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ABSTRACT Resistance to antibiotics is a global health problem. Activation of the SOS
response, and the subsequent elevation in mutagenesis, contributes to the appear-
ance of resistance mutations. Among currently used drugs, quinolones are the most
potent inducers of the SOS response. In the present study, we show that amikacin
inhibits ciprofloxacin-mediated SOS induction and mutagenesis in Pseudomonas
aeruginosa.
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Antibiotics may cause genetic changes involving different pathways, and one of
them is the induction of error-prone polymerases mediated by SOS response (1, 2).

Ciprofloxacin (CIP), one of the antimicrobials of choice for the treatment of Pseudomo-
nas aeruginosa, induces the SOS response (3–5) by interfering with gyrase or topo-
isomerase activity (6, 7). The SOS regulon controls 15 genes, including imuABC and dinB
(4, 5), which encode error-prone polymerases (8, 9). By inducing the SOS response,
ciprofloxacin increases mutagenesis (e.g., see references 10 and 11), facilitating the
appearance of drug resistance.

We investigated the effect of antibiotic combinations on the SOS response and
mutagenesis induced by ciprofloxacin in P. aeruginosa PAO1. recA is among the
SOS-regulated genes in this organism (4, 5). To analyze the induction of the SOS
response, we constructed a chromosomal PrecA-lux reporter. The regulatory region
upstream from recA (�501 bp relative to the start codon) was cloned into the
pUC18T-mini-Tn7T-lux-Gm plasmid (12) and transferred to P. aeruginosa for integration
at attTn7, resulting in strain attTn7::PrecA-lux. The effect of antibiotics on the expression
of the reporter was evaluated in solid medium using disk-based qualitative assays. The
PrecA-lux strain was diluted to an optical density at 260 nm (OD600) of 0.1. Fifty
microliters of this dilution was seeded on Mueller-Hinton (MH) agar, and test antibiotic
disks and CIP (5 �g) disks (Sensifar-Cefar, Brazil) were placed close to one another to
observe the effect of the antibiotic interaction on recA expression. Luciferase activity
was detected in the ChemiDoc MP system (Bio-Rad, USA).

Amikacin (AMI), imipenem, meropenem, polymyxin B, ceftazidime, cefepime, and
aztreonam were tested, representing different drug classes. We found that amikacin is
not an inducer of the SOS response but is in fact a strong inhibitor of recA induction by
sub-MICs of ciprofloxacin (Fig. 1A). Amikacin is an aminoglycoside derived from kana-
mycin (13). Aminoglycosides bind, with high affinity, to the A-site on the 16S rRNA of
the 30S ribosome (14) and can cause mRNA decoding errors, block mRNA and tRNA
translocation, and inhibit ribosome recycling (15).
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We tested whether this effect on SOS induction reflects a general antagonistic effect
of both drugs, using the checkerboard assay (16), in the presence of CIP (0.0078 to 0.5
�g/ml) and AMI (0.003 to 4 �g/ml). A fractional inhibitory concentration (FIC) index of
0.6 (CIP�AMI) was observed, indicating no antagonism. Accordingly, no apparent
antagonism is seen in MH agar (Fig. 1A). The MIC of amikacin (0.5 �g/ml) and
ciprofloxacin (0.06 �g/ml) was determined using the broth microdilution method
according to the Clinical and Laboratory Standards Institute (CLSI) (17).

The appearance of Cipr mutants in cells exposed to ciprofloxacin in solid medium
was monitored using a previously established assay (18). Fifty microliters of cultures
(OD600 � 0.1) was seeded on MH agar, and a ciprofloxacin disk (5 �g) was placed in the
center of the plate and incubated at 37°C for 72 h. The wild-type strain presents a high
number of resistant colonies in the clearing zone. However, when sub-MIC amikacin
was added to the medium (0.4 �g/ml), a dramatic reduction in the appearance of Cipr

mutants occurred (Fig. 1B). Eleven Cipr mutants were grown on plates containing 0.125
�g/ml CIP, with or without 0.4 �g/ml of amikacin, and all formed visible colonies after
24 h in both conditions (data not shown). These results rule out an inability of Cipr

mutants to grow in the presence of subinhibitory levels of amikacin, suggesting that
the acquisition of mutations is inhibited.

Inactivation of recA in Escherichia coli reduces mutagenicity (11) and increases the
activity of a large number of antimicrobials in other bacteria (19, 20). To determine if
mutations arise in a recA-dependent manner, a recA mutant strain was constructed by
insertional mutagenesis. An internal region of the recA gene (from bases 90 to 594 of
the coding region) was cloned into the pKNOCK-Tc suicide plasmid (21), transferred to
P. aeruginosa by conjugation using the E. coli S17-1 �pir, and the integration was
confirmed by PCR. The recA mutant strain shows a substantial reduction in the number

FIG 1 Effect of amikacin on the transcription of PrecA-lux and mutagenesis on a solid medium. (A) Sub-MICs
of ciprofloxacin induce the expression of the PrecA-lux reporter, and when the amikacin disks are in
proximity to the ciprofloxacin disk, a decrease in the light ring is observed, indicating inhibition of recA
induction. (B) A large number of Cipr mutants in the clearing zone can be observed when the PAO1 strain
is plated on MH agar but not when the recA derivative is analyzed. Addition of a sub-MIC amikacin
concentration (0.4 �g/ml) to the medium decreases the appearance of Cipr mutants. A representative result
is shown for plates incubated for 72 h.
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of Cipr mutants, as well as a larger zone of growth inhibition. MIC determination
showed that the recA strain is more sensitive to ciprofloxacin (MIC � 0.007 �g/ml) than
the wild-type strain.

