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This journal section presents a real, challenging case involving a multidrug-
resistant organism. The case authors present the rationale for their therapeutic
strategy and discuss the impact of mechanisms of resistance on clinical outcome.
An expert clinician then provides a commentary on the case.

ABSTRACT We report a case of infective endocarditis (IE) caused by ceftaroline-
resistant, daptomycin-tolerant, and heterogeneous vancomycin-intermediate methicillin-
resistant S. aureus (MRSA). Resistance to ceftaroline emerged in the absence of drug
exposure, and the E447K substitution in the active site of PBP2a previously associ-
ated with ceftaroline resistance was identified. Additionally, we present evidence of
patient-to-patient transmission of the strain within the same unit. This case illus-
trates the difficulties in treating MRSA IE in the setting of a multidrug-resistant phe-
notype.
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Infective endocarditis (IE) due to methicillin-resistant Staphylococcus aureus (MRSA) is
a life-threatening infection for which vancomycin (VAN) has long been considered

the drug of choice. However, its effectiveness has been questioned due to the emer-
gence of S. aureus strains with reduced susceptibility to VAN (VAN-intermediate S.
aureus [VISA] or heterogeneous resistance [hVISA]). Daptomycin (DAP) is a lipopeptide
antibiotic with reliable in vitro bactericidal activity that is frequently used to treat
invasive MRSA infections, including IE. Unfortunately, the emergence of DAP nonsus-
ceptibility during therapy threatens its efficacy against severe MRSA infections, espe-
cially in the setting of decreased susceptibility to vancomycin (1). Among other
alternatives, ceftaroline (CPT), a �-lactam with high affinity for penicillin-binding protein
2a (PBP2a), has been successfully used as salvage therapy for recalcitrant MRSA
bacteremia and IE and has emerged as an interesting drug to manage these infections
(2). However, recent reports of CPT-resistant MRSA isolates also threaten the clinical
utility of this drug (3).
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CASE PRESENTATION

The patient is a 36-year-old man without significant past medical history who was
admitted to the burn unit after a motor vehicle accident resulting in burns of 28% of
body surface. On day 46 of admission, the patient developed fever (102°F), and blood
cultures yielded MRSA (VAN MIC, 1 �g/ml). The patient was started on VAN (1 g every
8 h), and a transesophageal echocardiogram revealed a 0.8- by 0.5-cm vegetation on
the aortic valve. On day 7 of VAN therapy (trough levels between 15 and 20 �g/ml),
blood cultures remained positive, and the patient developed an acute myocardial
infarction attributed to an embolic occlusion of the coronary artery due to septic
emboli. VAN was stopped, and therapy was switched to DAP (8 mg/kg body weight
daily) plus CPT (600 mg every 8 h). The MICs of the isolate recovered from the
bloodstream before the change of therapy were 2, 1, and 4 �g/ml for VAN, DAP, and
CPT, respectively (Table 1). The patient rapidly improved after starting the new regimen,
blood cultures cleared after 24 h, and he completed 6 weeks of combination therapy
without recurrence of the bacteremia. Seven days after the onset of bacteremia in the
patient described above, a 60-year-old man who had been admitted to the same unit
with burns encompassing 55% of the body surface was diagnosed with ventilator-
associated pneumonia (VAP). The organism recovered from bronchoalveolar lavage
(BAL) fluid was an MRSA isolate that was also found to have a CPT MIC above the
established clinical breakpoint (6 �g/ml) (Table 1). The patient was treated with VAN
monotherapy with clinical improvement.

CHALLENGE QUESTION

What is the rationale for using the combination of DAP plus CPT in the treatment of
recalcitrant infections caused by MRSA?

A. Development of reduced susceptibility to DAP is associated with an increase in
susceptibility to �-lactams that target penicillin-binding protein 1 (PBP1).

B. CPT has intrinsic activity against MRSA.
C. �-Lactams seem to increase the binding of DAP to the cell membrane target.
D. The increased susceptibility to �-lactams has also been identified in hVISA and

VISA MRSA strains that exhibit similar phenotypic characteristics to strains that have
reduced susceptibility to DAP.

