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Abstract

Eukaryotic cells can die from physical trauma, resulting in necrosis. Alternately, they can die via 

programmed cell death upon stimulation of specific signalling pathways. Here we discuss the 

utility of four cell death pathways in innate immune defence against bacterial and viral infection: 

apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave 

different programmed cell death pathways, which create complex signalling networks that cross-

guard each other in the evolutionary arms race with pathogens. Finally, we describe how the 

resulting cell corpses — apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil 

extracellular traps (NETs) — promote clearance of infection.
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Introduction

Cell death can be either programmed or accidental. Programmed cell death results in either 

lytic or non-lytic morphology, depending upon the signalling pathway. For example, 

apoptosis1,2 is a non-lytic and typically immunologically silent form of cell death. On the 

other hand, programmed lytic cell death is highly inflammatory, and includes 

necroptosis3–5, pyroptosis6, and the rapid release of so-called neutrophil extracellular 
traps (NETs) in a process known as NETosis7. The elimination of host immune cells by 

programmed cell death can be thought to benefit an infecting pathogen8. However, 

programmed cell death is increasingly understood to benefit the host, for example, by 

eliminating the intracellular niche of certain pathogens9. Furthermore, the resulting cellular 

corpses coordinate an appropriate innate immune response to promote the resolution of 

infection. However, since our understanding of innate immune defences is mainly based on 

work with pathogens that evade these defences, it is often difficult to recognize how 

programmed cell death functions in response to infections. Indeed, many discoveries of cell 

death functions are based on experiments with pathogens that have been genetically 

modified to remove their normal host evasion strategies.

Significant crosstalk exists between different cell death pathways, and as a result, innate 

immune signalling pathways are well guarded against pathogen attack. The ‘guard 

hypothesis’ was first developed in plant immunity, where studies have shown that innate 

immune sensors monitor for perturbation of other innate immune signalling pathways10. For 

example, in Arabidopsis thaliana, pathogens often attempt to inhibit key proteins that are 

involved in innate immune signalling. When pathogens attack one such protein, RPM1-

interacting protein 4 (RIN4), the perturbation is detected by two different nucleotide 

oligomerization domain (NOD)-like receptors (NLRs), which activate programmed cell 

death — a phenomenon known as the hypersensitive response in plants — to combat the 

pathogen11,12. This guard mechanism is echoed in mammalian programmed cell death 

pathways, which function to guard each other as well as other innate immune signalling 

pathways.

In this Review, we discuss how the host utilizes programmed cell death to fight infections 

with a focus on in vivo studies. We also discuss how difficult, but not impossible, it can be 

for pathogens to evade programmed cell death because of the guard functions built into the 

signalling pathways. We discuss the role of pyroptosis, necroptosis and apoptosis during 

infection, and how their signalling pathways are functionally interwoven to make them 

guard each other. Finally, we discuss the fate of dead cell corpses such as apoptotic bodies, 

NETs, and pore-induced intracellular traps (PITs), and how their physical properties are 

beneficial to fight infection.

Inflammasomes trigger pyroptosis

Inflammasomes are cytosolic sensors that activate caspase 113. Once activated, caspase 1 

cleaves pro-interleukin-1β (IL-1β) and pro-IL-18 into their mature forms, and cleaves 

gasdermin D (encoded by Gsdmd) to induce pore opening and pyroptosis. (Figure 1). 

Inflammasomes are cytoplasmic platforms composed of either NLR, AIM2-like receptor 
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(ALR), or tripartite motif-containing (TRIM) proteins that detect contamination of the 

cytosol by DNA, bacterial flagellin, the type 3 secretion system (T3SS) needle and rod 

subunits, toxins and cellular perturbations. Mouse caspase-11 — which is duplicated in 

humans as caspase-4 and caspase-5 — also induces pyroptosis14, but does not cleave pro-

IL-1β or pro-IL-18 on its own. Caspase-11 directly detects lipopolysaccharide (LPS) when it 

enters the cytosol15–17, and thus protects against infection by cytosol-invasive Gram-

negative bacteria such as Burkholderia thailandensis18,19, but can be evaded by pathogens 

such as Francisella novicida15 and Shigella flexneri20. Caspases-11, -4 and -5 are often 

called the non-canonical inflammasome14. The role of inflammasomes in pyroptosis has 

been reviewed in detail6 and is summarized in Fig. 1.

Recently, two research groups independently discovered that caspases-1 and -11 cleave 

gasdermin D and this cleavage is required to trigger pyroptosis21,22. This finding was later 

confirmed by a third research group23. Interestingly, cleavage of gasdermin D was observed 

a few years earlier, but its importance remained uninvestigated24. Gasdermin D is a member 

of the greater gasdermin-domain protein family, consisting of 6 members in humans and 10 

in mice25. The function of other gasdermin family members remains to be further elucidated, 

and while many probably induce pyroptosis21, it remains unclear how they are activated.

Gasdermins are bipartite proteins whose N- and C-terminal domains are connected by a 

linker, and have several proposed roles in immune-related diseases25. Caspases-1 or -11 

cleave this linker of gasdermin D, releasing the N-terminal domain21,22, which then 

associates with the inner leaflet of the plasma membrane and oligomerizes to form pores. 

These pores range in size from 10–33 nm26–29, just large enough to allow passage of mature 

IL-1β (which is 4.5 nm)26,28; this could explain how IL-1β can be released from cells that 

do not lyse, which might occur, hypothetically, if a very low number gasdermin D pores 

form. Small, but detectable, amounts of IL-1β may escape through these pores, while small 

amounts of sodium and water enter. The resulting mild cell swelling should be counteracted 

by regulatory volume decrease mechanisms, preventing membrane rupture30. Later, the cell 

could remove the pores by normal membrane repair processes31. Conversely, if more 

gasdermin D pores form, significant swelling should overwhelm the regulatory volume 

decrease, resulting in membrane rupture that we call pyroptosis, and the release of any 

remaining processed IL-1β from the cytosol. The N-terminal domain of gasdermin D has 

affinity not only for the inner leaflet of the plasma membrane, but also for other 

phospholipids and cardiolipin26–28,32, which suggests that it may also target organelles. In 

this regard, permeabilization of the endoplasmic reticulum may explain the calcium flux that 

occurs during pyroptosis33,34.

Although numerous pathogens trigger pyroptosis in vitro, the role of pyroptosis in vivo is 

much less studied. Mice deficient in caspase 1 have an increased susceptibility to a variety of 

pathogens (Table S1). The importance of pyroptosis in vivo is primarily inferred from 

comparing the resistance to infection of Casp1−/− mice with Il1b−/−Il18−/− mice. This 

comparison remains to be performed for many pathogens. The recently generated Gsdmd−/− 

mice are defective for both pyroptosis and release of IL-1β and IL-18 (at least in vitro)21–23, 

so a genetic approach to inhibit pyroptosis while maintaining cytokine secretion remains 
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elusive. Finally, it is important to remember that defence against infection may require 

IL-1β, IL-18 and pyroptosis in conjunction35.

