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Abstract

For the first time in the literature, our group has managed to demonstrate the existence of plant

RNAs in honey samples. In particular, in our work, different RNA extraction procedures were

performed in order to identify a purification method for nucleic acids from honey. Purity, stability

and integrity of the RNA samples were evaluated by spectrophotometric, PCR and electropho-

retic analyses. Among all honey RNAs, we specifically revealed the presence of both plastidial

and nuclear plant transcripts: RuBisCO large subunit mRNA, maturase K messenger and 18S

ribosomal RNA. Surprisingly, nine plant microRNAs (miR482b, miR156a, miR396c, miR171a,

miR858, miR162a, miR159c, miR395a and miR2118a) were also detected and quantified by

qPCR. In this context, a comparison between microRNA content in plant samples (i.e. flowers,

nectars) and their derivative honeys was carried out. In addition, peculiar microRNA profiles

were also identified in six different monofloral honeys. Finally, the same plant microRNAs were

investigated in other plant food products: tea, cocoa and coffee. Since plant microRNAs intro-

duced by diet have been recently recognized as being able to modulate the consumer’s gene

expression, our research suggests that honey’s benefits for human health may be strongly cor-

related to the bioactivity of plant microRNAs contained in this matrix.

Introduction

MicroRNAs (miRNAs), together with short interfering RNAs (siRNAs) and other small

groups of small RNA sequences, are included in the large class of small RNAs (sRNAs). MiR-

NAs are non-coding RNAs, highly abundant in living cells and whose length ranges between

19 and 24 nucleotides [1–2].

The first miRNA (lin-4) was identified, by Lee et al. [3], in the nematode Caenorhabditis ele-
gans Maupas. Since then, miRNAs have been found both in simpler organisms, such as Chla-
mydomonas reinhardtii P.A.Dang., and in superior ones, included Homo sapiens L., suggesting

that their function was not merely an accessory but was indispensable during evolution [4].

MiRNAs are produced from endogenous genes (MIR genes) which are phylogenetically

conserved and which may be evolved independently within each life kingdoms [5]. Indeed, the

existence of the same miRNA in organisms belonging to different kingdom (i.e. miR854

detected in Arabidopsis thaliana (L.) Heynh., C. elegans, Mus musculus L. and H. sapiens)
remains scarcely documented [4].

MiRNAs have been demonstrated to be fundamental for the modulation of gene expression

in the cells where they are synthesized. For example, in humans, miRNAs are able to regulate

PLOS ONE | DOI:10.1371/journal.pone.0172981 February 27, 2017 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Gismondi A, Di Marco G, Canini A (2017)

Detection of plant microRNAs in honey. PLoS ONE

12(2): e0172981. doi:10.1371/journal.

pone.0172981

Editor: Muhammad Barozai, University of

Balochistan, PAKISTAN

Received: October 14, 2016

Accepted: February 12, 2017

Published: February 27, 2017

Copyright: © 2017 Gismondi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172981&domain=pdf&date_stamp=2017-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172981&domain=pdf&date_stamp=2017-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172981&domain=pdf&date_stamp=2017-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172981&domain=pdf&date_stamp=2017-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172981&domain=pdf&date_stamp=2017-02-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172981&domain=pdf&date_stamp=2017-02-27
http://creativecommons.org/licenses/by/4.0/


about 30% of the whole gene set [6]. In particular, since their production has been reported to

be restricted to specific temporal phases and strongly dependent on cell tissue, various studies

have suggested miRNA involvement in several biological processes, such as development, dif-

ferentiation, proliferation, response to biotic and abiotic stresses and the establishment of

pathological states (i.e. tumor) [7–9].

In general, each miRNA determines the gene silencing of one, or more, specific RNA mes-

sengers (mRNAs). For miRNAs, two action mechanisms have been widely illustrated, although

some minor aspects still remain ambiguous. When miRNA is perfectly (or almost) comple-

mentary with a portion of nucleotide sequence of its mRNA target (usually 3’-UTR in animal

cells and 3’-UTR, 5’-UTR or even a motif present inside an ORF in plant systems), the tran-

script is rapidly degraded, probably favoring the removal of the poly-A tail, thus making it less

stable. Vice versa, if the pairing between miRNA and gene messenger is imperfect, mRNA is

subjected to translation repression, possibly altering ribosome sliding or stability on the tran-

script or inhibiting the coupling of eIF4E factor with mRNA cap [9, 10].

