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Abstract

“Is the brain ’wiring’ different between groups of populations?” is an increasingly important 

question with advances in diffusion MRI and abundance of network analytic tools. Recently, 

automatic, data-driven and computationally efficient framework for extracting brain networks 

using tractography and epsilon neighborhoods were proposed in the diffusion tensor imaging 

(DTI) literature [1]. In this paper we propose new extensions to that framework and show potential 

applications of such epsilon radial networks (ERN) in performing various types of neuroimage 

analyses. These extensions allow us to use ERNs not only to mine for topo-physical properties of 

the structural brain networks but also to perform classical region-of-interest (ROI) analyses in a 

very efficient way. Thus we demonstrate the use of ERNs as a novel image processing lens for 

statistical and machine learning based analyses. We demonstrate its application in an autism study 

for identifying topological and quantitative group differences, as well as performing classification. 

Finally, these views are not restricted to ERNs but can be effective for population studies using 

any computationally efficient network-extraction procedures.
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1 Introduction

Population studies on brain connectivity networks are commonly performed using resting 

state functional magnetic resonance imaging (fMRI). These networks are called default 

mode networks (DMNs) and represent functional correlations between regions of the brain 

under rest [2]. These networks may not directly reflect the underlying structural organization 

of the brain white matter (WM). Diffusion tensor imaging (DTI) is a modality of MR 
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imaging that is an exquisitely sensitive, non-invasive method to map and characterize the 

microstructural properties and macroscopic organization of the WM [3]. Streamline 

tractography methods on DTI data, albeit with limitations, are very useful for mapping 

major connections in the brain faithfully [4]. They have been used to develop in vivo 

dissection atlases [5] and build whole structural brain networks (e.g., Fig 1. of [6]). T1-

weighted images are typically used for obtaining node regions for these networks. For 

example in [6], the cortex was parcellated into various regions using FreeSurfer1 on a T1-

weighted image. The main challenge in population studies using such brain networks is a 

DTI-T1 image co-registration since the problem of DTI to T1 co-registration is ill-posed and 

quite challenging: although there is contrast between white and grey matter in the T1-

weighted images the contrast within white matter is not specific enough. More discussion on 

this can be found in Fig. 1 of the supplementary material2. This inter-modality image 

registration step forms a non-trivial hindrance for scalable studies of structural brain 

connectivity networks in population studies. Without a detailed evaluation study of such 

inter-modality registrations the connectivity analyses can be intricately confounded. Hence 

one of the key challenges in studying brain connectivity patterns in neuro-pathologies using 

DTI, short of the limitations of DTI, is efficient and unbiased designation of nodes and edges 

in the brain.

Recently a scalable framework that avoids the inter-modality registration has been proposed 

where, relying on well-validated tensor-based normalization methods, nodes are identified 

on the average DTI of a population using ϵ neighborhoods of end points of tracts obtained 

on the whole brain [1]. Some of the methods used kd-tree based search algorithms to 

identify the ϵ-radial nodes [7] while the others used a sequential elimination of tracts [1]. 

Except for the bias introduced from tractography, which is present in all streamline based 

methods, such a node generation does not introduce any bias from the ill-posed image 

registration processes. These methods are also computationally efficient: they can identify 

nodes and edges in a few seconds on a typical modern day computer [7].

The key extensions presented in this paper are: (1) We generate the nodes by first ordering 

the tracts by their length. Since the ϵ-neighborhood approaches depend on the sequence of 

tracts this is an important change as this removes the bias due to ordering of the tracts. (2) 

We enhance the edge properties by using geodesic information of the tracts and not just the 

count of the tracts. Such enhancements can result in increased sensitivity for statistical 

analyses. (3) Using the enhanced edge matrices we perform novel physio-topological as well 

as tract specific quantitative ROI analyses both in the setting of classical voxel based 

analyses (VBA) as well as classification.

2 Epsilon Radial Networks

Brain networks (BNs) are modeled similar to other network models that is as a collection of 

vertices (V) and edges (E). That is BN = {V, E}. Tabel 1 summarizes different modeling of 

the vertices and edges for contrasting with the epsilon radial networks (ERNs). In the default 

1http://surfer.nmr.mgh.harvard.edu
2http://brainimaging.waisman.wisc.edu/~adluru/ERN/supplementary.pdf
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mode networks (DMNs) using resting fMRI, the vertices (node regions) are a function of 

blood oxygen level (BOLD) activations and the edges are based on temporal correlations 

between them. In the anatomical parcellation networks (APNs), the node regions are based 

on anatomical parcellation/segmentation [6]. In contrast, the nodes in ERNs are identified 

based on tracts themselves. This allows for identification of vertices (node regions) that have 

potential structural connectivity. Thus ERNs are completely DTI data-driven.