E. All of the above.

TREATMENT AND OUTCOME

High-inoculum MRSA infections and exposure to VAN are well-known risk factors for
the development of the VISA/hVISA phenotype (4). Additionally, VISA/hVISA isolates
have been shown to concomitantly exhibit decreased DAP susceptibility and to share

TABLE 1 Susceptibility profiles of isolates from both patients

Antimicrobial(s)

MIC (�g/ml) for isolatea:
Interpretation
(CLSI breakpoint MIC
[�g/ml])bIE VAP

Vancomycin 2* 2* S (�2)
Daptomycin 1* 1* S (�1)
Ceftaroline 4* 6* R (�1)
Clindamycin �4 �4 R
Erythromycin �4 �4 R
Gentamicin �8 �8 R
Levofloxacin �4 �4 R
Oxacillin �2 �2 R
Linezolid 1 1 S
Rifampin �1 �1 S
Tetracycline �1 �1 S
TMP-SMXc �0.5/9.5 �0.5/9.5 S
aIE, infective endocarditis; VAP, ventilator-associated pneumonia; *, MIC was determined with the Etest.
bS, susceptible; R, resistant.
cTMP-SMX, trimethoprim-sulfamethoxazole.
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common genetic pathways leading to tolerance to both of these compounds (5). In our
case, the unexpected finding of CPT resistance left us with very few options to treat this
patient. The combination of DAP and �-lactam antibiotics has shown synergism against
MRSA, despite having �-lactam MICs out of the susceptible range (6). We decided to
discontinue VAN and initiate a combination of DAP (8 mg/kg daily) plus CPT (600 mg
every 8 h), which resulted in clinical success.

Due to the unexpected presence of CPT resistance and possibility of patient-to-
patient transmission, we characterized the CPT-resistant S. aureus isolates recovered
from the IE case and subsequent VAP patient. A detailed description of the methods is
included in the supplemental material. The isolates obtained from both patients
showed identical pulsed-field gel electrophoresis (PFGE) patterns (Fig. 1A) and antibi-
otic susceptibilities (Table 1). Screening of hVISA by the glycopeptide resistance de-
tection (GRD) Etest was positive for both strains (Fig. 1B), and population analyses
showed a subpopulation growing at a VAN concentration of 3 �g/ml (as is usually
observed with hVISA strains). However, the calculated ratio of PAP to area under the
concentration-time curve (AUC) compared to strain Mu3 was �9 (see Fig. S1 and Table
S3 in the supplemental material). DAP and CPT were bacteriostatic in time-kill assays,
but the combination of both antibiotics was synergistic, achieving bactericidal activity
against the S. aureus strain recovered from the bloodstream of the IE patient (Fig. 1C).
Whole-genome comparison of the strains showed the presence of 144 single nucleo-
tide polymorphisms (SNPs) that differed between the isolates, suggesting that they
were closely related strains. Additionally, both harbored SCCmec II agr type II and
belonged to sequence type 105 (ST105) by multilocus sequence typing (MLST) (clonal
complex 5). The analysis of resistomes predicted resistance to 5 antibiotic families and
was concordant with the clinical susceptibility report (see Table S1 in the supplemental
material). We found no genetic changes previously associated with DAP or VAN
resistance or tolerance (see Table S2 in the supplemental material). In terms of CPT
resistance, both isolates exhibited the E447K amino acid substitution in the predicted