MiRNA biogenesis has been widely described in the literature and follows a very similar

pathway in both animal and plants, although some steps are carried out by orthologue enzymes.

In briefly, from the MIR genes, miRNAs are transcribed by RNA polymerase II and then finely

processed in the nucleus before being transported into the cytoplasm. Here, miRNAs can per-

form their regulatory activity on mRNA targets by being associated to the RISC complex (RNA

induced silencing complex) [9, 11, 12].

The discovery of the existence of cross-kingdom interactions mediated by miRNAs has been

one of the most significant breakthroughs of the last decade. However, only a few studies have

reported this phenomenon [13–16]. Among them, probably the most important is that of Zhang

et al. [17], where the authors demonstrated that Oryza sativa L. miRNA186a could be detected in

both the blood and tissues of mammals on a rice diet. Moreover, this plant miRNA, surprisingly

still in active form, showing sequence homology with the human mRNA codifying for Low Den-

sity Lipoprotein Receptor Adapter Protein 1 (LDLRAP1), was also able to reduce the transla-

tional process of LDLRAP1 transcript in animal cells, thus determining an increase of LDL level

in plasma. These data clearly confirmed that plant miRNAs, introduced by diet, could strongly

influence consumers’ gene expression, acting as communication molecules between different

kingdoms. However, this potential role of plant miRNAs is strongly dependent on the fact that,

with respect to animal ones, they are characterized by a 3’-terminal nucleotide whose sugar is

methylated in position 2’: this feature endows the miRNAs with extreme stability, resistance to

degradation (i.e. low pH), preservation to temperature variation (i.e. boiling) and absorption

processes by intestinal mucosae [17–21]. All this evidence suggests that the beneficial effects of a

plant food-based diet may be correlated to the bioactivity of plant miRNAs.

Therefore, the main objective of this research has been to demonstrate, for the first time in

literature, the existence of plant RNAs and miRNAs in different samples of monofloral honeys

(Malus domestica Borkh., Robinia pseudoacacia L., Castanea sativa Mill., Eucalyptus sp., Tilia
cordata Mill., Rosmarinus officinalis L.). In fact, since honey derives from the re-elaboration of

floral secretions by honeybees (Apis mellifera ligustica Spinola) [22], we had initially hypothe-

sized that plant RNAs and miRNAs collected in nectar could be directly transferred into its

derivative honey. During our investigations, several RNA extraction methods were followed

and compared. The detection of plant miRNAs in honey could explain, at least in part, the bio-

logical properties associated with this natural matrix [23, 24]; it would also suggest new possi-

ble potential medical applications for this food.

Finally, other plant derived-commercial products, such as desiccated tea leaves (Camellia
sinensis L.) and cocoa (Theobroma cacao L.) and coffee seed powders (Coffea arabica L.), have

been similarly analyzed for analogous purposes.

Existence of plant microRNAs in honey samples
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Materials and methods

Plant materials and honey samples

Forty M. domestica flowers were sampled from 4 adult apple trees (ten flowers per tree) grown

and cultivated in the Botanical Gardens of Rome “Tor Vergata”. R. pseudoacacia nectar (about

4 mL) was collected, by a Hamilton syringe (max vol. 50 μL), from Black Locust flowers har-

vested, in the Botanical Gardens of Rome “Tor Vergata”, from 4 different bloomed trees.

Apple flowers and R. pseudoacacia nectar were instantaneously processed after sampling. Hon-

eys were kindly provided by the Honey Research Center of the University of Rome “Tor Ver-

gata”, after certification by melissopalynological analysis [22]. In particular, 3 different samples

for each typology of monofloral honey (M. domestica, R. pseudoacacia, C. sativa, Eucalyptus
sp., T. cordata, R. officinalis) were studied. Desiccated tea leaves (C. sinensis) and cocoa (T.

cacao) and coffee seed powders (C. arabica) were obtained each from 3 respective commercial

sachets; as such, they were industrially processed and ready to be used by consumers.