The ERNs are undirected and weighted networks and are constructed by adapting the 

framework and algorithms introduced in [7]. Briefly, the method uses the end points of the 

tracts to define the nodes by clustering neighboring tract end points into a set of spheres of ϵ 
radius which form the nodes for constructing connectivity matrices. Let Tij denote the set of 

tracts connecting two vertices i, j ϵ V. The original proposal defined E = {|Tij|}i,j ϵ v. We 

propose that in addition to using tract counts as the edge strength, using the quantitative and 

physical properties using the geodesic pathway information of the tracts can enhance the 

ERNs.

That is we define E = {|Tij|, quant(Tij), physical(Tij)}i,j∈v. These enhanced ERNs can be 

more sensitive to group differences in population studies. In this paper we store the average 

fractional anisotropy (FA), mean diffusivity (MD) and axial diffusivity (AD) along tracts and 

the geodesic lengths of the tracts. Other diffusion based measures like radial diffusivity 

(RD), skewness, planarity, linearity and sphericalness may also be stored. In typical voxel 

based analyses an FWHM of 8mm smoothing is used to compensate for errors in spatial 

normalization. Hence we use an ∈ = 4 to match the smoothing amount. The ERN nodes on 

the average template are shown in Fig. 1. As can be seen, the nodes have a good coverage of 

the brain regions and are generally in the grey/white matter boundaries as discussed in [7].

2.1 Properties of the ERNs

The nodes and edges of ERNs provide two fold advantages: (1) Provide an efficient way to 

extract various quantitative measures such as average FA, MD along the WM tracts and node 

regions. This is possible by extracting ROI masks using V and {Tij}i,j∈v. (2) Provide an 

efficient way to extract various topological properties of WM organization such as Rentian 

scaling, characteristic path length and clustering coefficient which are described next.

(1) Rentian scaling—Imagine we can partition the vertices (V) of an ERN into n or 

physical partitions (e.g. cubes in a brain volume). Then it is likely that the following power 

law [8] holds for most of those partitions:

(1)

where  is the number of connections crossing a partition and  is the number of nodes in 

that partition. k is called the Rent coefficient and 0 ≤ r 1, the Rent exponent. When k = 1 and 

r is estimated using all the partitions from the log – log relationships as:

(2)
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the estimated r is called Rentian scaling. If it is statistically significant for a given 

distribution of  and , that is the connections only scale linearly in the log–log space, the 

network is considered efficient in terms of ”wiring cost” and physical embedding. Such 

features have been studied in the context of neuroimaging [9,10]. Following [8] the brain 

volume is partitioned into n = 5000 cubes in our experiments.

(2) Characteristic path length—The characteristic path length (CPL) of a network is 

defined as the average shortest path (SP) between all pairs of N vertices [11]:

(3)

It roughly indicates the efficiency of connectivity between regions in the network. The 

smaller the path length the more efficient the reachability is in a network. We would like to 

note the difference between this efficiency and the rentian scaling: the rentian scaling tries to 

characterize the efficiency in terms of resources needed to build the network while the 

characteristic path length tries to characterize the efficiency of the network in terms of 

connectivity/reachability and reflects “small worldness” of a network [11].

(3) Clustering coefficient—The clustering coefficient of a node (ν ∈ V) in a network is 

defined as the proportion of connections that it has to the rest of the network, i.e. the ratio of 

the number of edges connecting the node to the total number of possible edges that can 

connect the node [11]:

(4)

where Ev = {eνi}iϵvν and eνi is the edge strength for e.g. in ERNs it would be |Tνi|. The 

clustering coefficient of an ERN is defined as the average clustering coefficient of a node in 

that network, i.e. . The CC indicates the redundancy of 

connections in a network. Thus higher CC reflects the robustness of connectivity in a 

network. This is because the network can afford to lose some edges without losing 

connectivity to regions.

(4) Node-Strength—The strength of a node is a generalization of the degree of a node for 

weighted networks. It is defined as the sum of the weights of all edges connecting a node, 

i.e. . The strength of a network can be defined as the average strength of all 

nodes in that network, i.e. .

