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Abstract

BACKGROUND—Genomic analyses have suggested that the LPA gene and its associated plasma 

biomarker, lipoprotein(a) (Lp[a]), represent a causal risk factor for coronary heart disease (CHD). 

As such, lowering Lp(a) has emerged as a therapeutic strategy. Beyond target identification, 

human genetics may contribute to the development of new therapies by defining the full spectrum 

of beneficial and adverse consequences and by developing a dose-response curve of target 

perturbation.

OBJECTIVES—We attempted to establish the full phenotypic impact of LPA gene variation and 

to estimate a dose-response curve between genetically altered plasma Lp(a) and risk for CHD.

METHODS—We leveraged genetic variants at the LPA gene from 3 data sources: individual-level 

data from 112,338 participants in the UK Biobank; summary association results from large-scale 

genome-wide association studies; and LPA gene sequencing results from cases with and controls 

free of CHD.

RESULTS—One standard deviation genetically lowered Lp(a) level was associated with 29% 

lower risk of CHD (odds ratio [OR]: 0.71; 95% confidence interval [CI]: 0.69 to 0.73), 31% lower 

risk of peripheral vascular disease (OR: 0.69; 95% CI: 0.59 to 0.80), 13% lower risk of stroke 

(OR: 0.87; 95% CI: 0.79 to 0.96), 17% lower risk of heart failure (OR: 0.83; 95% CI: 0.73 to 

0.94), and 37% lower risk of aortic stenosis (OR: 0.63; 95% CI: 0.47 to 0.83). We observed no 

association with 31 other disorders including type 2 diabetes and cancer. Variants that led to gain 

of LPA gene function increased risk for CHD whereas those that led to loss of gene function 

reduced CHD risk.
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CONCLUSIONS—Beyond CHD, genetically lowered Lp(a) is associated with a lower risk of 

peripheral vascular disease, stroke, heart failure, and aortic stenosis. As such, pharmacological 

lowering of plasma Lp(a) may impact a range of atherosclerosis-related diseases.

Keywords

coronary heart disease; genetics; phenome-wide association study; single nucleotide 
polymorphism

Lipoprotein(a) (Lp[a]) is a circulating lipoprotein where the constituent apolipoprotein B on 

a low-density lipoprotein (LDL) particle is modified by the covalent addition of another 

protein, namely apolipoprotein(a) (1, 2). Higher plasma Lp(a) levels are correlated with 

increased risk for coronary heart disease (CHD) (3), heritable, and largely determined by 

variation in the LPA gene, which encodes apolipoprotein(a) (2). Genetic variants in LPA that 

increase Lp(a) levels also increase CHD risk, suggesting that Lp(a) is a causal risk factor for 

development of CHD (4–6). Consequently, lowering Lp(a) levels has emerged as a 

therapeutic strategy to reduce CHD risk (2, 7).

Beyond identifying a therapeutic target gene, human genetics may help estimate the 

probable efficacy and safety of pharmacological modulation (8). Although LPA variants 

have been consistently reported to be associated with CHD (5, 6) and aortic valve stenosis 

(9, 10), there is uncertainty around the full spectrum of phenotypic consequences. Previous 

studies have reported conflicting evidence on whether LPA variants are associated with other 

cardiovascular diseases, such as stroke (11, 12). In addition, observational epidemiology has 

associated lower plasma levels of Lp(a) with increased risks of cancer (13) and diabetes 

(14).

Deoxyribonucleic acid (DNA) sequence variants might also provide a mechanism to 

estimate a dose-response curve. In particular, the simultaneous identification of gain-of-

function as well as loss-of-function variants and an analysis of phenotypic effects can reveal 

a dose-response curve even before a clinical trial is initiated.

Here, we leveraged genetic variants across the allele frequency spectrum and 3 large data 

sources to evaluate the phenotypic consequences of genetically lowered Lp(a) levels. We 

estimate the effect of a genetically mediated 1 standard deviation decrease in Lp(a) levels on 

cardiometabolic disease and range of other disorders.