RNA extraction procedures and spectrophotometric quantification

For RNA extraction, plant samples (flowers, leaves, seed powders) were completely pulverised

using mortar and pestle, in the presence of liquid nitrogen, while honeys and nectars were used

in their original form. Three different extraction procedures were employed. According to the

first method, Pure Link RNA Kit (Ambion, Life Technologies; total RNA extraction kit), samples

were lysed in the presence of guanidinium isothiocyanate, a chaotropic salt able to protect RNA

from endogenous RNases; the samples were then processed through a Spin Cartridge containing

a clear silica-based membrane that bound RNA. Impurities were removed by subsequent wash-

ing, and purified total RNA (long and short sequences) was eluted in RNase-free water. By using

mirPremier microRNA Isolation Kit (Sigma-Aldrich; named miRNA extraction kit), samples

were treated by a 2-mercaptoethanol enriched-lysis buffer that specifically solubilized small/

micro RNA, inactivated ribonucleases and neutralized interfering plant secondary metabolites.

Large RNA and genomic DNA, which both remained insoluble, were removed by centrifugation

from the lysate, along with other cellular debris. Therefore, only small/micro RNA was captured

onto a silica binding column, as specified in the manufacturer’s guidelines. Residual impurities

were removed by repeated washings, and small/micro RNA was eluted in RNase-free water. The

third extraction method (named home-made RNA extraction) was carried out according to a

Sambrook [25] laboratory manual method modified as follows: samples were incubated, for 1 h

at 37˚C, with lysis buffer (0.1 M tris HCl pH 7.5; 0.1 M NaCl; 0.01 M EDTA; 2% SDS; 1 mg/mL

proteinase K; 5% polivinilpirrolidone; 5% cetyl trimethylammonium bromide). Then, 0.1 vol-

umes of 2 M sodium acetate pH 4 and 1 volume of phenol/chloroform pH 4.5 were added to the

solutions. Each sample was vortexed for 5 minutes and centrifuged at 13,000 RPM speed for

another 5 minutes. Supernatant was collected and subjected to three further extractions, two

with phenol/chloroform and one with only cholorofom. Subsequently, purified supernatant was

supplemented with 0.7 volumes of 100% isopropanol, in order to precipitate DNA which was

then removed by a sterile pasteur pipette. The whole solution was conserved at -70˚C for 1h and,

then, centrifuged for 30 minutes at 4˚C at 13,000 RPM. Finally, the pellet was resuspended in

RNase-free water and treated, according to manufacturer’s guidelines, with DNAse I (Promega,

Italy), in order to destroy residual contaminating DNA molecules. All RNA samples were stored

at -70˚C until their analysis. RNA concentration and purity were determined with a Nanodrop

ND1000 spectrophotometer (NanoDrop Technologies). RNA separation and visualization was

performed by agarose-formaldehyde gel electrophoresis according to the Sambrook [25] labora-

tory manual.

Existence of plant microRNAs in honey samples
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cDNA retrotranscription, PCR and real-time PCR (qPCR) analyses

Total cDNA was synthesized by joining, in a final volume of 25 μL for 90 min at 37˚C, the fol-

lowing reagents: 0.4 mM each dNTP (Euroclone, Milan—Italy), 20 U ribolock RNase inhibitor

(Thermo Scientific, Milan—Italy), 0.5 μg random hexamer primers (Invitrogen, Milan—Italy),

200 U moloney murine leukemia virus reverse transcriptase (Promega, Italy), 1X enzyme

buffer, 10 mM dithiothreitol and 0.5 μg RNA, previously heated at 65˚C for 2 minutes. By con-

trast, the synthesis of microRNA cDNAs was carried out by using a reverse transcription kit

specific for miRNAs (miRCURY LNA Universal RT microRNA PCR, Synthesis Kit II; EXI-

QON), according to manufacturer’s instructions. In particular, 108 copies of a synthetic spike-

in control miRNA (UniSp6, EXIQON) were added for each retrotranscription reaction, in

order to control the absence of nucleases during the procedures and the efficiency of cDNA

synthesis and qPCR assay. PCR amplifications of plant genes (ribulose 1,5-bisphosphate car-

boxylase/oxygenase large subunit, rbcL; maturase K, matK; 18S nuclear ribosomal DNA, 18S

rDNA) were performed by a Biorad (IQ5) thermocycler. PCR procedure and conditions,

reagent concentrations and amplicon detection through gel electrophoresis were all identical

to those widely reported in Gismondi et al. [26]. The choice of primer sequences and relative

annealing temperatures were based on Gismondi et al. [27], for rbcL (F1-R2; 201 base-pairs/

bp) and matK (F1-R2; 217 bp), and Gismondi et al. [28], for 18S rDNA (F-R; 844 bp). Real

time PCR, for the quantification of each miRNA, was performed in a 10 μL reaction volume

containing: 10 ng cDNA, 50% SYBR green (Kapa SYBR Fast qPCR kit; Kapa Biosystems,