Thus ERNs are very useful in extracting different “views” of the DTI data for better 

sensitivity in neuroimage analyses. We use the implementations available in [12] to extract 

these measures on the ERNs.
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3 ERN Analyses in Autism

In this section we present various statistical analyses performed using different properties 

and measures extracted from ERNs. The details of the data and preprocessing can be found 

in the supplementary material 2. First we look into three types of group differences: (1) 

Differences between average properties of the individual ERNs of the two groups. (2) 

Differences between the properties of the average ERNs of the two groups. (3) Differences 

between quantitative measures of the tissue extracted using individual ERNs, which involves 

quant(Ti,j). (4) Then using various features of the ERNs we perform classification using 

support vector machines [13]. (5) Finally we examine abnormal long vs. short range and 

hemispheric connectivity hypotheses in autism [14,15], which involves using physical(Ti,j).

(1) Differences between individual ERNs

The distribution of subjects in the two groups according to CCERN, CPLERN, SERN and 

Rentian scaling are shown in Fig. 2. We can observe that there are no statistically significant 

differences between the two groups. This can be expected since the two groups are matched 

for age, IQ and handedness3. This also shows that our ’network-extraction process’ does not 

introduce any bias into identifying group differences.

(2) Differences between the average ERNs

Let V denote the ϵ-radial nodes on the template and  denote the edges of ERN of 

subject i. Then  denotes the average ERN for the ASD 

group and TDCERN can be similarly defined. Fig. 3 shows the differences between the 

distributions of clustering coefficients of nodes, strengths of nodes and rentian scalings of 

ASDERN and TDCERN. Since the distributions (showed in insets) are skewed we use 

Kolmogorov-Smirnov test [16], instead of two-sample t tests, to compare the significance of 

the differences between their corresponding cumulative distribution functions (CDFs). We 

can observe that there is decreased clustering coefficients and node strength in the ASD 

relative to the TDC. These two suggest under-connectivity of white matter in autism. There 

is no significant difference in the rentian scaling of the two average networks. This can also 

be expected as we do not expect a huge difference between the “wiring costs” of the brains 

of high-functioning ASD and TDC.

(3) Differences between quantitative measures

Here we perform classical ROI analyses using the masks obtained from V on the template 

and {Tij}i,j∈v in the individual ERNs. The group differences using average FA and average 

MD in those masks are shown in Fig. 4. These differences can be attributed purely to the 

tissue property differences and are not confounded by network extraction procedure as 

shown by the failure to reject null-hypotheses using individual ERNs (Fig. 2). Thus using 

ERNs one can look into tissue differences by holding the topological properties constant 

when possible.

3Please see Fig. 2 of the supplementary material2 for the matching information.
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(4) Classification

Classification is a very challenging problem in autism studies especially using DTI. General 

leave-one-out cross-validation accuracies reported are in the high 70% to 80% [17,7,18]. An 

accuracy of 90% on an independently chosen test sample was reported in [19]. In this paper 

we report the performance of SVM classification using features extracted from ERNs 

(ERN1 and ERN2) as well as basic voxel based features of the WM (VBM).

– ERN1: Average FA, MD, AD on the node-regions in V.

– ERN2: FA, MD, AD at all the voxels in the mask obtained from all the node-

regions in V.

– VBM: FA, MD, AD at all the voxels in the white matter mask on the template.

For each of the above set of features we use both linear and radial-basis kernels for SVM 

classification. To measure the discriminative capacity of the features, we report classification 

performance metrics in the leave-one-out cross-validation setting, for different bootstraps of 

the data. The different metrics are accuracy (ACC), specificity (SPEC), sensitivity (SENS) 

and area under receiver operating characteristic (ROC) curve (AUROC). For the various 

bootstraps, we include all the TDC subjects with ADOS < 1 and include ASD subjects for 

different lower thresholds of ADOS as shown in Fig. 5. As the lower threshold of the ADOS 

increases the classification task becomes easier as the goal becomes separating extreme 

cases of ASD from TDC. Figs. 6 and 7 show the classification outputs for a particular 

bootstrap with TDC (n = 15) and ASD (n = 11) with ADOS > 14 where the ACC and 

AUROC reach a maximum as shown in Fig. 5. Fig. 6 shows the sum of the kernels for VBM, 

ERN1 and ERN2 as well as the the improvement in classification metrics by the addition of 

ERN based features.