METHODS

Overall study design is shown in Figure 1. We leveraged several data sources to provide 

greater power for estimating the effect of genetically lowered Lp(a) on cardiometabolic traits 

and outcomes, to conduct a phenome-wide association study, and to examine the effect of 

rare loss-of-function variants in the LPA gene on risk of CHD.

We used individual-level data from 112,338 individuals of European ancestry from the UK 

Biobank, a large population-based cohort (Online Supplement) (15). Characteristics of 

individuals are provided in Online Table 1. We supplemented this individual-level data with 
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summary results from 7 genome-wide association study (GWAS) consortia examining blood 

lipids, anthropometric traits, glycemic traits, diabetes, CHD, heart failure (HF), and renal 

dysfunction, all predominantly containing individuals of European descent (Online 

Supplement and Table 1) (16–23). Our estimates for CHD were derived from the 

CARDIoGRAM Exome Consortium analysis of up to 42,335 CHD cases and 78,240 

controls (Online Supplement). Finally, we used LPA gene sequences from 15,251 

participants of European ancestry from the Myocardial Infarction Genetics (MIGen) 

Consortium.

In our primary analysis, we examined the effect of genetically lowered Lp(a) on 9 different 

cardiometabolic diseases: CHD; stroke; HF; atrial fibrillation; aortic stenosis; peripheral 

vascular disease (PVD); venous thromboembolism; diabetes; and chronic kidney disease 

(CKD) (Online Table 2). We additionally examined the effect of genetically lowered Lp(a) 

on 15 cardiometabolic quantitative traits (Online Supplement): waist-to-hip ratio; waist 

circumference; hip circumference; body mass index; systolic blood pressure; diastolic blood 

pressure; total cholesterol; LDL cholesterol; high-density lipoprotein (HDL) cholesterol; 

triglyceride levels; fasting glucose; fasting insulin; 2-hour glucose; glycosylated 

hemoglobin; and serum creatinine-derived estimated glomerular filtration rate (eGFR). All 

traits were standardized (that is, reported in units of SDs) to allow for comparisons among 

traits (Online Supplement). Using the UK Biobank cohort, we also conducted a phenome-

wide association study for 28 additional diseases, including endocrine, renal, urological, 

gastrointestinal, neurological, musculoskeletal, respiratory and neoplastic disorders (Online 

Table 2).

DNA SEQUENCE VARIANTS

To estimate the effect of genetically lowered Lp(a) on a wide range of phenotypes, we 

combined individual-level data from UK Biobank with summary-level data from large-scale 

GWAS. We used 4 single nucleotide polymorphisms (SNP) in the LPA gene that have been 

previously associated with plasma Lp(a) levels: rs10455872; rs3798220; rs41272114; and 

rs143431368 (Online Table 3). Together, rs10455872 and rs3798220 explain about 36% of 

variation in plasma Lp(a) levels (5); the other 2, rs41272114 and rs143431368, are loss-of-

function variants associated with lower Lp(a) levels (Online Table 3).

To standardize our estimates to 1 SD decrease in Lp(a) levels, we used estimates of the 

effect of each variant on Lp(a) levels from the ARIC (Atherosclerosis Risk in Communities) 

study (Online Table 3 and Online Supplement). ARIC is a community-based study of 15,792 

white and black participants, ages 45 to 64 years, who were first enrolled in 1987 (24). We 

restricted our analysis to 2,758 individuals of European ancestry in the ARIC cohort who 

had Lp(a) levels measured at the baseline visit and measured using a double-antibody 

enzyme-linked immunosorbent assay (25). Participants fasted for 12 to 24 h before blood 

collection. Plasma was separated from cells with centrifugation within 1 h of collection and 

stored at −70°C. Analyses were performed within 2 weeks. The assay was shown to have 

high internal reliability in a validation study in ARIC (r = 0.9) (25) and in a separate 

comparison to a newer assay calibrated using International Federation of Clinical Chemistry 

reference material (r = 0.88) (26). We used linear regression, adjusting for age, sex, and 5 
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principal components of ancestry to estimate the association between each variant and Lp(a) 

level in an additive model. As Lp(a) levels were non-normally distributed, we used log-

transformed Lp(a) levels, as previously described (5).