FIG 1 PFGE, GRD test, and killing curves for S. aureus isolates. (A) SmaI restriction-PFGE results for the IE
and VAP strains show identical patterns. (B) Result of GRD test for IE and VAP strains after 48 h of
incubation. (C) Time-kill assays for the CPT-resistant hVISA IE strain. The CPT-resistant hVISA IE strain was
grown in Mueller-Hinton broth (MHB) supplemented with DAP (9 �g/ml) alone, CPT (4 �g/ml) alone, or
the DAP-CPT combination and in the absence of DAP and CPT. DAP alone and CPT alone failed to show
bactericidal activity, defined as �3-log10-CFU/ml reduction at 24 h in comparison to the initial inoculum.
However, the combination restored the bactericidal activity and showed synergistic effects (�2-log10-
CFU/ml reduction at 24 h in comparison to each antibiotic alone). The limit of detection was 10 CFU/ml.
IE, infective endocarditis, VAP, ventilator-associated pneumonia; MHA, Mueller-Hinton agar, TP,
teicoplanin.
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PBP2a protein encoded by the mecA gene. No other changes previously related to CPT
resistance were found.

In a single case, we illustrate the difficulties in treating MRSA IE when resistance
emergences during therapy, showing the immense adaptability and plasticity of these
multidrug-resistant organisms. The most striking feature of our case is the emergence
of CPT resistance without exposure to the antibiotic and the ability of CPT-resistant
organisms to be transmitted from patient to patient. Previous reports of CPT resistance
emerging during therapy have been associated with the use of this antibiotic—
sometimes for prolonged periods of time (3)—and to the best of our knowledge,
emergence of resistance in the absence of CPT exposure has not been consistently
documented. Our isolates harbored the E447K substitution in the predicted active site
of PBP2a, which is one of the signature changes associated with CPT resistance (3). No
changes in the allosteric domain of PBP2a or in other proteins previously involved in
PBP2a-independent routes leading to CPT resistance were found (7). Our case raises
the intriguing possibility that CPT resistance may be selected by �-lactams other
than CPT. Particularly, our patient was previously exposed to piperacillin-tazobactam
and cefepime. Another alternative is that the patient may have been colonized by a
CPT-resistant strain, although this possibility is unlikely since he did not have a medical
history suggestive of multiple contacts with the health care system. Importantly, CPT
resistance emerged in the setting of decreased susceptibility to both VAN and DAP,
suggesting that mutations in PBP 2a affecting CPT activity can be acquired in the
setting of alterations in cell envelope homeostasis that mediate nonsusceptibility to
VAN and DAP, posing an important therapeutic challenge. The fact that this multidrug-
resistant MRSA isolate could be transmitted to another patient suggests that develop-
ment of resistance did not markedly affect its fitness and the ability to spread from one
host to the other. Additionally, the fact that the organism was capable of producing a
different infection in a new patient suggests that no loss of virulence occurred, despite
the expression of multiple resistance determinants.

The combination of DAP plus CPT has been shown to be synergistic in vitro against
DAP-nonsusceptible strains of S. aureus. Exposure to �-lactams in such strains seems to
increase the activity of DAP by favoring the binding of the antibiotic to the cell
membrane (8). In a recent retrospective report, Sakoulas et al. analyzed 10 cases of
MRSA IE and 2 cases of VISA infections (1 IE and 1 bacteremia) in which the combination
of DAP plus CPT was successfully used. Of note, 2 cases included were DAP resistant,
and one was an IE case due to MRSA with intermediate susceptibility to CPT (MIC, 2
�g/ml) (9). The management of our IE case was particularly complicated by the fact that
the isolate was hVISA (and the patient failed VAN therapy) and was also shown to be
DAP tolerant. Thus, additional CPT resistance significantly limited the therapeutic
options. Despite the resistance phenotypes, we decided to use the combination of DAP
plus CPT, taking theoretical advantage of the “seesaw” effect (10, 11). This rationale was
strongly supported by our time-kill studies, which showed synergism using concentra-
tions of antibiotics achievable by standard human dosing of both DAP and CPT.
Moreover, recent studies have suggested that PBP1 plays an important role in this
synergism, (12) and CPT has high affinity for S. aureus PBP1 (13). The clinical response
was excellent, and we were able to complete therapy and successfully treat the patient
without evidence of recurrence to date.