We conducted a quantitative analysis of the PrecA-lux expression in the absence
(control) and presence of ciprofloxacin and amikacin (Fig. 2A). Saturated cultures were
diluted 1:10,000 in MH medium, incubated at 37°C with shaking until reaching an OD600

of �0.3. At this point, antibiotics were added, and cells were incubated for 4 h at 37°C.
One-hundred-microliter aliquots of these cultures were withdrawn to measure both
luciferase activity and OD600 using the GloMax-Multi� microplate multimode reader
detector (Promega, USA). We noted a 9-fold increase in recA expression after treatment
with ciprofloxacin and no change in the presence of amikacin. Nevertheless, the
combined treatment with ciprofloxacin plus amikacin promotes only a 3.8-fold increase
in recA expression. Therefore, SOS induction by ciprofloxacin is reduced by more than
2-fold due to the presence of amikacin in liquid medium. Additionally, growth was
monitored in the same conditions during the 4-h treatment. Growth yields presented

FIG 2 Quantitative analysis of amikacin’s effect on the SOS response. (A) The luminescence activity of
PrecA-lux values was normalized by the optical density of the cultures (Lux/OD600), and the results shown
represent the fold change compared to control (no antibiotic) after 4 h of treatment. *, significant
difference between CIP and CIP�AMI (t test; P � 0.05). Error bars represent the mean � standard
deviation of three independent determinations. Fosr (B) and Rifr (C) mutant frequencies after treatment
with different antibiotics. Data shown represent the mean mutant frequencies of 30 cultures from three
independent experiments, and the error bars show the standard error. Asterisks indicate the significant
difference between CIP and CIP�AMI treatments determined by the Mann-Whitney rank sum test with
a P value of �0.05.

Amikacin Inhibits Ciprofloxacin-Induced SOS Response Antimicrobial Agents and Chemotherapy

March 2017 Volume 61 Issue 3 e02107-16 aac.asm.org 3

http://aac.asm.org


the following OD600 values after 4 h of growth: 4.8 (MH without any antibiotic), 3.9
(AMI), 1.9 (CIP), and 1.5 (CIP�AMI) (data not show). The small reduction in growth yield
in the presence of CIP�AMI compared to CIP alone indicates that the reduction in recA
expression was not caused by an effect on growth.

Next, we investigated the mutagenic effects of exposure to ciprofloxacin, amikacin,
and a combination of both in P. aeruginosa PAO1 by scoring the appearance of rifampin
and fosfomycin-resistant mutants (Rifr and Fosr) (Fig. 2B and C). After 4 h of treatment
as described above, 2.5 ml of these cultures was centrifuged, resuspended in 5 ml of
fresh MH medium, and cultivated overnight. Mutant frequencies were calculated as the
total number of resistant colonies per viable cells in each culture. Cells treated with
ciprofloxacin present 5.5-fold and 6.9-fold increases in the frequency of Fosr and Rifr

mutants, respectively, compared to the nontreated control. Treatment with amikacin
alone did not increase the mutant frequency in both markers. However, when both
antibiotics were added, the mutant frequency decreases to 1.9-fold/2-fold (Fosr/Rifr)
compared to the nontreated control. Thus, mutagenesis was increased by treatment
with ciprofloxacin, but this effect is counteracted by the presence of amikacin.

Studies in E. coli showed that fluoroquinolones, �-lactams, trimethoprim, and sul-
famethoxazole induce recA expression, whereas aminoglycosides, tetracycline, and
chloramphenicol do not (11). However, in Vibrio cholerae, Klebsiella pneumoniae, and
Photorhabdus luminescens, sub-MICs of aminoglycosides induce SOS-dependent pro-
moters (22, 23). Here, we confirmed that ciprofloxacin induces the recA promoter
activity in P. aeruginosa and reported the inhibitory effect of amikacin on this induction,
which causes a decrease in mutagenesis.

The search for drugs that can prevent SOS induction is of considerable interest since
suppression of this response may reduce the emergence of antibiotic-resistant bacteria.
Examples of suppressors of the SOS response induced by fluoroquinolones were
reported in Gram-positive and Gram-negative bacteria, such as the polyphenols baica-
lein (24), curcumin (25), and suramin (polysulphonated naphthylurea) (26), which have
the ability to disassemble RecA single-stranded DNA filaments. Novobiocin blocks the
ATP-binding site of the GyrB and inhibits ciprofloxacin and UV-induced SOS response
(27, 28). The small-molecule N6-(1-naphthyl)-ADP acts as an ATP competitor, which
prevents the formation of the RecA-DNA filament that is essential for all RecA-
associated functions (29). Interestingly, sublethal concentrations of amikacin prevent
FtsZ polymerization in E. coli (30), and perhaps the same phenomenon could happen
with RecA nucleofilaments. The nature of amikacin-mediated inhibition of recA expres-
sion and mutagenesis is still not known, and future studies are still needed.

Treatment of P. aeruginosa clinical isolates with ciprofloxacin in combination with
amikacin or gentamicin showed either synergistic, additive, or indifferent effects (31–
33). Our results with the PAO1 strain are consistent with these previous observations
since we observed no antagonistic effect of the ciprofloxacin-amikacin combination. In
this regard, such a combined therapy may be used with the goal of inhibiting the SOS
response and the development of resistance through mutagenesis.
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