Pyroptosis defends against intracellular bacteria

The most direct evidence for pyroptosis in clearing infections comes from the investigation 

of bacterial strains engineered to activate the NLR family, CARD-containing 4 (NLRC4) 

inflammasome and induce pyroptosis in vivo. Normally, Salmonella enterica subsp. enterica 
serovar Typhimurium and Listeria monocytogenes efficiently evade inflammasomes during 

the systemic phase of infection in mice9,36–39. By contrast, strains engineered to persistently 

express flagellin are detected by NLRC4 and are rapidly cleared. The observation that mice 

deficient in IL-1β and IL-18 could still clear these flagellin-engineered bacteria suggests that 

pyroptosis is the primary mechanism for bacterial clearance9,36–38. Similarly, caspase 11 

provides in vivo defence against S. Typhimurium strains (sifA mutants) that have lost the 

ability to maintain the integrity of the Salmonella-containing vacuole and thus aberrantly 

enter the cytosol18. After pyroptosis in vitro, bacteria are damaged40, perhaps by gasdermin 

D pores28 and are more susceptible to secondary insults such as hydrogen peroxide or 

antibiotics40. However, the physiologic relevance of this observation remains unclear, since 

pyroptosis and gasdermin D are insufficient to kill intracellular bacteria in vivo9. Instead, 

after pyroptosis in mice, bacteria are transferred to neutrophils, where they are killed by 

reactive oxygen species (ROS)9,40.

Pyroptosis also protects against non-engineered, opportunistic microorganisms in vivo, 

including Chromobacterium violaceum, B. thailandensis, Burkholderia pseudomallei and F. 
novicida18,19,39,41,42. However, additional supporting data is needed to confirm this 

protection43. Amongst these bacteria, B. thailandensis and C. violaceum have the strongest 

phenotypes of all tested pathogens in inflammasome-deficient mice19,39 (Table S1)44. As 

few as 100 colony forming units (CFUs) of C. violaceum or B. thailandensis are lethal to 

inflammasome-deficient mice, whereas wild-type mice survive challenges by 1,000,000 to 

20,000,000 CFU. The strength of these phenotypes leads us to propose the Red Pawn 

Hypothesis, a corollary to the Red Queen Hypothesis. We propose that despite their evasion 

by host-adapted pathogens, inflammasomes may be maintained over evolutionary time due 

to their critical role in defence against pathogens that are co-evolving with a non-mammalian 

host that lacks inflammasome defences. Thus, some ubiquitous environmental bacteria have 

specific virulence traits capable of manipulating a generic eukaryotic cell, making them 

potentially lethal pathogens. However, they are unprepared for the mammalian innate 

immune system, including inflammasome-driven responses (Box 1 and further discussion in 

reference 44).

Box 1

Hypothesis to explain inflammasome importance despite evasion by 
pathogens

In Lewis Carol’s Through the Looking Glass, Alice finds herself in a race with the Red 

Queen, in which “it takes all the running you can do, to keep in the same place.” This 

inspired the evolutionary hypothesis that constant change is required to survive within a 
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constantly changing environmental niche alongside constantly changing competitors. But 

in the end, each organism tends to maintain its place within the niche. This concept 

applies to the host-pathogen interaction: as hosts (Alice) evolve new immune responses, 

pathogens (the Red Queen) evolve virulence factors to overcome them. For example, 

numerous pathogens evade inflammasome detection156. Thus, many successful 

pathogens appear to be perpetually one step ahead in the evolutionary equilibrium 

between inflammasome detection and evasion. On the other hand, aberrant 

inflammasome activation can be lethal15,16,34, which might select for loss of these 

sensors over time. One must ask, then, why would Alice run with inflammasomes that 

fail to fight the Red Queen?

Interestingly, there are two pathogens which inflammasomes decisively control in vivo, 

Burkholderia thailandensis19 and Chromobacterium violaceum39 (Table S1)44. Both 

employ significant virulence traits that make them lethal to inflammasome-deficient mice 

and immunocompromised people. But in normal animals, inflammasomes render them 

harmless. B. thailandensis and C. violaceum are ubiquitous soil/mud bacteria whose 

natural host remains unknown; perhaps it is a lower eukaryote that lacks inflammasomes, 

such as insects or nematodes.

This leads us to propose a corollary to the Red Queen Hypothesis. We propose that C. 
violaceum and B. thailandensis are not running an evolutionary race alongside humans 

because they are not natural human pathogens. Instead, they run a completely separate 

race altogether, alongside a non-human host. They may occasionally lose their way and 

stumble clumsily onto the human racecourse, where they find themselves brushed aside 

by inflammasomes. Hence, the mammalian innate immune response is perpetually 
winning the evolutionary race against environmental pathogens that may be dangerous, 

but that lack sophisticated immune evasion strategies.

This could explain why inflammasomes are maintained over evolutionary time despite 

the prevalence of evasive pathogens. Inflammasomes may act as a barrier to prevent 

opportunistic infection. Such a barrier may not be perfect since B. thailandensis has two 

close relatives that have advanced on the pathway to mammalian pathogenesis – 

environmental bacteria that have evolved into Red Queens. Burkholderia pseudomallei is 

broadly pathogenic to mammals and causes melioidosis157. Further along the adaptation 

course is B. mallei, which is the highly virulent equine-adapted cause of glanders158. 

Further caveats to the this hypothesis are described in ref 44.

Our hypothesis thus predicts that certain innate immune sensors provide a near-

permanent victory for the host in defence against a large reservoir of potentially deadly 

environmental pathogens, while host-adapted pathogens must evade these sensors.

Additionally, inflammasomes provide defence against microorganisms that have adapted to 

mammalian hosts. For example, although S. Typhimurium efficiently evades inflammasomes 

during systemic infection, they are detected in the gut45. Intestinal epithelial cell NLRC4 

triggers epithelial cell shedding during infection. Whether this process is a precursor stage 

during pyroptosis, or is fully independent of pyroptosis requires further study45. Caspase-11 

Jorgensen et al. Page 5

Nat Rev Immunol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



appears to play a similar, parallel role in epithelial shedding to eliminate the low frequency 

but rapidly replicating sub-population of S. Typhimurium that aberrantly enter the cytosol46.

Pyroptosis during viral infection

Inflammasomes also induce pyroptosis in vitro following the detection of viruses, such as 

murine cytomegalovirus (MCMV) via the double-stranded DNA-detecting cytosolic sensor 

AIM2. Parallel in vivo studies show that Aim2−/− mice are susceptible to MCMV 

infection47. However, whether this susceptibility arises from pyroptosis, IL-1β or IL-18 

remains to be explored. Conversely, a detrimental effect of pyroptosis has been described 

during HIV infection. Interferon-γ (IFNγ)-inducible protein 16 (IFI16) — which is an 

AIM2-like receptor that detects viral nucleic acids — induces pyroptosis in CD4+ T cells 

abortively infected by HIV48. This is proposed as the major pathway by which HIV depletes 

CD4+ T cells in vivo49,50. Conversely, IFI16 has also been suggested to play a beneficial role 

in the defence against HIV infection, although pyroptosis was not examined as a possible 

mechanism51.

RIPK3 triggers necroptosis

Necroptosis, like pyroptosis, is a form of programmed lytic cell death. Necroptosis can be 

triggered by a variety of intricate pathways (discussed below) and perhaps the simplest 

pathway is through Z-DNA binding protein 1 (ZBP1; also known as DAI and DLM-1).

