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After the pde1 gene was found to be essential for growth in an experimental
meningitis model (1), Cron et al. further showed in a 2011 study that Streptococcus

pneumoniae mutants with pde1 (SP2205 in TIGR4; SPD2032 in D39) and its paralogue
pde2 (SP1298 in TIGR4; SPD1153 in D39) knocked out exhibited reduced host cell
adherence and attenuated virulence in a mouse model of meningitis (2). Following
work confirmed that Pde1 acts as a phosphodiesterase, cleaving c-di-AMP into pApA (3,
4). These signaling molecules are known to have broad effects on the cell (5) and were
again shown to affect growth and virulence in a mouse model of pneumonia. In both
studies, the authors suggested that these proteins are promising vaccine targets;
however, further evidence of their importance in human infection is needed to bolster
these claims.

In a recent study of 674 adults with culture-proven pneumococcal meningitis (6), we
searched concurrently sampled bacterial genomes from the blood and cerebrospinal
fluid (CSF) for adaptation to either niche occurring postinvasion (7). Here we present
results of additional analysis performed using this study that support the conclusions
of Cron et al. with respect to a natural population.

First, we observed that pde1 did not appear to be under selection in the sampled
population, as the ratio of nonsynonymous to synonymous mutations was neutral
(dN/dS � 0.89) and contained variants with a site frequency spectrum similar to that of
other genes (Fig. 1a and b; Tajima’s D � �1.69; P � 0.94). However, comparing the
variations between samples taken from the same patient during meningitis and given
the overall small number of mutations occurring during the rapid progression of
disease, pde1 showed a significant enrichment of mutations (P � 10�10). As all these
mutations were nonsynonymous, this strongly implies that selection acts on pde1
during the course of invasive disease.

We computationally predicted (8, 9) the effect of the 19 mutations observed to
occur in pde1 during meningitis and have plotted these along with the predicted
functional domains in Fig. 1c. Of these mutations, 14 are predicted to change protein
function, without causing a loss of function (LoF). The mutations are not evenly
distributed across the gene and are mostly clustered in the DHH family domain or just
before it. While this does not allow a singular interpretation of the effect of these
variants on gene function, we are able to conclude that selection appears to be
operating on pde1 during meningitis.
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This corollary from our study therefore strongly supports the conclusion of Cron et
al. that pde1 is essential for virulence and additionally shows variation to be important
in specific regions of pde1 which should be considered in follow-up work. Together,
these studies give good evidence that Pde1 might be an important component of a
pneumococcal protein vaccine.
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FIG 1 Evidence of selection on pde1 during meningitis. Panels a and b show the site frequency spectra (SFS; histograms of minor allele frequency) of mutations
in just pde1 and in all coding regions (CDS), respectively. Variants are colored according to the predicted effect. Panel c shows the positions and predicted effects
of mutations observed in pde1 during cases of meningitis and pfam predicted domains. MAF, minor allele frequency; a.a., amino acids.
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