did not show a PFS benefit over erlotinib alone in a small EGFR-

mutant subgroup with prior cytotoxic chemotherapy treatment.53,54 Currently, most of the 

trials with a combination of EGFR TKI and MET TKIs (crizotinib, tivantinib, cabozantinib, 

volitinib, MSC2156119J, or INC280)55 are focusing on EGFR-mutated patients after 

treatment failure with prior EGFR TKI (the phase II group 2 part of NCT02335944 uses 

patients without prior EGFR TKI therapy). Frontline combination of EGFR TKI and MET 

TKI in patients with EGFR-mutated lung cancer with a preexistent minor subpopulation 

with MET-amplified cells is an interesting strategy for another primary double-strike therapy 

candidate.

Reversible Drug-Tolerant State

In vitro observations demonstrated that the vast majority of EGFR-mutated lung cancer cells 

are killed within a few days upon exposure to a clinically relevant concentration of EGFR 

TKIs, whereas a small fraction of viable, largely quiescent cells (~0.3%) can still be detected 

9 days later (see Fig. 1B).56 In clinical practice, we can say that when a patient starts with 

1011 cancer cells,57 there are still 3 × 108 cells or more remaining even if an EGFR TKI 

eliminates cancer cells as effectively as in cell culture dishes. This drug-tolerant status is 

reversible, as cells propagated in drug-free media rapidly reacquire EGF TKI sensitivity and 

have also been shown to arise in cells established from a single-cell clone. Therefore, the 

mechanism(s) of cell survival is different from genetic changes such as acquisition of 

T790M mutation or MET gene amplification. However, recent studies have demonstrated 

that “irreversible” resistance mechanisms such as T790M mutation will occur in these drug-

tolerant persisting cells after continuous exposure to EGFR TKIs.42,58

Survival signaling in drug-tolerant persisting cells is well studied for PC9 cells; it involves 

the insulin-like growth factor 1 receptor (IGF-1R) pathway or an altered chromatin state that 

requires the histone demethylase retinol binding protein 2/lysine demethylase 5A.42,56 In 

PC9 cells, exposure to a combination therapy with an IGF-1R inhibitor, AEW541, and an 

EGFR TKI eliminated these persisting drug-tolerant cells.42,56 However, it is unclear 

whether IGF-1R signaling or an altered chromatin state plays an important role in all EGFR-

mutated lung cancer cell survival. Currently, there are no clinical data regarding the 

combination of IGF-1R inhibitor with EGFR TKI in patients with EGFR-mutated lung 

cancer, but discouraging results for this combination in a cohort of unselected patients with 

lung cancer have been reported.59,60

Another candidate pathway involved in drug-tolerant status against EGFR TKIs is nuclear 

factor kappa light-chain enhancer of activated B cells (NF-κB) signaling. A pooled RNA 
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interference screen identified that down-regulation of several components of the NF-κB 

pathway specifically enhanced cell death induced by EGFR TKI in lung cancer cells with 

EGFR mutation.61 The role of NF-κB activation in resistance to apoptosis with EGFR TKI 

treatment was confirmed by later research using patient-derived tumor xenograft models62 

and in three-dimensional cultured cell models.63 The former study also identified signal 

transducer and activator of transcription 3 as the important downstream molecule in the NF-

κB pathway that confers resistance to apoptosis,62 confirming the importance of feedback 

activation of signal transducer and activator of transcription 3 in primary insensitivity to 

EGFR TKIs.64,65 Recently, inhibition of casein kinase 1 alpha has been reported to prevent 

acquired resistance to EGFR TKI in vitro and in vivo through suppression of the NF-κB 

signaling pathway.66

Another RNA interference screen found that the canonical Wnt/beta-catenin pathway (in 

particular, the poly–adenosine diphosphate–ribosylating enzymes tankyrase 1 and 2 that 

positively regulate this signaling) contributes to the survival of cancer cells during EGFR 

inhibition.67 In addition, tankyrase has recently been reported to allow cancer cells to 

survive against EGFR TKI through the Hippo/yes-associated protein pathway.68 A tankyrase 

inhibitor, AZ1366, showed synergistic efficacy with gefitinib in H3255, H1650, HCC4006, 

and HCC4011 cells but not in HCC827 and PC9 cells.69

BCL2 like 11 (BIM) is another molecule that may be related to decreased apoptosis in 

response to EGFR TKIs. EGFR TKIs cause a rapid increase of BIM protein expression with 

proapoptotic BCL2 homology domain 3 (BH3) in lung cancer cells with EGFR mutation, 

and RNA interference–mediated knockdown of BIM eliminates EGFR TKI–inducible 

apoptosis, whereas addition of the BH3 mimetics (ABT-737) enhances EGFR TKI–mediated 

apoptosis.70,71 Later studies found that pretreatment RNA levels of BIM predicted the 

capacity of EGFR TKIs to induce apoptosis,72 and a common BCL2 like 11 gene (BIM) 

deletion polymorphism mediates intrinsic resistance to EGFR TKIs through the expression 

of BIM isoforms lacking BH3.73 In addition, EGFR-mutant lung cancer cell lines that 

harbor the BIM deletion polymorphism are much less sensitive to EGFR TKI–inducible 

apoptosis, and the histone deacetylase inhibitor vorinostat could circumvent low EGFR TKI 

sensitivity in these cell lines.74 However, the impact of BIM deletion polymorphism as a 

predictive biomarker for EGFR TKI is still controversial in clinical settings.75–77