Induction of necroptosis by ZBP1

ZBP1 binds either Z-DNA or Z-RNA via two Z-DNA binding motifs, and can respond to 

MCMV (a DNA virus) or Influenza (a RNA virus)52–54. Unlike the normal B-form of DNA, 

Z-form DNA results from tosional strain that may occur during rapid DNA synthesis that 

could occur during viral infection. Once activated, its receptor-interacting protein (RIP) 

homotypic interaction motif (RHIM) binds the RHIM of RIP kinase 3 (RIPK3)52. This 

interaction stimulates RIPK3 kinase activity, auto-phosphorylation and oligomerization55–57 

and RIPK3 phosphorylates the necroptosis effector mixed lineage kinase domain-like 

(MLKL)58 (Figure 2). Following phosphorylation by RIPK3, the MLKL pseudokinase 

undergoes a conformational switch59, licensing interaction with the inner leaflet of the 

plasma membrane where MLKL oligomerizes to form the necroptotic pore60–62, which is 

analogous to gasdermin D for pyroptosis. Additional steps may also regulate MLKL63. After 

pore formation, the terminal events in necroptosis are similar to those in pyroptosis; osmotic 

pressure from ion and water influx results in rupture of the plasma membrane. In our hands 

pyroptosis and necroptosis (both at 2h post treatment) are morphologically identical in 

primary macrophages40, with the exception of slightly different nuclear morphology (I.J. and 

E.A.M, unpublished observation). Other research laboratories visualize differences in 

RAW264.7 macrophages in settings where pyroptosis is fast (2h) while necroptosis is slow 

(4h)32. The morphologies in comparison deserve further study. Necroptosis can be 

investigated in vivo by using Ripk3−/− or Mlkl−/− mice; however, RIPK3 has been suggested 

to have non-necroptotic functions during influenza infection64 and during inflammatory 

disease models65. Therefore, before attributing a phenotype to necroptosis, it is important to 

verify that phenotypes observed in Ripk3−/− mice are also seen in Mlkl−/− mice.
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Necroptosis defends against viral infections

The clearest phenotypes for necroptosis during in vivo infection highlight an antiviral role. 

MCMV encodes a viral inhibitor of RIP activation (vIRA), whose RHIM mimic inhibits 

RIPK3 signalling, and thereby prevents necroptosis52. A RHIM domain mutant virus is 

attenuated, but this attenuation is reversed in Ripk3−/− and Zbp1−/− mice52. Similarly, 

human-adapted herpes simplex virus 1 (HSV-1) and HSV-2 express two protein homologs, 

ICP6 and ICP10, that inhibit human RIPK366,67. However, there appears to be some degree 

of species tropism; human HSV-1 ICP6 interacts with mouse RIPK3, presumably attempting 

to inhibit it, but due to the species mismatch, RIPK3 is activated, which triggers necroptosis 

to prevent viral replication66–68. Accordingly, Ripk3−/− mice are susceptible to HSV-1 

infection69. This idea does not hold true for MCMV, which inhibits necroptosis in both 

human and mouse cells66.

The antiviral role for necroptosis is further supported by the observation that Ripk3−/− mice 

are susceptible to vaccinia virus infection56. The RIPK3 pathway also defends against a 

mouse adapted influenza infection. Zbp1−/− and Ripk3−/− mice have increased mortality 

during infection influenza A PR854,64. However, the susceptibility of Ripk3−/− mice to 

influenza virus was not replicated in another study70 and a third study shows the reverse, 

where Zbp1−/− mice have higher viral titers but reduced tissue damage and mortality53, 

suggesting a simultaneously beneficial role in defense paired with a detrimental role in 

immunopathology.

Finally, Ripk3−/− mice have normal resistance to mouse hepatitis virus71. Many other mouse 

viral infection models remain to be examined in Ripk3−/− and Mlkl−/− mice. All reported 

lethality phenotypes of Ripk3−/− and related necroptosis pathway mice are summarized in 

Table S1.

Necroptosis during bacterial infections

To date, in vivo data does not support an important role for necroptosis against bacterial 

infections. The most prominent report proposed that reduced necroptosis leads to increased 

susceptibility to S. Typhimurium infection in mice lacking Ifnar1 (which encodes interferon 

α/β-receptor subunit 1)72. However, this study did not compare other competing hypotheses, 

most importantly the hyper-responsiveness of Ifnar1−/− mice to IFNγ (which combats 

intracellular bacteria such as S. Typhimurium) due to increased expression of the IFNγ 
receptor73. Wild-type and Ripk3−/− mice showed similar susceptibility to S. Typhimurium 

infection72, demonstrating that necroptosis plays little role in IFNAR1-sufficient mice. 

Similarly, Ripk3−/− mice and wild-type mice are comparably sensitive to Yersinia 
pseudotuberculosis74 and Citrobacter rodentium infections75. Ripk3−/− mice may have a 

subtle (but statistically insignificant) susceptibility to an LPS engineered Yersinia pestis 
strain that cannot evade TLR476 (Table S1). Interestingly, Mlkl−/− mice are susceptible to 

Staphylococcus aureus skin infection77, but paradoxically Ripk3−/− mice are resistant to 

both skin and lung infection77,78. Inhibitor treatment suggests that necroptosis may be 

pathologic during Serratia marcescens infection79, but this needs further study using 

knockout mice. Specific inhibition of RIPK3 by bacteria has not yet been described. Many 

more bacterial infection models remain to be examined in Ripk3−/− and/or Mlkl−/− mice, and 
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it seems likely that some will establish a role for necroptosis in defence against specific 

bacteria.

Apoptosis during infections

Apoptosis is programmed cell death characterized by cytoplasmic shrinking, cell rounding, 

chromatin condensation, DNA fragmentation and membrane blebbing1,2. Apoptosis can be 

initiated by cell extrinsic pathways (which are mediated by death receptors) or cell intrinsic 

(mitochondrial) pathways, both of which culminate in the activation of the effector caspases 

3, 6 and 7 (Figure 2). Apoptosis can also be initiated by cytotoxic T lymphocytes (CTLs) or 

natural killer (NK) cells that deliver granzymes, which activate apoptotic caspases. Upon 

completion of apoptosis, cellular contents are encapsulated within membrane bound 

apoptotic bodies. If these bodies are not cleared, they will undergo secondary necrosis 

(rupture), releasing cytosolic damage-associated molecular patterns (DAMPs) to the 

extracellular space80. The role of apoptosis against infection is perhaps best appreciated by 

inference, since numerous viruses and bacteria encode apoptosis inhibitors that are essential 

for virulence (reviewed in 81,82). This again raises the conundrums posed in the Red Pawn 

Hypothesis, if most viruses evade apoptosis, are there pathogens that apoptosis effectively 

counters, providing fully penetrant innate immunity (Box 1). Here, we focus on some of the 

recent advances in apoptosis that are relevant to infection.

Guarding cell intrinsic apoptosis with interferons

Intrinsic apoptosis is often driven by cell intrinsic stresses such as DNA damage and growth 

factor withdrawal, which leads to mitochondrial outer-membrane permeabilization 

(MOMP) 83,84. Although its structure remains to be fully elucidated, the MOMP pore 

appears to be formed by BAX and BAK83,84. MOMP leads to release of mitochondrial 

contents, including cytochrome c, into the cytosol where it binds to the NLR protein 

apoptotic protease activating factor 1 (APAF1), which oligomerizes into a hub to form the 

apoptosome — an activating platform for the initiator caspase 9. Activated caspase 9 in turn 

cleaves and activates the effector caspases 3 and 72. Since apoptosis destroys the replicative 

niche of intracellular pathogens, particularly viruses, those that prevent apoptosis will 

replicate better as the infected cell lives longer.

Historically, apoptosis is considered immunologically silent owing to the collective efforts of 

caspases. For example, apoptotic DAMPs that can induce a robust type I interferon-mediated 

proinflammatory response are dampened by caspases85,86. During viral infection of 

Casp9−/− or Casp3−/−Casp7−/− cells, MOMP is initiated, but apoptosis fails to proceed. 