STATISTICAL ANALYSIS

For analyses of both UK Biobank and summary-level data, we created a gene variant score 

out of the 4 SNPs. For each variant, we modeled the Lp(a)-lowering allele and weighted by 

the effect of each SNP on log-transformed Lp(a) levels in SD units (Online Table 4). We 

then examined the effect of this gene variant score on each trait and outcome, standardized 

per SD decrease in log-transformed Lp(a) levels.

For UK Biobank, we generated an LPA gene variant score in units of SD Lp(a) by 

multiplying each variant by its effect on Lp(a) levels. We then included this gene variant 

score in a logistic regression analysis adjusting for age, sex, 10 principal components of 

ancestry, and a dummy variable for array type. For the summary-level data, this approach 

was equivalent to an inverse-variance-weighted fixed-effects meta-analysis of the effect of 

each variant on a trait or outcome of interest, divided by the effect of each variant on Lp(a) 

levels (27).

For our primary outcomes (the 9 cardiometabolic diseases), we set a Bonferroni-adjusted 

level of significance of p = 0.05/9 = 0.0056. For our secondary analysis of cardiometabolic 

traits, which included 15 traits, we set a level of significance of p = 0.05/15 = 0.003. For our 

phenome-wide association study of 28 phenotypes, we set a level of significance of p = 

0.05/28 = 0.0018.

LOSS OF FUNCTION VARIANT ANALYSIS

To examine whether loss-of-function variants in the LPA gene influence CHD risk, we used 

whole exome sequencing data from the MIGen Consortium (Online Supplement). This 

consortium is composed of 10 coronary artery disease case-control studies (28, 29). Loss-of-

function variants were defined as: 1) nonsense mutations that resulted in early termination of 

the apolipoprotein(a) protein; 2) frameshift mutations due to insertions or deletions of DNA; 

or 3) splice-site mutations that resulted in an incorrectly spliced protein. We combined these 

loss-of-function variants in the MIGen consortium with loss-of-function variants that were 

genotyped (either directly or imputed) in the UK Biobank. Variants are provided in Online 

Tables 5 and 6. We analyzed rare variants (<1%) separately to a common loss-of-function 

variant in the LPA gene (rs41272114, allele frequency of 3.8% in UK Biobank) (30, 31).

We tested for the association of CHD with presence of a loss-of-function variant using 

logistic regression. In MIGen, we adjusted for sex, 5 principal components of ancestry, and a 

dummy variable for each cohort. We did not adjust for age in MIGen as cases in some 

cohorts were selected for early-onset myocardial infarction, resulting in age being 

significantly and inversely associated with the presence of CHD. In the UK Biobank, we 

adjusted for age, sex, 10 principal components of ancestry, and array type.

All analyses were performed using R version 3.2.3 software (The R Project for Statistical 

Computing, Vienna, Austria).
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RESULTS

We first estimated the effect of LPA gene variant score on plasma Lp(a) levels in ARIC 

participants. Variants rs3798220 and rs10455872 altered Lp(a) levels by 0.98 and 0.91 SD, 

respectively, while rs41272114 and rs143431368 altered Lp(a) levels by 0.62 SD and 0.92 

SD respectively (Online Table 4). In this study, 1 SD in Lp(a) levels equaled 0.332 μmol/l. 

The distribution of LPA gene variant score in the UK Biobank is provided (Online Table 6).