(5) Differences in long vs. short range and hemispheric connectivities

Such differences are one of the important hypotheses investigated in ASD. Indirect ways of 

characterizing these connectivities were proposed in the literature, e.g. using cortical 

thickness [20,21] and white matter volumes [14]. ERNs can provide a more direct way by 

looking at both the connectivities based on geodesic as well as euclidean distances between 

the node regions. Figs. 8 (a,b) show the group differences between these connectivities on 

ASDERG and TDCERG. It has been indicated that ASD group has decreased inter-

hemispheric functional connectivity [15]. ERNs can also be effectively used to investigate 

hemispheric structural connectivity differences, both intra and inter. Group differences 

between intra and inter hemispheric connectivities by plotting the distribution of the edges 

(connections) across different edge strengths are shown in Figs. 8 (c,d). We can observe 

decreased inter-hemispheric connectivity and increased intra-hemispheric connectivity in the 

ASD group. We would like to note that intra and inter hemispheric connections can also be 

thought of as a proxy to the short and long range connections respectively. To be sensitive to 

the changes, the same “easy” bootstrap sample (i.e. ADOS > 14 for ASD and ADOS < 1 for 

TDC) that was used for classification was also used for these two analyses.

Adluru et al. Page 6

Adv Image Video Technol. Author manuscript; available in PMC 2017 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Discussion

In this paper we extend recently proposed automatic, data-driven network extraction 

frameworks. These enhanced networks could potentially be more sensitive for network 

based analyses in population based neuroimaging studies. Such methods in addition to 

avoiding the bias of ill-posed inter-modality image registration (Fig. 1 of the supplementary 

material2) are computationally very efficient. However there are several limitations to be 

considered: (1) Tractography in the spatially normalized tensors needs to be validated 

against the tractography in the tensors native/acquired space. This is part of our on-going 

work. (2) The ϵ-radial nodes although cover important regions in the grey/white matter 

boundary, do not cover all possible regions of interest and can lead to false-negatives in 

group differences. Investigating potential extensions using techniques like Vietoris-Rips 

complex [22] are part of our future work. (3) The spatial normalization needed here may 

constrain the white matter topology to be too similar between subjects. The normalization 

causes the brain anatomy to have more consistent shape and size in the normalized space 

than they would in the native/acquired space. Hence, although the quantitative measures like 

FA, MD along the edges and node-regions might be preserved, this method may lose some 

sensitivity to individual differences of topology. Performing topological group differences 

without needing spatial normalization is also potentially an interesting line of work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

1. Chung M, Adluru N, Dalton K, Alexander A, Davidson R. Scalable brain network construction on 
white matter fibers. SPIE Medical Imaging. 2011

2. Greicius M, et al. Functional connectivity in the resting brain: a network analysis of the default 
mode hypothesis. Proc. Natl. Acad. Sci. 2003; 100:253–258. [PubMed: 12506194] 

3. Jones D, et al. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion 
tensor MRI. Magn. Reson. Med. 1999; 42:37–41. [PubMed: 10398948] 

4. Julien DJ, Peled S, Berezovskii V, Delzescaux T, et al. Comparison of fiber tracts derived from in-
vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. 
NeuroImage. 2007; 37(2):530–538. [PubMed: 17604650] 

5. Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo 
dissections. Cortex. 2008; 44(8):1105–1132. [PubMed: 18619589] 

6. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey C, et al. Mapping the structural core of 
human cerebral cortex. PLoS Biol. 6(7):e159. [PubMed: 18597554] 

7. Adluru N, et al. Characterizing brain connectivity using ϵ-radial nodes: application for classifying 
autism. MICCAI Workshop on CDMRI. 2010

8. Danielle S, et al. Efficient physical embedding of topologically complex information processing 
networks in brains and computer circuits. PLoS Comp. Biol. 2010:1–14.

9. Zhang L, et al. Quantifying degeneration of white matter in normal aging using fractal dimension. 
Neurobiol. of Aging. 2007; 28:1543–1555.

10. Chen B, Hall D, Chklovskii D. Wiring optimization can relate neuronal structure and function. 
Proc. Natl. Acad. Sci. 103:4723–4728.

11. Watts D, Strogatz S. Collective dynamics of ’small-world’ networks. Nature. 1998; 393:440–442. 
[PubMed: 9623998] 

Adluru et al. Page 7

Adv Image Video Technol. Author manuscript; available in PMC 2017 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. 
NeuroImage. 2010; 52:1059–1069. [PubMed: 19819337] 

13. Chang, CC., Lin, CJ. LIBSVM: a library for support vector machines. Software; 2001. http://
www.csie.ntu.edu.tw/~cjlin/libsvm

14. Jou R, et al. Reduced central white matter volume in autism: Implications for long-range 
connectivity. Psychiatry and Clinical Neurosci. 2011; 65:98–101.