MOMP eventually releases mitochondrial DNA (mtDNA) into the cytosol, where it is 

detected by the DNA sensor cGAS, resulting in a type I IFN response85,86. Thus, pathogens 

that only block caspases will encounter a cGAS-driven type I IFN response that effectively 

guards events downstream of MOMP. This interferon response promotes resistance to viral 

infections including encephalomyocarditis virus (EMCV) and vesicular stomatitis virus 

(VSV). By contrast, blockade upstream of MOMP — which can be studied in Bax−/−Bak−/− 

mice — does not trigger cGAS because MOMP is not initiated and mitochondria retain their 

DNA85,86.
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Apoptosis/necroptosis guard innate immune signalling

Cell extrinsic apoptosis is typically initiated by extracellular stress signals that engage a 

subset of TNF-superfamily of receptors called death receptors2. Prototypical extrinsic 

stimuli include FasL, TNF and TNF-related apoptosis-inducing ligand (TRAIL). Following 

death receptor engagement, caspase 8 (human caspase 10) are recruited and activated via the 

death inducing signalling complex (DISC). In certain cell types, caspase 8 can also cleave 

BID into tBID, initiating MOMP in a positive feedback loop that leads to caspase 9, another 

initiator caspase, thus ensuring a strong initiation of. Thus, caspase 8 activation connects 

extrinsic and intrinsic apoptosis (Figure 2).

Additionally, caspase 8 is ensconced within the TNF receptor 1 (TNFR1), TLR3, and TLR4 

signalling pathways3–5,87. Caspase 8 interacts with RIPK1, which is a key scaffolding 

protein within the signalling cascade3–5,87. Thus, caspase 8 is often interpreted as a node that 

regulates the divergence of signalling towards either transcriptional responses or apoptosis. 

For example, it is frequently stated that caspase 8 regulates TNF-dependent transcriptional 

responses and TNF-driven apoptosis3–5,87. In this section, we will present this pathway from 

the perspective of a pathogen.

TNFR1, TLR3, and TLR4 are important innate innate immune sensors — which respond to 

TNF, double-stranded RNA and LPS, respectively — that drive potent transcriptional 

responses (but do not trigger cell death under normal circumstances) 3. Hence, these sensors 

are attractive targets for pathogens to inhibit, particularly since all three use RIPK1 as a 

scaffolding node to assemble signalling complexes (Figure 2). However, when signalling at 

or below RIPK1 is pharmacologically inhibited, this causes an alteration in the flow of 

signals through the pathway, which triggers a counter response that activates caspase 83,5. In 

other words, if pathogens target these signalling pathways they would be met by a caspase 8 

tripwire that triggers apoptosis. If pathogens possessed virulence strategies to 

simultaneously target RIPK1 and caspase 8, they would encounter a second tripwire in 

RIPK3, which also interacts with RIPK1. As the first caspase 8 tripwire fails to function, 

signalling build-up at RIPK1 results in the activation of RIPK3, triggering this second guard 

pathway that drives the response to infection to necroptosis rather than apoptosis (Figure 2). 

Thus, caspase 8, RIPK1 and RIPK3 essentially function as a triangular guard system.

This cross-guarded system becomes activated during embryogenesis in Casp8−/− mice, 

causing embryonic lethality4. In line with the cross-guard model, Casp8−/− lethality is 

rescued by simultaneous deletion of Ripk388,89. Thus, caspase-8 is guarded by RIPK1-

RIPK3 driven necroptosis.

Further, recent evidence suggests that RIPK3 is guarded by caspase 8, essentially reverse 

guarding the guard. Although Ripk3−/− mice are viable and healthy, mice engineered to 

carry some (but a not all) point mutations within the Ripk3 kinase enzymatic site suffer from 

neonatal lethality as a caspase 8 guard program becomes activated, triggering lethal 

apoptosis during development90,91. In this guard system, the RIPK3 protein must be present 

and abnormal in order to trigger caspase 8, whereas simple absence of RIPK3 does not trip 

this guard pathway (as it does when caspase 8 is absent. This could explain instances where 

stimuli cause necroptosis, but Mlkl−/− cells still die whereas Ripk3−/− cells live; in Mlkl−/− 
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cells signalling events may accumulate at RIPK3, triggering the guard function of caspase 8, 

but this does not happen if Ripk3 is deleted53.

Finally, RIPK1 is guarded by both caspase 8 and RIPK3. Deletion of Ripk1 can only be 

rescued by simultaneous deletion of both Casp8 and Ripk392–94, illustrating redundant 

guarding. On the necroptosis side, there are two pathways that guard RIPK1. The first is 

direct, where RIPK3 activates autonomously in response to deleted or abnormal RIPK1. The 

second is upstream, when RIPK1 is absent or its RHIM domain is mutated, this triggers 

activation of ZBP1, which normally docks on RIPK1 to hold it in check95,96. Thus, 

Ripk1RHIM mice can be rescued by crossing with either Mlkl−/−, Ripk3−/− or Zbp1−/− 

mice95,96. ZBP1 then activates RIPK3. These essentially double guard RIPK1.

To add to the complexity, the caspase 8 guard function is built into the RIPK1 scaffold 

function; TNFR1–TLR3–TLR4 signalling fails to drive transcription in Casp8−/− cells97,98. 

It seems that RIPK1 fails to function when it is unable to interact with its guard caspase 8. 

The same may be true for Ripk3−/− cells but only in specific cell types99. In contrast, TLR2 

signalling, which does not use TRIF–RIPK1, remains intact76,100 (although one study did 

see defects in TLR2 signaling75, perhaps due to autocrine TNF signalling; also see Figure 2 

legend and Box 2).

Box 2

Compound defects in Casp8−/− mice

Investigators generated mice lacking caspase 8 to study cell extrinsic apoptosis in vivo, 

but these mice turned out not to be viable4. A caspase 8 deletion induces necroptosis and 

destruction of the yolk sac vasculature, and this circulatory failure leads to embryonic 

death. However, introduction of Ripk3−/− complements the lethality, and Casp8−/− 

Ripk3−/− mice are viable since cells in these mice cannot undergo necroptosis88,89. 

Comparing Casp8−/− Ripk3−/− mice to Ripk3−/− controls allows study of caspase 8 

genetic deficiency in vivo. However, these mice must be interpreted with great caution 

since the Casp8−/− mutation eliminates multiple signalling pathways: i) it eliminates 

extrinsic apoptosis driven by TNF, Fas, and TNF-related apoptosis-inducing ligand 

(TRAIL), which could be beneficial during infection88,89,159; ii)) it alters homeostasis in 

adaptive immune cells, resulting in a lymphoproliferative disorder that is apparent at 2 

months of age88,89; iii) it significantly impedes or fully abrogates transcriptional 

responses via tumour necrosis factor receptor (TNFR), Toll-like receptor 3 (TLR3) and 

TLR4 due to loss of the caspase 8–RIPK1 scaffolding platform97,98; iv) its effect on TNF, 

TLR3 and TLR4 also prevent these receptors from post-translational priming of the 

NLRP3 inflammasome75,76,100,107–109. Fadd−/− Ripk3−/− mice are similarly 

affected71,74,75,160. This makes it difficult to assign a precise caspase 8 function to 

phenotypes observed by comparing Casp8−/− Ripk3−/− to Ripk3−/− mice. In order to do 

this, one could start by comparing various Ripk3−/− background mice. For example, the 

resistance of Casp8−/− Ripk3−/− mice to endotoxic shock88 may be similar to Tlr4−/− 

Ripk3−/− mice but not Nlrp3−/− Ripk3−/− mice. This would begin to ascribe the 
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mechanism to the effect of Casp8 deletion upon TLR4 signalling and not to its influence 

upon NLRP3.