We examined the effect of genetically lowered Lp(a) on 9 different cardiometabolic diseases 

(Central Illustration). Genetically lowered lipoprotein(a), a 1 SD genetic decrease, was 

associated with 29% lower risk of CHD (odds ratio [OR]: 0.71; 95% confidence interval 

[CI]: 0.69 to 0.73; p = 3.2*10−90). Genetically lowered Lp(a) had similar strengths of 

association with CHD across subpopulations (Online Figure 1). Beyond CHD, genetically 

lowered Lp(a) was associated with 31% lower risk of PVD (OR: 0.69; 95% CI: 0.59 to 0.80; 

p = 1.9 × 10−6), 13% lower risk of stroke (OR: 0.87; 95% CI: 0.79 to 0.96; p = 0.004), 37% 

lower risk of aortic stenosis (OR: 0.63; 95% CI: 0.47 to 0.83; p = 0.0011), and 17% lower 

risk of HF (OR: 0.83; 95% CI: 0.73 to 0.94; p = 0.0045; Central Illustration). While 

genetically lowered Lp(a) levels were only nominally associated with a 9% lower risk of 

CKD (OR: 0.91; 95% CI: 0.81 to 1.00; p = 0.043), it was highly significantly associated 

with the underlying quantitative trait (eGFR) as described later. Genetically lowered Lp(a) 

was not associated with diabetes, venous thromboembolism, or atrial fibrillation. To examine 

if the association of genetically lowered Lp(a) with HF and aortic stenosis was mediated by 

CHD, we excluded participants with CHD in the UK Biobank (n = 4,461). After exclusion, a 

1 SD genetic decrease in Lp(a) levels had similar strengths of association with HF (OR: 

0.84; 95% CI: 0.66 to 1.07; n = 107,877) and aortic stenosis (OR: 0.70; 95% CI: 0.49 to 

0.99; n = 107,877). A sensitivity analysis excluding those with prevalent aortic stenosis (n = 

193) yielded a similar strength of association for the association between a 1 SD decrease in 

Lp(a) levels and HF (OR: 0.85; 95% CI: 0.72 to 1.02; n = 112,145).

In contrast to the effects of Lp(a) on cardiometabolic disorders, we found no association of 

genetically lowered Lp(a) with any of 28 different disorders, including 4 gastrointestinal 

disorders, 3 endocrine disorders, 2 renal/urological disorders, 3 psychiatric disorders, 4 

musculoskeletal disorders, 4 respiratory disorders, and 8 different cancers (all p > 0.01) 

(Figure 2).

We next estimated the effect of LPA gene variant score on 15 quantitative traits (Figure 3). 

We observed a significant association of genetically lowered Lp(a) with improved kidney 

function: a 0.04 SD (95% CI: 0.02 to 0.05) increase in eGFR per SD genetically lowered 

Lp(a) (p = 1.4 × 10−5). This corresponds to an approximate 2.0 ml/min increase in eGFR per 

SD lower Lp(a). As expected, a 1 SD genetically lowered Lp(a) was associated with total 

cholesterol and LDL cholesterol (0.14 SD decrease in total cholesterol [95% CI: 0.11 to 

0.16; p = 3.5 × 10−27) and a 0.14 SD decrease in LDL cholesterol (95% CI: 0.11 to 0.16; p = 

4.7 × 10−27) (Figure 3). These estimates correspond, approximately, to a 0.14 mmol/l 

decrease in total cholesterol and a 0.13 mmol/l decrease in LDL cholesterol. We saw no 

significant association of LPA genetic risk score with waist-to-hip ratio, waist 

circumference, hip circumference, body mass index, systolic blood pressure, diastolic blood 
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pressure, HDL cholesterol, triglycerides, fasting glucose, fasting insulin, 2-h glucose, or 

glycosylated hemoglobin (p > 0.05 for each). LPA gene variant risk score remained 

unassociated with systolic and diastolic blood pressure when use of antihypertensive therapy 

was not accounted for (0 SD, 95% CI: −0.02 to 0.01 and 0 SD, 95% CI: −0.01 to 0.02 per 

SD lower Lp[a], respectively).