Woburn, MA, USA) and 1 μL of the mixture presenting both miRNA specific PCR primers

(microRNA LNA PCR primer sets, EXIQON). As reported on EXIQON instruction manual,

amplification was performed using a Biorad (IQ5) thermocycler with the following parame-

ters: (a) initial denaturation at 95˚C for 10 min; (b) 45 cycles of denaturation at 95˚C for 10

seconds (sec), primer annealing temperature at 60˚C for 1 minute and extension at 60˚C for

30 sec; (c) production of disassociation curve from 50 to 90˚C (rate: 1.6˚C every sec) for the

verification of the results. qPCR analysis was carried out on the following miRNAs [29, 30]:

miR482b (5’-UCUUUCCUAUCCCUCCCAUUCC-3’), miR156a (5’-UGACAGAAGAGAGU
GAGCAC-3’), miR396c (5’-UUCCACAGCUUUCUUGAACUU-3’), miR171a (5’-UGAUU
GAGCCGCGCCAAUAUC-3’),miR858 (5’-UUCGUUGUCUGUUCGACCUGA-3’), miR162a

(5’-UCGAUAAACCUCUGCAUCCAG-3’), miR159c (5’-GAAUUCCUUCUCCUCUCCUUU-
3’), miR395a (5’-CUGAAGUGUUUGGGGGAACUC-3’) and miR2118a (5’-CUACCGAUGC
CACUAAGUCCCA-3’). The 5S rRNA (whose specific primers were developed and designed

by EXIQON Service on the basis of plant 5S rDNA sequences, including A. thaliana [GenBank:

AB073495.1]) was used as internal loading control to normalize of qPCR results (relative quanti-

zation). In fact, the amount of each miRNA was determined using the 2-ΔΔCt formula, where the

threshold cycle (Ct) of the target miRNA measured in one sample is normalized with respect to

the internal reference gene (5S rRNA, ΔCt) and to the respective value obtained in the second

sample (ΔΔCt). qPCR negative controls (without template, Neg. CNT1; without primers, Neg.

CNT2) were performed throughout to confirm adequacy and accuracy of the detection system.

Results were expressed as mean ± standard deviation (s.d.) and all the experiments were repeated

at least three times starting from different and independent RNA extractions. The significance of

the results was measured by one-way ANOVA test using PAST software (p values< 0.05 were

considered significant).

Results and discussion

The beneficial effects of a plant food-based diet on human health have been widely docu-

mented in literature [31,32]. In general, such epidemiological evidence has been associated

Existence of plant microRNAs in honey samples
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with the bioactivity of plant secondary metabolites (i.e. simple phenols, flavonoids) [33]. How-

ever, the bioavailability of these molecules, being very limited [34], might not always justify the

positive influence of such type of alimentation. On the other hand, it has been recently demon-

strated that plant miRNAs were able to modulate cell gene expression of animals absorbing

them by diet [17]. This extraordinary result supports the hypothesis that medicinal and food

plants might finely regulate human metabolism and physiology by their miRNA content, not

only through specific chemical compounds.

For these reasons, the present work aimed to investigate if plant miRNAs could be detect-

able even in the honey, a sugary matrix which derives from the re-elaboration of plant prod-

ucts (i.e. floral nectar, extrafloral secretions) by honeybees (Apis mellifera ligustica Spinola)

[22], in order to justify and improve scientific knowledge about the biological activities associ-

ated with this natural food [23, 24].

To determine the best procedure for miRNA extraction, three different methods were car-

ried out, named respectively total RNA extraction kit, home-made RNA extraction and miRNA
extraction kit, as widely reported in “Materials and Methods” section.

The first sample we decided to process was an apple honey because, given the recent publi-

cation of a paper describing M. domestica miRNome and which we used as our main reference

for the choice of miRNAs to detect in the current study [29]. To monitor the efficiency of the

protocols, since apple honey originates from apple floral nectar, M. domestica flowers were

also subjected to miRNA extraction.