One way to try to study cell extrinsic apoptosis in vivo is to compare Casp8−/−Ripk3−/− mice 

to Ripk3−/− control mice. However, given the compound effects of deleting Casp8 
(elaborated in Box 2), it is not surprising that Casp8−/−Ripk3−/− mice are highly susceptible 

to multiple infectious challenges. Casp8−/−Ripk3−/− mice have more rapid dissemination 

and/or lethality of fully virulent Y. pestis or Y. pseudotuberculosis74,76. These mice also 

have higher stool burdens during C. rodentium infection75. Furthermore, they succumb to 

infections by Y. pestis strains engineered to enhance TLR4 detection 76, perhaps due to 

defective TLR4 signalling. Defective TLR4 signalling would also explain the resistance of 

Casp8−/− background mice to endotoxic shock88. Fadd−/−Mlkl−/− mice (which are similar to 

Casp8−/−Ripk3−/− mice, see Box 2) have increased mortality to influenza A virus 

infection64, perhaps due to defects in TLR3 signalling.

In summary, multiple innate immune defence pathways intersect at the caspase 8–RIPK1–

RIPK3 triangle. It seems likely that the intricate cross wiring of these pathways plays an 

important role in preventing pathogens from inhibiting the function of TLR3, TLR4, 

TNFR1, extrinsic apoptosis and necroptosis.

Neutrophil NETosis makes NETs

Whereas necroptosis and apoptosis are seen in many cell types, another form of cell death is 

uniquely observed in neutrophils — NETosis, which primarily functions to extrude NETs101 

(Figure 3). NETosis is triggered by various microbial and sterile activators — a process that 

was recently shown to differentiate between microbes based on their size102 — or by 

ligation of specific receptors including complement, antibody, cytokine, and TLRs103. 

During NETosis, ROS-dependent release of elastase and myeloperoxidase from neutrophil 

granules to the nucleus (though not under all conditions104) promotes histone degradation 

and chromatin decondensation105. The effects of ROS and proteases on the nuclear material 

leads to extrusion of a meshwork of chromatin fibers dotted with granules containing anti-

microbial molecules, which traps and kills extracellular bacteria and fungi.

NETosis is accompanied by ruptures in the plasma membrane and neutrophil lysis101. 

However, a mounting body of evidence demonstrates that neutrophils can release NETs 

while maintaining an intact plasma membrane103; this is paradoxically referred to as ‘vital 

NETosis’, in contrast to the typical ‘suicidal NETosis’. After vital NETosis, neutrophils 

continue to function in chemotaxis, phagocytosis and bacterial killing106. Whether a 

neutrophil undergoes suicidal or vital NETosis appears to be dependent on the NET-inducing 

stimulus. It is unknown how NETs are extruded from neutrophils without lysing the cell.

Whether NETosis has antimicrobial functions that are independent of NET extrusion 

remains unknown, but one could imagine that pathogens within neutrophils during NETosis 

could be killed by the release of granule contents into the nucleus or cytosol (see REF 7 for a 

comprehensive review on NET signalling mechanisms). How NETs combat infection is 

described further below in our discussion of consequences of cell death.
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Cross-talk between cell death pathways

There are many cross-pathway signalling events between apoptosis, necroptosis and 

pyroptosis (Figure 4). Most prominent amongst these are NLR family, pyrin domain-

containing 3 (NLRP3) interactions with the difference cell death pathways. Although the 

precise signal detected by NLRP3 is uncertain, NLRP3 can be considered as the “sensor for 

cellular catastrophe” (Box 3), activating when normal cellular physiology breaks down.

Box 3

As the sensor of cellular catastrophe, NLRP3 detects the pyroptotic and 
necroptotic pores

Although NLRP3 is the most extensively investigated inflammasome, it remains the most 

enigmatic. NLRP3 is activated in response to numerous insults, including pore-forming 

toxins, ionophores and phagocytosis of indigestible particulates. As such, NLRP3 detects 

catastrophic events, including the inability to maintain a cytosolic potassium 

concentration161 via an unknown biochemical mechanism. Besides loss of cytosolic 

potassium, other mechanisms have also been proposed to explain NLRP3 activation, 

including ER stress and mitochondrial dysfunction162.

NLRP3 is also activated downstream of lipopolysaccharide (LPS) detection by caspase 

1114. When caspase 11 cleaves gasdermin D, it polymerizes into the pyroptotic pore. The 

resulting loss of cytosolic potassium triggers NLRP3 and consequent interleukin-1β 
(IL-1β) and IL-18 processing163,164 (Fig. 3). Thus, NLRP3 has a very short activation 

window before cellular swelling causes rupture of the plasma membrane. IL-1β secretion 

downstream of cytosolic LPS is thus much lower than other direct inflammasome 

agonists. To date there is no in vivo evidence supporting physiologic relevance of NLRP3 

activation downstream of caspase 11. In fact, caspase 11-dependent defence against 

Burkholderia thailandensis does not require NLRP319, which argues against an in vivo 

role, at least in this model system.

Similarly, NLRP3 activation downstream of necroptosis53,100,110 may be caused by the 

same mechanism. It is likely that potassium loss after opening of the MLKL pore is 

detected by NLRP3. This pathway may promote IL-1β secretion in vivo during influenza 

virus and vesicular stomatitis virus infection165, but more work is needed to determine 

whether MLKL is the primary pathway whereby NLRP3 is activated in vivo, or whether 

NLRP3 is actually responding to some other catastrophic event during infection in vivo.

Role of caspase 8 upstream of inflammasome signalling

Caspase 8 is a component of the TNFR1–TLR3–TLR4 signalling scaffold. Therefore, loss of 

caspase 8 prevents these receptors from providing both post-translational and transcriptional 

priming of inflammasome components. For example, pro-IL-1β and NLRP3 transcriptional 

induction is compromised in Casp8-deficient cells75,76,100,107–109, although this may not 

hold true for all cell types110. Furthermore, NLRP3 requires TNFR1 or TLR signalling to 

provide post-translational priming111–113. Thus, Casp8−/− cells fail to prime NLRP3 after 

TNFR1, TLR3, or TLR4 stimulation, but can prime NLRP3 within 10 minutes of TLR2 
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stimulation76,100,108,114. However, when longer time points (4 hours) are examined, TLR2-

driven TNF may require caspase 8 to cause paracrine stimulation75. In contrast, Casp8-
deficiency does not prevent activation of inflammasomes that do not need priming, such as 

NLRC475,107. The in vivo relevance of these interactions remains to be assessed.

Caspase-8 downstream of inflammasomes ensures death

Caspase 8 can also function downstream of inflammasomes, which makes caspase 8 

interactions more complicated. Caspase 8 may guard pyroptosis, and thereby ensure 

activation of cell death in a hypothetical situation where a pathogen attempt to inhibit 

pyroptosis. ASC is a small adaptor between most inflammasomes and caspase 1; the ASC 

pyrin domain (PYD) interacts with the PYD of inflammasomes, while its casapse activation 

and recruitment domain (CARD) interacts with the CARD of caspase 113. Upon activation 

by inflammasomes, ASC polymerizes to provide a large surface area of activating CARD 

domains115,116. In the absence of caspase 1, cell death still occurs after ASC polymerization, 

but under slower kinetics and with apoptotic morphology. Here, caspase 8 is proposed to 

interact with ASC via an unusual heterotypic death domain fold interaction between the 

ASC CARD and the caspase 8 death effector domain117–119 (Figure 4). This pathway may 

be most relevant when a pathogen directly inhibits caspase 1 without preventing ASC 

polymerization120. This situation is mimicked by comparing Asc−/− to Casp1−/− mice, which 

reveal an in vivo effect of cytokine responses via this pathway during a F. novicida 
infection117,121, but this has no effect on the F. novicida bacterial load117,121.