Figure 4 provides a dose-response curve for CHD derived from gain and loss-of-function 

variants at the LPA gene locus. The impact of LPA variation on CHD risk is directly 

proportional to its effect on circulating Lp(a) levels. The Lp(a)-increasing alleles of common 

variants rs3798220 and rs10455872, which increase Lp(a) levels by 0.98 and 0.91 SD, 

increased risk of CHD by 57% (OR: 1.57; 95% CI: 1.46 to 1.69) and 38% (OR: 1.38; 95% 

CI: 1.33 to 1.43), respectively. Rare synonymous variants, which had no significant effect on 

Lp(a) levels, also had no significant effect on CHD (OR: 0.98; 95% CI: 0.86 to 1.12) (Figure 

4). A common loss-of-function variant rs41272114, which decreased Lp(a) levels by 0.62 

SD, was associated with a 12% lower risk of CHD (OR: 0.88; 95% CI: 0.84 to 0.93; p = 3.4 

× 10−7). Presence of a rare (allele frequency <1%) loss-of-function variant in the LPA gene 

was associated with a 24% lower risk of CHD (OR: 0.76; 95% CI: 0.59 to 0.98; p = 0.033) 

(Figure 4; Online Figure 2).

DISCUSSION

To evaluate the phenotypic consequences of genetically lowered Lp(a), we leveraged: 1) 4 

DNA sequence variants that alter plasma Lp(a); 2) individual-level genotype and phenotype 

data from >100,000 participants in UK Biobank; 3) summary genetic association results 

from 7 large-scale GWAS; and 4) LPA gene sequences in >15,000 participants. We found 

that 1 SD genetically lowered Lp(a) is associated with a range of atherosclerosis-related 

diseases including CHD, PVD, stroke, HF, and aortic stenosis, but was not associated with 

31 other different diseases in a phenome-wide association study.

These data allowed for several conclusions. First, using naturally occurring DNA sequence 

variation, we provided a dose-response relationship between perturbation of Lp(a) and risk 

for CHD. We examined the effects of both common and rare variants, as well as gain-of-

function variants that increase Lp(a) levels and loss-of-function variants that decrease Lp(a) 

levels. The effects of these different variants on CHD were consistently proportional to their 

effect on Lp(a). Consistent with 2 recent reports (30, 32), a low-frequency loss-of-function 

variant (rs41272114) and a burden of rare loss-of-function variants in LPA protected against 

CHD. In combination, these results suggested that greater pharmacological reductions in 

Lp(a) levels should produce proportionally greater reductions in CHD risk, thus supporting 

intensive Lp(a) lowering.

Second, these results suggested that Lp(a) inhibition may be a viable therapeutic strategy to 

prevent a range of diseases beyond CHD. This study extends prior work demonstrating LPA 
variants to be associated with cardiovascular disease (5, 6, 11, 12, 33, 34). In a study of up to 

12,716 individuals from 35 case-control studies, LPA variants were associated with 

peripheral arterial disease, ischemic stroke, and coronary artery disease (11). In contrast, in 

an analysis of 14,465 individuals in the Heart Protection Study, LPA variants were 
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associated with PVD but not stroke (12). Our results suggested that LPA variants are 

associated with PVD, stroke, and HF. Furthermore, our report of a significant association 

with aortic stenosis are consistent with recent analyses demonstrating a significant effect of 

LPA variants on aortic valve calcification and stenosis (9, 10). Inclusion of these diseases in 

composite endpoints of trials of Lp(a)-reducing therapies (in addition to CHD) may increase 

the likelihood of a positive trial outcome, highlighting the potential benefits of genetic 

analyses for trial design and clinical drug development.

Third, a surprising finding of this study was that genetically lowered Lp(a) was associated 

with a modest but significant improvement in kidney function as assessed by 2 phenotypes, 

eGFR and prevalence of CKD. This lower risk of CKD may be mediated through a reduction 

in renal atherosclerotic burden. These findings are consistent with a recent GWAS of 

metabolites that revealed a strong association between LPA rs10455872 and creatinine levels 

(35). These results implicate Lp(a) metabolism in the development of CKD.