As shown in Table 1, for each extraction method, we have reported the yield of RNA (in ng)

per mg of sample (apple flower or honey) and the relative ratios of spectrophotometric absor-

bances at 230, 260 and 280 nm. In fact, the ratios A260/280 and A260/230 are usually employed to

measure the purity level of nucleic acids since nucleotides, RNA and DNA all absorb at 260

nm; A260/280 and A260/230 ratios of, respectively, ~2.00 and ~2.00–2.20 generally indicate a

“pure” RNA sample [35].

Home-made RNA extraction recovered the highest concentrations of RNA, in all samples,

compared to the other two methods. It was unexpected to notice that total RNA extraction
method was not able to purify an amount of RNA similar to that obtained by home-made RNA
extraction, while the same result was quite predictable for miRNA extraction kit which is specif-

ically designed to extract only small and micro RNAs (see “Materials and Methods” section).

Table 1. Comparison of RNA extraction methods (total RNA extraction kit, home-made RNA extraction and miRNA extraction kit) from apple flow-

ers and honeys.

Total RNA extraction kit

sample ng RNA/mg sample A260/280 A260/230

Apple flower 48.00 ± 2.16 1.67 ± 0.05 0.71 ± 0.03

Apple honey 1.42 ± 0.04 1.63 ± 0.07 0.30 ± 0.01

Home-made RNA extraction

sample ng RNA/mg sample A260/280 A260/230

Apple flower 848.70 ± 32.88 1.47 ± 0.03 1.86 ± 0.05

Apple honey 24.75 ± 1.01 1.35 ± 0.06 1.57 ± 0.03

miRNA extraction kit

sample ng RNA/mg sample A260/280 A260/230

Apple flower 24.96 ± 1.18 1.87 ± 0.06 2.03 ± 0.04

Apple honey 0.68 ± 0.02 1.91 ± 0.04 2.12 ± 0.07

All values are reported as mean ± s.d. of three independent measurements

doi:10.1371/journal.pone.0172981.t001

Existence of plant microRNAs in honey samples
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Surprisingly, the spectrophotometric analyses revealed the presence of RNAs even in apple

honey samples, demonstrating that these molecules were directly transferred and preserved

from their original sources to the final product. However, in all cases, the amount of RNA

extracted from plant tissue was about 35-fold higher than from honey, indicating a strong deg-

radation activity of the RNA during honey production.

RNA collected by total RNA extraction method, presenting an A260/280 ratio between 1.50

and 1.60 (Table 1), did not prove to be completely pure, although a silica-based membrane had

completely purified the extract. Moreover, very low values of A260/230 suggested that both

flower and honey samples could have been contaminated by carbohydrates and plant second-

ary metabolites that strongly absorb visible light at, or near, 230 nm [36]. These data may be

justified by the fact that this extraction kit, although designed for a wide range of matrixes (i.e.

animal cells, blood, fungi), does not include a specific step able to separate RNA from sugars

and other plant compounds. Indeed, apple honey, being rich of fructose and glucose, revealed

an extremely small A260/230 ratio (0.30).

Home-made extraction, as in the case of the previous method, has allowed us to obtain an

impure RNA: maybe, the presence of proteins, derived from the samples, or phenol residues,

used during the extraction procedure, negatively affected the A260/280 ratio [36]. After all, the

absence of a specific RNA purification filter, as that applied in the previous protocol, could jus-

tify this phenomenon. On the other hand, the application of detergents, such as CTAB and

PVP, strongly reduced the contamination levels of carbohydrates and plant compounds in the

final eluate, as suggested by the A260/230 ratios reported in Table 1. However, apple honey A260/

230 value still revealed the predominant sugary nature of this matrix.

The best A260/280 and A260/230 ratios were measured for the small/micro RNAs purified by

miRNA extraction kit. In both samples, no peculiar contamination was detected, while even

elevated purity values reached (Table 1).

According to this evidence, we have concluded that miRNA extraction kit, could be the

most suitable system for extracting microRNAs from honey, followed by the home-made RNA
extraction method.

In order to demonstrate the validity of the previous exctraction methods, the presence of

RNA purified from apple flowers samples through the different protocols was validated by

agarose-formaldehyde gel electrophoresis (Fig 1A). Large (28S and 18S) ribosomal RNAs

(rRNAs) were detectable in the extracts obtained by total RNA extraction method and home-
made RNA extraction, while the signal of the small and micro RNAs, including 5.8S and 5S

rRNAs, was weakly visible only in the first of these samples. Moreover, in both lanes, the

smears visualized above 28S rRNA band could be directly due to the presence of contaminants

in these extracts, as previously revealed and suggested by their altered A260/280 and A260/230

ratios.