In addition, caspase 8 may be directly activated by caspase 1 in settings where gasdermin D 

is absent. Although cell death was fully ablated in Gsdmd−/− cells in one study21, a slower 

form of cell death was observed in another study22 that was later suggested to be apoptosis 

associated with caspase 8 activation23. By contrast, this pathway to apoptosis was not 

observed after activation of caspase 1122 (Figure 4).

Some researchers describe this pathway as “suppression of apoptosis by pyroptosis” 23, or as 

a “balance between pyroptosis and apoptosis” that depends on the quantity of agonist118. 

However, we prefer the interpretation that this is a versatile pathway that can “switch from 

pyroptosis to apoptosis” in the hypothetical case where a pathogen inhibits pyroptosis, thus 

ensuring cell death117. Apoptosis could thus be considered as a backup guard pathway for 

pyroptosis, however the in vivo relevance in controlling pathogen burdens remains to be 

elucidated.

Finally, caspase 8 has been proposed to substitute for caspase 1 as an pro-IL-1β and pro-

IL-18 cleaving enzyme121–125, although this function warrants further study.

In summary, caspase 8 has been proposed to function upstream of inflammasomes, but also 

downstream of inflammasomes, which creates a quite confusing picture when one attempts 

to integrate the multiple functions into a single model. In vivo validation of these 

interactions will hopefully reveal their physiological importance.
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Caspase 1 driven IL-18 primes caspase 11

Mouse caspase 11 activation is strictly dependent upon priming; in vitro this is commonly 

accomplished by studying cells previously primed by type I IFNs (via TLR3 or TLR4 driven 

type I IFN secretion)6, or by TLR2 stimulation16. The TLR3 pathway has been used in vivo 

to enable caspase 11 priming during LPS shock models15,16. Surprisingly, these pathways 

were insufficient to prime caspase 11 during infection with the cytosol-invasive bacterium B. 
thailandensis in vivo19. Instead, NLRC4-driven caspase 1 activation was required to drive 

IL-18 production, which in turn stimulated IFNγ within the first day of infection. IFNγ was 

absolutely essential for caspase 11 priming in this model, while endogenous TLR agonists 

and type I IFN were insufficient. The IL-18 requirement could be bypassed only under 

delayed kinetics after 3 days as alternate mediators eventually promoted IFNΓ production19. 

Thus, in the context of intracellular bacterial infection in vivo, caspase 1 acts upstream of 

caspase 11 priming, which was surprising as NLRP3 and caspase 1 are commonly thought to 

function downstream of caspase 11 (Box 3).

IL-18 drives NK cytotoxicity vs intracellular bacteria

NK-derived IFNΓ is well established to combat intracellular bacterial infection. However, 

whereas NK cytotoxicity is critical in combating viruses such as MCMV, HSV-1, influenza 

virus, and cancer, initial in vitro studies suggesting that bacterially infected cells are killed 

by NK cells have been uniformly disproven by subsequent in vivo studies126,127. 

Collectively, this data led to the conclusion that cytokines rather than cytotoxicity is the 

primary mode of NK cell- mediated protection against intracellular pathogens. However, our 

group recently showed that NK lysis of infected hepatocytes is crucial for controlling 

infection by an intracellular bacterial pathogen39. In this model, infected phagocytes 

detected C. violaceum via NLRC4, which lead to production of IL-18 and activation of liver 

NK cells. Activated NK cells then directly lysed infected hepatocytes in a perforin-

dependent manner. NK cytotoxicity also controlled the inflammasome-evasive L. 
monocytogenes infection, but only when mice were treated with exogenous IL-1839. This 

example highlights the importance of direct cytotoxicity against bacteria and crosstalk 

between two different cell death modalities — inflammasomes and apoptosis — to 

efficiently fight infection. Similarly, NK cytotoxicity initiated by inflammasome detection of 

S. Typhimurium in a colitis model was recently shown to promote inflammation128 and 

Prf1−/− mice were also susceptible to C. rodentium during the innate phase of infection129. 

Interestingly, human, but not mouse, NK cells have additional means to directly kill bacteria, 

since granulysin delivered upon NK degranulation is directly toxic for both bacteria and 

parasites130,131.

How programmed cell death clears infection

Recent studies have examined the fate of pathogens after apoptosis, necroptosis and 

pyroptosis, and how these cell death mechanisms promote the resolution of infection. 

Apoptosis converts cells into apoptotic bodies, which release a series of find-me and eat-me 

signals that promote efferocytosis (phagocytosis of dead cells). How the necroptotic and 

pyroptotic cells are cleared, is currently under thorough investigation. These mechanisms 

remove the niche for intracellular viruses and bacteria, but pathogens frequently survive host 

Jorgensen et al. Page 14

Nat Rev Immunol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell death. Finally, NETosis generates structures that are specifically microbicidal. In this 

final section we discuss what happens to pathogens after programmed cell death (Figure 3).

Efferocytosis of apoptotic bodies

The resolution phase of apoptosis is another example of how apoptotic caspases maintain 

immunological silence. Failure to clear apoptotic debris can contribute to inflammatory or 

autoimmune disease{Poon:2014ik}. During normal development and homeostasis, apoptotic 

bodies are efferocytosed by a secondary phagocyte, thereby preventing secondary necrosis 

and maintaining immunological quiescence80. Efferocytosis is currently an active area of 

research in the context of infection.

Until recently, apoptosis was often considered intrinsically bactericidal. For example, 

apoptosis was thought to kill Mycobacteria spp. in vitro132 and in vivo133. However, recent 

studies suggest that Mycobacteria tuberculosis and Mycobacterium mariunum survive 

apoptosis, but are subsequently killed after efferocytosis by a secondary macrophage134,135. 

This efferocytic phagosome matures, acidifies and kills the bacteria via ROS. Notably, 

pathogens that resist apoptosis, such as Mycobacterium, also interfere with efferocytosis, 

which increases their survival136. L. monocytogenes, on the other hand, exploits 

efferocytosis receptors in order to spread from cell to cell137. The Listeriolysin O toxin 

damages the plasma membrane, exposing phosphatidyl serine, which is recognized by 

TIM4. As L. monocytogenes propels itself with actin comets, TIM4 on the neighbouring cell 

promotes efferocytosis of the protruding membrane, enabling L. monocytogenes to enter the 

next cell137.

Virus-containing apoptotic bodies can also be efferocytosed; for example, influenza A virus 

induces apoptosis of infected epithelial cells, and neighbouring macrophages efferocytose 

apoptotic bodies containing viral progeny, which reduces viral titers138. On the other hand, 

some viruses use mimicry to induce apoptosis in order to spread to neighbouring cells139.

NETs trap extracellular microbes

In addition to killing pathogens after phagocytosis, neutrophils can target extracellular 

pathogens using NETs101. NETs play two distinct anti-microbial roles by trapping and 

killing pathogens. Extensive intravital and confocal microscopy of neutrophils in infected 

tissue show in real time how bacterial and fungal pathogens can be trapped in 

NETs103,105,140. Moreover, additional pathogens are trapped in the extracellular chromatin 

in vitro. In fact, systemic DNase treatment in a mouse model of a S. aureus skin infection, 

which induces NET formation, resulted in the escape of the bacteria from the site of 

inoculation and increased vascular bacterial loads106.