STUDY LIMITATIONS

This study’s major strength was the scale and variety of data sources, which improved our 

power to detect an effect of genetically lowered Lp(a) on a wide range of diseases and 

cardiometabolic traits. Our use of the largest available cohorts provided requisite power to 

demonstrate that genetic Lp(a) lowering was associated with a lower risk of PVD, stroke, 

HF, and CKD while our use of the UK Biobank allowed us to examine the association of 

genetic LPA variants across a wide range of noncardiovascular diseases, for which we failed 

to find an association.

Several study limitations deserve mention. First, our use of a 2-sample design, with exposure 

estimates from ARIC and outcome estimates from UK Biobank and various GWAS, 

prevented us from examining whether the effect of LPA variants differed by baseline levels 

of Lp(a). Second, our phenome-wide association study might have been underpowered to 

detect a significant effect of Lp(a) on many of the outcomes. As the UK Biobank develops 

validated phenotypes and accumulates a greater number of events, a phenome-wide 

association study may be better powered to detect an effect on different disorders. Third, we 

used prevalent events based on a verbal interview with a nurse for our phenome-wide 

association study of 28 different disorders. Although these events are likely to be of greater 

specificity than coded hospitalization data, they have not been independently validated. 

Finally, our population was limited to individuals of European ancestry and our results may 

not be generalizable to individuals of different ancestry. Indeed, both Lp(a) levels and the 

number of Kringle IV domains in Lp(a) have been shown to vary substantially with ancestry, 

suggesting that the impact of Lp(a) on cardiovascular disease may also differ by ancestry 

(36).

CONCLUSIONS

In conclusion, genetically decreased lipoprotein(a) is associated with a range of 

cardiometabolic disorders, including CHD, stroke, PVD, aortic stenosis, HF, and renal 

dysfunction. Pharmacological lowering of Lp(a) may reduce the risk of these disorders.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS AND ACRONYMS

CHD coronary heart disease

HDL high-density lipoprotein

HF heart failure

GWAS genome-wide association study

LDL low-density lipoprotein

Lp(a) lipoprotein(a)
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PVD peripheral vascular disease

SNP single nucleotide polymorphism
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE

Elevated blood levels of Lp(a) have been associated with the risk of developing coronary 

artery disease, stroke, PVD, aortic stenosis, HF, and CKD but are not associated with the 

risk of developing type 2 diabetes, gastrointestinal disorders, or specific cancers.

TRANSLATIONAL OUTLOOK

Further research should be conducted to determine whether more intensive lowering of 

lP(a) levels results in proportionally greater reductions in cardiovascular risk.
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FIGURE 1. Study Design
This study included 1 primary and 2 secondary analyses to estimate the effect of a 

lipoprotein(a) (Lp[a]) on a range of outcomes. ARIC = Atherosclerosis Risk in 

Communities; CARDIoGRAM = Coronary ARtery DIsease Genome wide Replication and 

Meta-analysis; CHARGE-HF = Cohorts for Heart and Aging Research in Genomic 

Epidemiology – Heart Failure Consortium; CKDGen = Chronic Kidney Disease Genetics 

Consortium; DIAGRAM = DIAbetes Genetics Replication And Meta-analysis; DNA = 

deoxyribonucleic acid; GIANT = Genetic Investigation of ANthropometric Traits; GLGC = 

Global Lipids Genetics Consortium; MAGIC = Meta-Analyses of Glucose and Insulin-

related traits Consortium; MIGen = Myocardial Infarction Genetics.
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FIGURE 2. Associations of Genetically Lowered Lp(a) With a Range of Diseases
While 1 SD genetically lowered Lp(a) level was significantly associated with reduced risk of 

coronary heart disease, stroke, aortic stenosis, heart failure, chronic kidney disease, and 

peripheral vascular disease, there was no significant association seen for 3 other 

cardiometabolic disorders as well as 28 other diseases. COPD = chronic obstructive 

pulmonary disease; OR = odds ratio; other abbreviations as in Figure 1.
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FIGURE 3. Association of Genetically Lowered Lp(a) (1 SD Decrease) with Cardiometabolic 
Quantitative Traits
Genetically lowered Lp(a) was associated with reductions in total and low-density 

lipoprotein (LDL) cholesterol as well as improved kidney function. There were no other 

significant associations seen between 1 SD decrease in Lp(a) and other traits measured. BMI 