Signals from the Microenvironment

It has also been shown that cancer cells receive survival signaling from the 

microenvironment that may modify drug efficacy (see Fig. 1C).78 In 2008, Yano, et al. 

showed that addition of hepatocyte growth factor (HGF), but not epidermal growth factor, 

transforming growth factor-α, or insulin-like growth factor 1, in the conditioned media 

conferred resistance to EGFR TKIs in lung cancer cells with EGFR mutations.79 HGF is 

often produced by fibroblasts, and lung cancer cells became resistant to EGFR TKIs when 

cocultured in vitro with HGF-producing fibroblasts or coinjected into immune-deficient 

mice.80 Survival signaling may also be mediated by fibroblasts through hedgehog 

signaling.81 Other growth factors or chemokines, such as fibroblast growth factor 244,82 or 

interleukin-8,83,84 are also reported to cause established acquired resistance to EGFR TKIs 
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in vitro through overexpression by cancer cells themselves (autocrine). However, the role of 

these molecules produced from microenvironment noncancerous cells in the survival of 

residual tumor cells is unclear to date. Direct interaction of podoplanin-positive cancer-

associated fibroblasts with cancer cells is also reported to cause resistance to EGFR TKIs in 

vitro, and EGFR-mutated lung cancer patients with podoplanin-positive cancer-associated 

fibroblasts demonstrated reduced PFS when treated with EGFR TKIs.85 Fibroblast-mediated 

stimulation,81 or many other factors including cigarette smoke extract,86 may also cause a 

reduced EGFR TKI sensitivity at the early phase of the treatment through the induction of 

EMT.18 Transforming growth factor-β receptor inhibition, together with EGFR TKI, is 

reported to inhibit EMT-mediated acquired resistance to EGFR TKI in vitro.50 In addition, 

histone deacetylase inhibitors have been shown to overcome EGFR TKI resistance linked to 

epigenetic changes and EMT state in vitro87–89; however, the clinical data are limited so 

far.90,91

A recent study demonstrated that in addition to survival signaling from fibroblasts, 

secretomes produced by dying cells in response to EGFR TKI therapy may help residual 

cancer cells survive against the drug.92 It is unclear whether this resistance conferred via the 

microenvironment can lead to development of bona fide resistance mechanism(s) in cancer 

cells. However, in one in vitro study, researchers observed that HGF exposure facilitated 

HCC827 cells’ acquisition of MET gene–amplified resistance.41

Nonfunctional blood vessels in tumor tissues are also one of hallmarks of the tumor 

microenvironment (see Fig. 1D). This poor vascularization causes a hypoxic environment, 

and tumor hypoxia is associated with aggressive tumor phenotypes, treatment resistance, and 

poor clinical prognosis.93 Several in vitro studies observed that EGFR-mutated lung cancer 

cells showed insensitivity to EGFR TKIs under hypoxic cell culture conditions compared 

with under normoxia conditions.94,95 Poor vascularization is also considered to provide poor 

drug delivery to cancer cells, causing a lower EGFR TKI concentration, which is related to 

earlier development of resistance than with higher drug concentrations.96,97 In clinical 

settings, the addition of bevacizumab (an antiangiogenic monoclonal antibody that targets 

vascular endothelial growth factor and may modify aberrant vessels around a tumor) to the 

EGFR TKI erlotinib has shown dramatic improvement of PFS (16.0 months versus 9.7 

months).98

Conclusions and Future Perspectives

Here, we have summarized possible scenarios that lung cancer cells with EGFR mutation 

utilize to survive the early phase of treatment with EGFR TKIs. As shown in clinical trials 

with frontline osimertinib52 or the combination of erlotinib plus bevacizumab,98 primary 

double-strike therapies for cancer cells that cotarget EGFR and survival mechanism(s) 

simultaneously would be a promising strategy to improve the outcomes of patients with 

EGFR mutations. In addition, abundant data from the bench, as summarized here, may 

provide additional ideas for primary double-strike therapies for cancer cells. Outside the 

scope of this review, there are additional ideas for improved treatments for patients with lung 

cancer with EGFR mutations, such as combination of EGFR TKI with MEK inhibitors,49,99 

combination of EGFR TKI with immune checkpoint inhibitors, or combination of EGFR 
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TKI with cytotoxic agents100, as summarized in a recent clinical review.55 Although a dozen 

years have passed since discovery of the EGFR mutation,101–103 this research area still holds 

substantial interest in the research community.
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Figure 1. 
Molecular mechanisms that support residual tumor cells in the early phase of EGFR tyrosine 

kinase inhibitor (TKI) monotherapy. Preexistence of a minor resistance subpopulation that 

will survive frontline EGFR TKI monotherapy (A), reversible drug-tolerant state mainly 

observed in cell line models (B), survival signaling from microenvironment (fibroblasts or 

dying cancer cells) (C), and role of poor vascularization (D) are shown. MET, MET proto-

oncogene, receptor tyrosine kinase gene; IGF-1R, insulin-like growth factor 1 receptor; NF-

κB, nuclear factor kappa light-chain enhancer of activated B cells; STAT3, signal transducer 

and activator of transcription 3; YAP, yes-associated protein; BIM, BCL2 like 11; HGF, 

human growth factor.
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