The extent to which NETs are directly capable of killing bacterial and fungal pathogens 

remains controversial, since not all bacterial pathogens trapped in NETs are killed and there 

are no known specific inhibitors that unlink NET release from NET antimicrobial activity. 

For example, in vitro DNase treatment of Streptococcus pneumonia and Candida albicans 
trapped in NETs results in the release of viable bacteria141. This lack of microbial killing 

may stem from the loss of optimal protease activity of key bactericidal enzymes, such as 

elastase, under in vitro conditions142. Moreover, many research groups have clearly 

Jorgensen et al. Page 15

Nat Rev Immunol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated anti-microbial activity of NETs against a variety of microbes in vitro140, and 

trapping is obviously beneficial to the host103,143. For example, intravital microscopy of 

Escherichia coli trapped in NETs within liver sinusoids demonstrate that disruption of NETs 

via platelet depletion or DNase treatment prevents trapping and promotes dissemination143. 

The use of vital DNA-intercalating dyes demonstrate that bacteria trapped within NETs are 

killed101,144. A thorough discussion of the controversies regarding the composition and 

antimicrobial properties of NETs was recently published145.

Many pathogens directly disrupt NETs — for example group B Streptococcus146, Vibrio 
cholera147, Yersinia enterocolitica148 and Neisseria gonorrhoeae149 — by expressing 

nucleases that degrade the NET-associated chromatin, which enables them to escape from 

NETs and may result in systemic dissemination and sepsis. Other pathogens, such as 

Haemophilus influenza150, Pseudomonas aeruginosa151 and S. pneumoniae152, evade NETs 

by incorporating NET-associated DNA into their biofilms, which promotes their replication 

in vivo. Hence, trapping of some microorganisms by NETs in the absence of bacterial killing 

could be advantageous to the pathogen. Finally, some pathogens evade killing by NETs by 

sidestepping the specific antimicrobial activity of NET components by expressing 

polysaccharide capsules153,154. A full overview of exotoxins that disrupt NETs and other 

evasion mechanisms are reviewed elsewhere155.

Pore-induced intracellular traps

Recent evidence from our group establishes the fate of the pyroptotic cell corpse and its role 

in orchestrating a downstream innate immune response. Similar to apoptosis, pyroptosis 

does not kill bacteria9,40. We initially assumed that pyroptosis released intracellular bacteria 

to the extracellular space9. However, in a follow-up study we show that viable bacteria 

remain trapped within the cellular debris of pyroptotic macrophages40. This trapping appears 

to be mediated by the pyroptotic cell membrane, which remains largely intact despite 

containing discreet ruptures, encompassing collapsed organelles and cellular structures. We 

call this structure the pore-induced intracellular trap (PIT) 35,40 (Figure 3), which is 

conceptually parallel to NETs. Both PITs and NETs trap the pathogen and prevent microbial 

dissemination. In contrast to NETs, which act against extracellular microbes, PITs are trap 

intracellular microorganisms. In addition to pyroptosis, necroptosis and necrosis also result 

in formation of a PIT that is efferocytosed by neutrophils and macrophages40, although the 

in vivo relevance of necroptotic and necrotic PITs in the context of infection remains to be 

elucidated.

PITs coordinate innate immune responses to combat intracellular bacteria; PIT formation 

leads to complement activation, release of IL-1β and IL-18, and eicosanoid production. 

These mediators recruit neutrophils, which utilize phagocytic scavenger and complement 

receptors to efferocytose the PIT and entrapped bacteria35,40, which is conceptually parallel 

to efferocytosis of bacteria trapped within apoptotic bodies134. Ultimately, this secondary 

phagocyte kills the bacteria via ROS40.

We therefore propose that PITs are highly effective immunologically important structures 

with two key functions; PITs immobilize the pathogen to prevent dissemination and promote 

efferocytosis by a secondary phagocyte that kills the pathogen.
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Concluding remarks

Much work remains to be done to fully understand how pyroptosis, necroptosis, apoptosis 

and NETosis defend against infection in vivo. Still, genetic tools to study programmed cell 

death in vivo remain confounded by effects upon other aspects of host defence. For example, 

Gsdmd deletion prevents pyroptosis, but also prevents IL-1β and IL-18 secretion; similarly, 

Casp8 deletion prevents cell extrinsic apoptosis, but also may trigger necroptosis, cause a 

lymphoproliferative disorder, and inhibit innate immune receptor signalling (Box 2). Despite 

such difficulties, our understanding of programmed cell death has significantly advanced in 

recent years, revealing the utility of programmed cell death during infection both to destroy 

intracellular niches, and to coordinate an appropriate innate immune response thereafter. 

Finally, if a programmed cell death modality is exquisitely effective against a specific 

virulence strategy, this exerts strong selective pressure for those pathogens to evade the 

response. Therefore, when interpreting the results of experimental infections it is important 

to keep in mind the competing possibilities that the host may be benefiting, the pathogen 

may be evading, or that host defence and pathogenic evasion may both be partially effective. 

In this regard, identification of new infectious agents that fail to evade specific cell death 

pathways can aid our understanding of the true function of programmed cell death during 

infection.
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Glossary

Apoptosis
A common form of cell death, which is also known as intrinsic or programmed cell death. 

Many physiological and developmental stimuli cause apoptosis, and this mechanism is 

frequently used to delete unwanted, superfluous or potentially harmful cells, such as those 

undergoing transformation

Pyroptosis
Programmed lytic cell death via caspase-1/4/5/11 cleavage of GSDMD, and recently 

expanded to include lytic cell death caused by other gasdermin family proteins

Necroptosis
Programmed lytic cell death via RIPK3 activation of MLKL

Apoptosis
Programmed non-lytic cell death in which initiator caspases-2/8/9/10 activate executioner 

caspases-3/6/7
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NETosis
Programmed neutrophil death that results in formation of NETs

Apoptotic bodies
Apoptotic bodies form after apoptosis

NETs
Neutrophil extracellular traps that form after NETosis

pore-induced intracellular traps (PITs)
Structures that form after pyroptosis and necroptosis to retain organelles and bacteria
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Online summary

• Pyroptosis is programmed lytic cell death caused by caspase-1/4/5/11 

cleavage of GSDMD. Recent work suggests that pyroptosis defends against 

infection by vacuolar or cytosol-invasive bacteria.

• Necroptosis is programmed lytic cell death caused by RIPK3 activation of 

MLKL. Recent work suggests that necroptosis defends against viral infection.

• Apoptosis can be activated by extrinsic and intrinsic signals. It is a critical 

host defence mechanism, and pathogens have evolved to both evade and co-

opt apoptosis.

• Apoptosis and necroptosis guard each other to make it difficult for pathogens 

to inhibit these programmed cell death mechanisms. Despite this, pathogens 

such as MCMV seem to inhibit both pathways simultaneously.

• The signaling cascades leading to apoptosis, necroptosis, and pyroptosis have 

numerous interactions, creating a complex web of programmed cell death 

mechanisms to defend against infection. In this regard, physiologic relevance 

for apoptosis and necroptotic cross guarding is established, but most other 

interactions remain to be fully explored.