In summary, CPT resistance in the background of other multidrug-resistant pheno-
types is a serious concern for the treatment of IE. Combination therapy seems to be
effective against these organisms and should be seriously considered in the presence
of multiple resistances.

COMMENTARY

The two patients with nosocomial infections reported by Nigo et al. from a hospital
in Houston, one with endocarditis and one with ventilator-associated pneumonia, are
a microcosm of a world of problems caused by methicillin-resistant Staphylococcus
aureus (MRSA). These infections were caused by two very closely related sequence type
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5 (ST5) multiple-drug resistant strains of the USA100 clone type, endemic in U.S.
hospitals for over 30 years and still the most common type. The primary source and the
mode of transmission of these strains are otherwise obscure and typical. Both strains
had acquired resistance to ceftaroline due to a single canonical point mutation in mecA
(3, 14, 15) under mysterious circumstances since neither patient had been previously
treated with this antibiotic. It is of more than passing interest that the one other
well-documented case of infection with ST5 ceftaroline-resistant MRSA was also iden-
tified in a Houston hospital 3 years earlier (3). In this case, there was a history of prior
therapy with ceftaroline.

The report on a patient with endocarditis by Nigo et al. failed to clear the bacteremia
with vancomycin, despite a vancomycin MIC of 1 �g/ml for the first blood isolate. The
day 7 isolate had a vancomycin MIC of 2 �g/ml, a worrisome development as this
occurred on therapy. Whether this was the cause or an effect of treatment failure is
uncertain, particularly given that the patient with ventilator-associated pneumonia
caused by a virtually identical isolate with a vancomycin MIC of 2 �g/ml responded to
vancomycin. The importance of vancomycin MICs of �1 mg/ml as a predictor of
treatment failure (16–28) has been hotly debated. In neither of these cases was the MIC
a particularly good predictor. The patient whose initial isolate had a MIC of 1 �g/ml
failed, whereas the patient whose initial isolate had a MIC of 2 �g/ml was cured.

What should be done when the patient is failing first-line therapy and choices are
limited, as in the patient with endocarditis? The isolate was multiple-drug resistant, and
although the daptomycin MIC was within the susceptible range, it was at the upper
limit. Moreover, emergence of daptomycin resistance (technically, nonsusceptibility,
but let us not mince words) on therapy does occur, may be preceded by prior therapy
with a glycopeptide, and tracks with high-inoculum infections and intermediate sus-
ceptibility to vancomycin (i.e., VISA) (29, 30), including the rather ill-defined and
difficult-to-test-for hVISA phenotype. The isolate did not meet strict criteria for either,
but the distinction is academic given the persistently positive blood cultures, an
increase in the MIC from 1 to 2 �g/ml, and a population analysis profile that just fell
short of the Mu3 reference strain. These observations underscore limitations of in vitro
susceptibility testing of vancomycin and argue against relying on the MIC alone for
changing therapy. The choice of combination therapy with daptomycin given at 8
mg/kg once daily plus ceftaroline at 600 mg every 8 h was a reasonable one given the
concern for emergence of resistance to daptomycin if used as a single agent. Ceftaro-
line alone was not an option because of resistance, but a �-lactam, even if there is
resistance, in combination with daptomycin enhances binding of daptomycin to the
bacterial cell membrane and synergistically potentiates its bactericidal effect (31–34). A
theoretical added benefit is that each drug protects against emergence of higher-level
resistance to the other by the seesaw effect (31), in which increasing resistance to one
drug is counterbalanced by increasing susceptibility to the other. Rapid sterilization of
the blood and eventual cure of the patient with endocarditis add to the admittedly
anecdotal, but nevertheless compelling, data that daptomycin-ceftaroline combination
therapy is an effective salvage regimen (9). Should such a regimen be used routinely as
initial therapy for treatment of MRSA bacteremia and endocarditis? This question is best
answered by a randomized clinical trial to determine whether outcomes are better for
combination compared to single-drug therapy.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
AAC.01235-16.

TEXT S1, PDF file, 0.4 MB.
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