15. Anderson J, et al. Decreased interhemispheric functional connectivity in autism. Cerebral Cortex. 
2011; 21(5):1134–1146. [PubMed: 20943668] 

16. Massey FJ. The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951; 46:68–78.

17. Adluru N, et al. Classification in DTI using shapes of white matter tracts. IEEE EMBS. 
2009:2719–2722.

18. Ingalhalikar M, Parker D, Bloy L, Roberts T, Verma R. Diffusion based abnormality markers of 
pathology: Toward learned diagnostic prediction of ASD. 

19. Lange N, et al. Atypical diffusion tensor hemispheric asymmetry in autism. Autism Research. :
350–358.

20. Herbert M, et al. Localization of white matter volume increase in autism and developmental 
language disorder. Ann. Neurol. 2004; 55:530–540. [PubMed: 15048892] 

21. Hardan A, Muddasani S, Vemulapalli M, et al. An MRI study of increased cortical thickness in 
autism. Am. J. Psychiatry. 2006; 163:1290–1292. [PubMed: 16816240] 

22. Hausmann J. On the Vietoris-Rips complexes and a cohomology theory for metric spaces. Annals 
of Mathematics Studies. 1995; 138:175–188.

Adluru et al. Page 8

Adv Image Video Technol. Author manuscript; available in PMC 2017 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Fig. 1. 
The ϵ-radial nodes on the average DTI template are shown in random colors
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Fig. 2. 
The distribution of subjects in two groups according to different properties of their 

corresponding ERNs. (a) Average clustering coefficient, (b) Characteristic path length, (c) 

Average node-strength, (d) Rentian scaling. We can see that there is no statistically 

significant difference between the two groups in this sample-set using ERNs.
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Fig. 3. 
Group differences using properties of the average ERNs. (a) Cumulative distribution 

function (CDF) of the nodes vs. clustering coefficient, (b) CDF of nodes vs. their strength. 

The significances of the differences are computed using Kolmogorov-Smirnov tests. (c) 

Rentian scaling with the corresponding log – log distribution of nodes in the partitions and 

their connections.
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Fig. 4. 
Group differences using average quantitative measures (left - FA, right - MD) of the tissue 

masks obtained from V and {Tij}i,j∈v in the individual ERNs. Top row: Significant edges. 

The nodes in the left and right hemispheres are colored red and blue respectively. Bottom 
row: Significant nodes. The size of the edges and nodes are proportional to the – log(p) 

values.
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Fig. 5. 
Classification performance metrics as a function of the ADOS cut off used for the inclusion 

of ASD subjects. The ACC and AUROC are stable and peak at a cut off of 14. The other 

metrics show increase and saturate around 14. The right figure shows the change in the ASD 

sample size as the cut off increases.
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Fig. 6. 
Different kernels (features) and their effect on the SVM classification performance metrics. 

The highlighted red boxes show intra-class similarities for ASD (top-left) and TDC (bottom-

right). In an ideal situation the similarities within the boxes should be higher than the 

similarities outside the boxes. The improvement in classification metrics due to addition 

ERN features is shown in (d).
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Fig. 7. 
(a) Distribution of subjects according to ADOS. (b) Distribution of subjects according to 

SVM output. In an ideal situation it should be as similar to (a) as possible. (c) SVM output 

for different subjects. The misclassified ones are encircled in green. (d) The ROC curve for 

the leave-one-out cross-validation.
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Fig. 8. 
Top row: Differences between long vs. short range connectivities using geodesic (a) as well 

as euclidean (b) distances between nodes. The empirical CDFs and the distributions of the 

edges (connections) are shown as insets. Although the differences are statistically not very 

significant ((a): p = 0.0941, (b): p = 0.8723), the encircled regions indicate support for the 

increased short-range and decreased long-range connectivities in ASD. Bottom row: 
Differences between intra and inter hemispheric connectivities between average ERNs of 

ASD and TDC. (c) Although the difference is not statistically significant (p = 0.2443), the 

encircled regions indicate support for the increased intrahemispheric connectitvity for small 

and strong connections. (d) The inter-hemispheric connectivity is consistently lower for the 

ASD group (p = 0.0624) and is consistent with the finding in functional connecitvity [15].
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Table 1

Different models of brain networks

DMNs APNs ERNs

V f(BOLD activations) f(segmentation ± registration) f(tractography)

E f(temporal correlations) f(tractography) f(tractography)
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