• Neutrophil extracellular traps (NETs) and pore-induced intracellular traps 

(PITs) are mechanism to physically restrain bacteria in the extracellular or 

intracellular space, respectively. These cellular corpses can be considered as 

structures that exist in parallel to apoptotic bodies (the corpse of an apoptotic 

cell).
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Figure 1. Pyroptosis
Pyroptosis is initiated by either caspases 1 or 11. Caspase 1 is activated by one of several 

inflammasomes, NOD-, LRR- and pyrin domain-containing 3 (NLRP3), AIM2, interferon-γ 
(IFNγ)-inducible protein 16 (IFI16), pyrin, NOD-, LRR- and CARD-containing 4 (NLRC4) 

and NLRP1b6. NLRP3 responds to numerous agonists, which may converge upon low 

cellular potassium concentration, although this remains controversial. NLRP3 will not 

respond to these agonists unless it also receives a priming stimulus via various Toll-like 

receptors (TLRs) or from tumour necrosis factor (TNF), which trigger post-translational 

priming (probably de-ubiquitination), as well as boosting NLRP3 sensitivity by 

transcriptional induction162. AIM2 detects cytosolic DNA83,84, and IFI16, which lacks a 

clear mouse homolog166, also detects viral nucleic acids50. Pyrin detects modulation of Rho-

family GTPases by bacterial toxins167. NLRC4 is activated by one of three bacterial flagellin 

or type III secretion rod or needle proteins that signal via an upstream NLR in the NAIP 

family9,36,168,169. NLRP1b detects the protease activity of the anthrax lethal toxin170,171. By 

contrast, caspase 11 itself is the sensor for cytosolic lipopolysaccharide (LPS)15–17. Similar 

to NLRP3, caspase 11 requires priming, but priming is by either type I interferon or 

interferon-γ (IFNγ). Either caspases 1 or 11 independently cleaves gasdermin D, from 

which the released N-terminal fragment associates with the cell membrane and oligomerizes 
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to form the pyroptotic pore26–29. The cell then swells, resulting in membrane rupture that is 

called pyroptosis. In addition, caspase 1 will cleave pro-interleukin-1β (pro-IL-1β) and pro-

IL-18 to their mature forms (caspase 11 cannot do this directly)14. Mature IL-1β and IL-18 

can escape through the gasdermin D pore, or be released later by membrane rupture26,28. 

Red and blue lines represent initiating and priming events, respectively.
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Figure 2. Apoptosis and Necroptosis
(Left) Apoptosis can be triggered via intrinsic or extrinsic pathways, including by natural 

killer (NK) cells and cytotoxic T lymphocyte (CTL) granzymes. These stimulate the 

cleavage of BID to tBID, which causes BAX and/or BAK to trigger mitochondrial outer-

membrane permeabilization (MOMP), resulting in release of cytochrome C (CytC), which 

binds to apoptotic protease activating factor 1 (APAF1). APAF1 then oligomerizes into the 

apoptosome, the platform for caspase 9 activation. Either caspases 8 or 9 will cleave the 

effector caspases 3 and 7 into their active forms, which leads to apoptosis2. (Right) 

Necroptosis can be triggered by DNA-sensing via ZBP152, which activates receptor-

interacting protein kinase 3 (RIPK3) followed by phosphorylation of MLKL. 

Phosphorylated MLKL binds to the inner leaflet of the plasma membrane and forms the 

necroptotic pore60–62. (Center) In the more complex necroptotic pathway, tumour necrosis 

factor receptor 1 (TNFR1), Toll-like receptor 3 (TLR3)–TRIF, or TLR4–TRIF signal via 

RIPK1 to activate NF-κb (but RIPK1 is not required for the TRIF-type I IFN response97,98). 

RIPK1 can be thought of as a finely balanced teeter-totter with two guards: caspase 8 on one 

side balanced by a duo of RIPK3 and ZBP1 on the other. When TNFR1–TLR3–TLR4 

signalling proceed normally, RIPK1 is “balanced” and functions as a scaffolding protein that 

becomes poly-ubiquitinated, and serving as a platform for signalling complex assembly5 

driving transcriptional responses. When signalling is inhibited, for example by inhibition of 

cIAP1/2 pharmacologic inhibitors (with SMAC mimetics), by inhibiting TAK1, by 

inhibition of protein synthesis, or by blocking RIPK1 ubiquitination 3, or potentially by 

virulence factors, RIPK1 becomes “unbalanced”. RIPK1 then recruits FADD (a DD-DED 
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adaptor) via DD-DD interactions, and FADD recruits caspase 8 via DED-DED interaction 

thereby triggering extrinsic apoptosis172–174. Successful caspase 8 activation provides 

negative feedback to prevent necroptosis by cleaving RIPK1 and RIPK3 in the kinase 

domains175,176. However, inhibition of caspase-8 pharmacologically or by viral virulence 

factors permits continued RIPK1 kinase activity, and the teeter-totter swings the other 

direction. RIPK1 recruits RIPK3 via RHIM-RHIM interaction, and phosphorylates it, 

triggering RIPK3 kinase activity and necroptosis177–179. Thus, RIPK1, RIPK3, and caspase 

8 act as a cross guard system for TNFR1, TLR3, and TLR4. TLRs such as TLR2 that do not 

signal through TRIF76,100,108,114, unless longer time points are examined75 where TLR2-

driven TNF could require caspase 8 to cause paracrine TNFR1 stimulation.
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Figure 3. Apoptotic bodies, neutrophil extracellular traps and pore-induced intracellular traps
The fate of the cell corpse is dependent on the cell death pathway. Extrinsic or intrinsic 

apoptosis leads to the formation of apoptotic bodies that are engulfed by a secondary 

phagocyte, a process that is referred to as efferocytosis. In the absence of efferocytosis, 

apoptotic bodies can undergo secondary necrosis. Lytic death of cells infected with an 

intracellular pathogen, including pyroptosis, leads the formation of a pore-induced 

intracellular trap (PIT), which traps the pathogen within the cell corpse. The PIT also 

presents ligands that are recognized by neutrophils (and potentially macrophages), which 

efferocytose the PITs and associated bacteria, ultimately killing the pathogen. Efferocytosis 

of pathogen-containing apoptotic bodies also eliminates the pathogen. Necroptosis and 

necrosis also result in PITs in vitro, although the physiologic importance in vivo needs 

further study. Following detection of extracellular pathogens, neutrophils extrude a 

meshwork of chromatin dotted with granules loaded with antimicrobial molecules. These 

neutrophil extracellular traps (NETs) trap and kill extracellular pathogens.
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Figure 4. Interactions between apoptotic, necroptotic and pyroptotic pathways
Cell death pathways can interact with each other, with the caveat that once a cell death 

pathway runs to completion, the interaction ends. The exception to this is the lysis of 

apoptotic bodies by secondary necrosis, which releases cytosolic contents, effectively 

converting apoptosis to lytic cell death. Signalling pathways running through RIPK1 will fail 

if Casp8 is deleted, affecting priming of NOD-, LRR- and pyrin domain-containing 3 

(NLRP3) and caspase 1175,76,100,107–109. Caspase 1 driven IL-18 can have two interactions 

with other pathways, first by inducing interferon-γ (IFNγ) production to prime caspase 

1119, and second by stimulating NK cytotoxic activity39. The terminal events occurring after 

the MLKL or gasdermin D pores open are catastrophic, resulting in loss of cellular 

potassium, which is the trigger for NLRP3 activation163,164. In the window between 

potassium loss and membrane rupture, NLRP3 activity will trigger caspase 1-dependent 

processing of interleukin-1β (IL-1β) and IL-18 processing. Finally, ASC and caspase 1 can 

activate caspase 8, triggering apoptosis22,23,117,118. Purple lines are interacting pathways.
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