Vice versa, no band of large dimensions were observable in the lane relative to miRNA
extraction kit. Indeed, as expected on the basis of this kit’s specific potentialities, this sample

exclusively showed a low molecular weight spot, this representing all honey small and micro

RNAs.

To verify stability and integrity of the RNA extracted from apple flowers and honeys with

the three purification procedures, a classic reaction of retrotranscription was carried out. Con-

sequently, each cDNA sample was used as a template for PCR amplifications of three different

plant gene regions, two short sequences arranged on the plastidial genome (rbc-L of 201 bp

and matK of 217 bp) and a long trait located on the nuclear one (18S rDNA of 844 bp). These

regions were chosen for two principal reasons: i) They represented some of the best plant

DNA barcodes, nucleotide successions highly conserved in plant kingdom and were very easy

to amplify and detect [28, 37–39]; ii) They presented different genetic origin (plastidial or

Existence of plant microRNAs in honey samples
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nuclear) and length (in bp), features which could be informative and useful for discriminating

between the type of RNA molecules purified during the extraction protocols.

All PCRs performed with cDNA synthesized starting from apple honey RNA extracted by

both total RNA extraction method and home-made RNA extraction produced amplicons. These

fragments were detected, analyzed and verified in length, through a molecular weight (M.W.),

by agarose gel electrophoresis (Fig 1B). As expected, no amplification was generated in PCR

reactions containing apple honey RNA purified with miRNA extraction kit, suggesting how

this procedure was not able to extract large/medium length RNAs. The same results were

obtained from flower samples.

Fig 1. Nucleic acid gel electrophoresis and visualization. (A) A representative image (of all the others produced with similar results) of RNAs purified

from apple flowers by three different extraction methods, total RNA extraction kit (T kit), home-made RNA extraction (H kit) and miRNA extraction kit (M kit),

and separated on formaldehyde-agarose gel was shown. Large (i.e. 28S and 18S rRNAs) and small/micro (i.e. 5/5.8S rRNAs) RNA bands were easily

detectable under UV light. (B) Here, the example of one of the various independent agarose gel electrophoreses performed, with similar results, was

reported. In particular, amplification products obtained in PCRs containing cDNA synthesized from honey RNA extracted by total RNA extraction kit (T) and

home-made RNA extraction (H) and specific primers for 18S rDNA, rbc-L and matK genes were shown. A molecular weight marker (M.W.) was also loaded

in the gel to confirm the dimension in base pairs (bp) of DNA fragments. (C) All qPCR amplifications were loaded on agarose gel, separated and visualized to

confirm the efficiency of the revealing system. The image represents one of the real-time PCR analysis performed on a honey sample subjected to miRNA

extraction kit. Positive and negative controls (respectively named UniSp6 and Neg. CNT1/2) were carried out at everyPCR amplification and verified on gel.

A molecular weight marker (M.W.) was also loaded into gel to validate the dimension in base pairs (bp) of DNA fragment signals.

doi:10.1371/journal.pone.0172981.g001

Existence of plant microRNAs in honey samples
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Our results clearly demonstrated, for the first time, the existence of plant RNAs in honey

samples. Moreover, these nucleic acids, directly derived from flower nectar, appeared to be

still stable, intact, undamaged and, probably, even functional within this sugary matrix.

All these data strongly suggested the hypothesis that, among plant RNAs, microRNAs could

also exist in honey. To prove this, RNA samples, obtained by the three extraction procedures,

were firstly subjected to a retrotranscription reaction specific for small and micro RNAs (miR-

CURY LNA Universal RT microRNA PCR, Synthesis Kit II; EXIQON) and then analyzed by

real-time PCR. The presence of nine different plant miRNAs (miR482b, miR156a, miR396c,

miR171a, miR858, miR162a, miR159c, miR395a and miR2118a), chosen for their abundant

expression, wide distribution in various plant districts and elevated nucleotidic conservation in

plant kingdom [29, 30, 40], was detected, studied and quantified with respect to plant 5S rRNA

which was used as internal loading control as suggested in literature [41, 42]. In order to verify

qPCR results, after amplification reaction, all samples were separated on agarose gels by electro-

phoresis and visualized, under UV light, by ethidium bromide staining. One of these gels, show-

ing the short nucleotide fragments derived from miRNA real-time PCR amplifications, was

reported in Fig 1C, as representative one. Positive and negative controls (respectively named

UniSp6 and Neg. CNT1/2, see “Materials and Methods” section) were performed throughout to

confirm adequacy, accuracy and efficiency of the qPCR revealing system.