= body mass index; DBP = diastolic blood pressure; eGFR = estimated glomerular filtration 

rate; HbA1c = glycosylated hemoglobin; HDL = high-density lipoprotein; SBP = systolic 

blood pressure; SNP = single nucleotide polymorphism; other abbreviations as in Figures 1 

and 2.
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FIGURE 4. Effect of LPA Variants on Lp(a) and CHD
Logistic regression was used to test the association of coronary heart disease (CHD) as an 

outcome and DNA sequence variant as a predictor, adjusting for sex and principal 

components of ancestry, with additional adjustment for array type and age in UK Biobank. 

The impact of LPA variation on CHD risk is directly proportional to its effect on circulating 

Lp(a) levels. Abbreviations as in Figure 1.
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CENTRAL ILLUSTRATION. Impact of Genetically Mediated Lp(a) Reduction (1 SD) on 
Disease Risk
This study to establish the full phenotypic impact of LPA gene variation and to estimate a 

dose-response curve between genetically altered plasma lipoprotein (Lp) (a) and risk for 

coronary heart disease. Estimates were derived in UK Biobank using logistic regression, 

adjusted for age, sex, 10 principal components and array type, with the exception of chronic 

kidney disease (CKD), which was derived using summary statistics from CKDGen. One SD 

genetically lowered Lp(a) level was associated with reduced risk of 5 cardiometabolic 

diseases. Although the estimate for CKD did not reach Bonferroni adjusted significance, it 
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was included as a significant outcome as the underlying trait (estimated glomerular filtration 

rate) was significantly associated with Lp(a) (p = 2 × 10−5). OR = odds ratio.
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Table 1

Characteristics of Genome-Wide Association Studies Utilized

Consortium Outcome/Trait Sample Size Genotyping

GLGC (17) LDL cholesterol
HDL cholesterol
Total cholesterol
Triglycerides

Up to 188,587
individuals

37 studies using Metabochip, 23
studies using various arrays

MAGIC (18) Fasting glucose
Fasting insulin
2-h glucose
HbA1c

Up to 133,010
individuals

Various arrays, imputation to 2.5
million SNPs using HapMap
reference panel

GIANT (37,38) Waist-to-hip ratio
Waist
circumference
Hip circumference
Body mass index

Up to 322,154
individuals

Various arrays, imputation to 2.5
million SNPs using HapMap
reference panel

CKDGen (39) Serum estimated
glomerular filtration
rate
Chronic kidney
disease

Up to 133,413
individuals

Various arrays, imputation to 2.5
million SNPs using HapMap
reference panel

CARDIoGRAM
Exome Consortium
(22)

Coronary heart
disease

Up to 42,335
cases/ 78,240
controls

Illumina HumanExome
BeadChip array or the Illumina
OmniExome array

DIAGRAM (20) Diabetes Up to 34,840
cases/ 114,981
controls

37 studies using Metabochip, 23
studies various arrays,
imputation to 2.5 million SNPs
using HapMap reference panel

CHARGE-HF (23) Heart failure Up to 2,526
cases / 18,400
controls

Various arrays, imputation to 2.5
million SNPs using HapMap
reference panel

CARDIoGRAM = Coronary ARtery DIsease Genome wide Replication and Meta-analysis; CHARGE-HF = Cohorts for Heart and Aging Research 
in Genomic Epidemiology-Heart Failure; CKDGen = Chronic Kidney Disease Genetics Consortium; DIAGRAM = DIAbetes Genetics Replication 
And Meta-analysis; GIANT = Genetic Investigation of ANthropometric Traits; GLGC = Global Lipids Genetics Consortium; GWAS = genome-
wide association study; HbA1c = glycosylated hemoglobin; HDL = high-density lipoprotein; LDL = low-density lipoprotein; MAGIC = Meta-

Analyses of Glucose and Insulin-related traits Consortium; SNP = single nucleotide polymorphism.
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