As described in Table 1 (A, B and C panels), plant miRNAs were identified in apple honeys

and quantified by qPCR, with respect to the correspondent levels detected in M. domestica
flower samples. Apple honey miRNAs purified by total RNA extraction method (Table 2, panel

A) appeared to be much less concentrated (between 10−2 and 10−6 folds) than in apple flowers.

According to home-made RNA extraction (Table 2, panel B), M. domestica honeys appeared

to be completely lacking in plant small/micro RNAs, except in miR159c and 5S rRNA. In the

same context, even our flower samples showed no presence of the following plant miRNAs,

miR159c, miR171a, miR858, miR162a and miR482b. This evidence, in contrast with that pre-

viously obtained (Table 2, panel A), suggested that home-made RNA extraction was not ade-

quate for purification of small and micro RNAs from plant tissues and their derivatives.

Probably, one of the extraction steps of this protocol determined the loss of miRNA fraction,

as supported by the absence of small/micro RNA signal for this sample in Fig 1A.

qPCR assay performed on RNA purified by miRNA extraction kit (Table 2, panel C) corrob-

orated preceding data (Table 2, panel A), that is, the existence of miRNAs in M. domestica
honey samples. In particular, in this case, the levels of honey miRNAs were much higher than

those detected during the analysis carried out starting from RNA collected by total RNA extrac-
tion method (Table 2, panel A). This clearly demonstrated that miRNA extraction kit was the

best method for miRNA purification from honey samples, in comparison to total RNA extrac-
tion method which underestimated our results (note how, in Fig 1A, small/micro RNA band in

T kit lane was less strong than the M kit one).

Generally, we observed that plant miRNAs presented a lower concentration in apple honeys

than in M. domestica flowers, suggesting degradation and/or dilution processes of miRNAs

during honey production. Exceptionally, miR162a appeared to be more abundant in honey

than in plant tissue (Table 2, panel C), supporting the hypothesis that this specific miRNA was

more stable compared to others or accumulated in the sugary matrix from multiple nectars

sampled by honeybees.

A similar analysis was also performed on R. pseudoacacia nectar and its derivative honey, start-

ing from RNA purified by miRNA extraction kit (Table 2, panel D), demonstrating that plant

miRNAs might be directly transferred from plant exudates in honey through honeybee activity.

Finally, a comparison of plant miRNA content among different typologies of monofloral hon-

eys was carried out (Table 2, panel E). C. sativa honeys showed the richest miRNA profiles of all,
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followed by those of T. cordata, R. officinalis, R. pseudoacacia and Eucalyptus sp., respectively. By

contrast, M. domestica honeys appeared to possess the lowest concentrations of plant miRNAs

with respect to the other samples, except for miR156a and miR2118a which were higher. How-

ever, this result was hardly unexpected; in fact, as reported in Xia et al. [29], miR2118a, also

known as miRC3, is one of the plant miRNAs peculiarly abundant in M. domestica tissues, espe-

cially in leaves and flowers.

In conclusion, our research clearly demonstrated that honeybees are able to collect plant

RNAs together with nectar, during their forages, and to concentrate them in the honey. Of spe-

cial interest is how these nucleic acids were able to preserve their integrity and stability inside

the honey. However, the high concentrations of sugars in the honey and the stable conditions

of the hive might justify the previous observations.

Among honey plant RNAs, microRNAs represent the most important class on account of

their potential bioactivity. In fact, these molecules, if introduced by diet, could modulate the

cell gene expression of all honey consumers, as recently demonstrated for rice miRNAs [17].

The chemical stability of plant miRNAs [18–21] strongly supports the hypothesis that honey

miRNAs, after their assumption, are also absorbed into the blood and distributed in body tis-

sues to perform their biological function, namely the regulation of human target mRNA

Table 2. Plant miRNA detection and quantitation by qPCR in different plant-derived samples (flowers, honeys, seed powders, dried leaves).

Extraction method and samples Plant microRNA

miR159c miR171a miR156a miR858 miR395a miR162a miR396c miR2118a miR482b

PANEL A. Total RNA extraction kit

M. domestica flower* 100 100 100 100 100 100 100 100 100

M. domestica honey 0.01 0.61 1.05 e-4 6.42 e-4 2. 24 e-6 1.73 e-5 9.54 e-5 2.10 e-6 2.03 e-5

PANEL B. Home-made RNA extraction

M. domestica flower* n.d. n.d. 100 n.d. 100 n.d. 100 100 n.d.

M. domestica honey 0.02 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

PANEL C. miRNA extraction kit

M. domestica flower* 100 100 100 100 100 100 100 100 100

M. domestica honey 0.17 8.08 3.90 0.51 0.77 123.97 14.46 76.84 3.04

PANEL D. miRNA extraction kit

R. pseudoacacia nectar* 100 100 100 100 100 100 100 100 100

R. pseudoacacia honey 2.15 36.10 0.11 24.32 19.61 0.23 1.36 0.01 4.24

PANEL E. miRNA extraction kit

M. domestica honey* 100 100 100 100 100 100 100 100 100

R. pseudoacacia honey 6955.10 158.01 29.12 5610.28 48103.56 516.94 251.40 0.074 229.74

C. sativa honey 143815.2 1139.24 11697.04 80900.23 77068.63 3779.18 10325.01 33.22 668.07

Eucalyptus sp. honey 839.77 67.83 89.50 6579.93 3939.66 231.34 208.49 10.51 139.47

T. cordata honey 20365.73 309.51 198.62 19808.83 5688.59 111.73 303.14 43.83 606.29

R. officinalis honey 6268.29 168.18 12.67 5381.74 12109.54 502.80 1837.92 12.41 1100.43

PANEL F. miRNA extraction kit

C. arabica seed powder* 100 100 100 100 100 100 100 100 100

C. sinensis dried leaf 0.02 1.91 0.03 1.04 0.01 3312.85 1.36 e-13 0.63 0.05

T. cacao seed powder 6.08 506.30 0.32 3885.42 0.02 5784882 2.54 e-10 0.46 0.19

* control sample used as unit (100%)

Dark or light grey boxes correspond, respectively, to higher or lower concentrations of miRNA compared to the control

n.d. not detected

All values is reported as mean of three independent measurements; s.d.<8% of the mean value; p<0.04 vs control

doi:10.1371/journal.pone.0172981.t002
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translational process. This supposition would explain some of the medicinal properties of this

natural matrix [23, 24] and would also suggest new putative biological applications for this

food.

Plant miRNAs, ingested by humans with honey, could show affinity for mammalian

mRNAs which are not normally regulated by animal miRNA or which change and alter the

biological effect of endogenous miRNAs, acting on the same, similar or opposite targets. Con-

cerning the latter hypothesis, it has indeed been widely documented that miRNA bioactivity is

strongly dependent on its cell concentration and copy number of the relative target mRNA

which, in turn, is finely regulated by physiological conditions, external environmental stimuli
and internal signaling pathways [43]. According to this observation, it appears clear that even

low doses of plant miRNA, as detected in some honeys, may exert their biological function on

mammalian gene expression.

This study opens up new perspectives on honey’s potentially beneficial effects and strongly

suggests, as a future goal, the importance of performing next generation sequencing (NGS)

analyses to fully characterize the honey miRNome. At this point, it is necessary to underline

how our study demonstrated that honey’s botanical and geographical origin might influence,

both the quality and the quantity, of honey’s miRNA content, so suggesting the existence of a

specific miRNA-based fingerprint for each honey. In addition, we cannot exclude that honey

can also contain some A. mellifera miRNAs which honeybees directly release in this matrix

during its production and storage in the hive.

Finally, as supplementary study, we investigated the presence of plant miRNAs in C. arab-
ica, C. sinensis and T. cacao commercial products (Table 2, panel F); this was to verify if these

molecules remained intact from the plant source to their final processed form, as in the case of

honey. Coffee and cocoa seed powders showed a richer miRNA profile than did dried tea

leaves. These results raise the interesting question as to whether the plant miRNAs identified

in the samples above could explain the well-known antioxidant, stimulating and health proper-

ties of beverages derived from the same plants.
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