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ABSTRACT Sixteen different sequence types (STs) of Escherichia coli isolates from a
commercial swine farm in China were confirmed to coharbor the carbapenem resis-
tance gene blaNDM-5 and the colistin resistance gene mcr-1. Whole-genome sequenc-
ing revealed that blaNDM-5 and mcr-1 were located on a 46-kb IncX3 plasmid and a
32-kb IncX4 plasmid, respectively. The two plasmids can transfer together with a low
fitness cost, which might explain the presence of various STs of E. coli coharboring
blaNDM-5 and mcr-1.
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Carbapenemase-producing Enterobacteriaceae has become a major public health
threat around the world (1). The recently identified carbapenemase New Delhi

metallo-�-lactamase confers resistance to all �-lactam antimicrobials except monobac-
tam (2). The NDM-5-encoding gene blaNDM-5 was first identified in an Escherichia coli
strain recovered from a patient in the United Kingdom in 2011 (3). Since then, blaNDM-5

was identified in many countries, such as Algeria (4–6), the United States (7), Australia
(8), China (9–12), Denmark (13), Japan (14), India (15), and the United Kingdom (3). The
widespread occurrence of NDM-5 in recent years should arouse our attention. Colistin
is a critically important medication for humans in the treatment of carbapenemase-
producing Enterobacteriaceae, and it has been widely used in veterinary medicine in
China (16, 17). The first plasmid-mediated colistin resistance gene, mcr-1, was reported
in E. coli in 2015 (18). In a short period, colistin-resistant E. coli carrying the mcr-1 gene
were reported worldwide (19, 20). Recently, mcr-1 was reported to coexist with blaNDM

(21–23) and blaCTX-M (24), which brought great challenges for the treatment of bacterial
infection. In the present study, we are the first to report the presence of isolates of
various sequence types of E. coli coharboring blaNDM-5 and mcr-1 genes from a
commercial pig farm in China.

A total of 105 anal swabs samples from swine were collected from a commercial pig
farm on 1 October 2015 in Sichuan province. E. coli strains were selected by eosin-
methylene blue agar, and only 1 isolate was picked up from each sample. All 105
isolates were identified by BD Phoenix 100 diagnostic systems (Sparks, MD). Sixty-four
strains were nonsusceptible to imipenem and polymyxin B, identified by the agar
dilution method according to Clinical and Laboratory Standards Institute guidelines
(25). Isolates were divided into 16 different clones by pulsed-field gel electrophoresis
after XbaI digestion according to the standard PulseNet conditions (26) (Fig. 1). Phy-
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logenetic group (A, B1, B2, and D) typing showed that all 16 different clones belonged
to group A (n � 13) and B1 (n � 3) (27). Multilocus sequence typing (MLST) was
performed as previously described (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli). All 16
clones belonged to different sequence types. The antimicrobial resistance profile,
phylogenetic group, and sequence type of each different clone are shown in Figure 1.

The carbapenemase-encoding genes blaGES, blaKPC, blaIMP, blaNDM, blaOXA-48, and
blaVIM and the colistin resistance gene mcr-1 were screened in all 16 different clones by
PCR as described previously (18, 28, 29). The results showed that they all carried
blaNDM-5 and mcr-1. Very recently, mcr-1 and blaNDM-5 coharbored by E. coli ST156 and
ST648 were found in a Chinese hospital (23). To the best of our knowledge, this is the
first report of the presence of diverse E. coli strains coharboring blaNDM-5 and mcr-1 on
a commercial swine farm.

Whole-genome sequencing for 16 different clones was performed on the Illumina
MiSeq (Majorbio, Shanghai, China) using a 400-bp paired-end TruSeq library with a 2 �

300 run. The paired-end reads were assembled de novo using the SOAP v2.04 and
GapCloser v1.12. The gaps between different contigs were closed by PCR and sequenc-
ing. The genetic environments of blaNDM-5 and mcr-1 were analyzed by using the BLAST
program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequence analysis revealed that
blaNDM-5 and mcr-1 were located on two different plasmids, which showed 100%
nucleotide identity in all 16 strains. The plasmid carrying blaNDM-5 belonged to the
IncX3 group and was designated pECNDM101. It had a length of 46,165 bp with 46.66%
G�C content, which had a 9-bp nucleotide substitution, 1-bp insertion, and 3-bp
deletion compared with pNDM_MGR194 (GenBank accession number KF220657). An
IS5 was inserted with ISAba125 upstream of blaNDM-5, which was also found in isolates
in India (15), Japan (14), and China (9, 10).The plasmid carrying mcr-1 belonged to the
IncX4 group and was designated pECMCR-1101. It had a length of 32,751 bp with
41.96% G�C content, which had a 559-bp deletion between 1,170 bp and 1,171 bp, an
8-bp nucleotide substitution, and a 6-bp insertion compared with pICBEC72Hmcr
(GenBank accession number CP015977), which was recovered from a clinical E. coli
strain in Brazil.

Conjugation experiments were carried out among the 16 different clones with
rifampin-resistant E. coli EC600 as the recipient. Transconjugants were selected on three
different Mueller-Hinton agar (Oxoid) plates that contained 400 �g/ml rifampin with 10
�g/ml imipenem or 2 �g/ml polymyxin B. Positive transconjugants were identified by

FIG 1 PFGE profiles, antimicrobial resistance phenotypes, phylogenetic groups, and sequence types (STs) of 16
different E. coli strains. 1Failure to find any corresponding ST type with MLST database via BLAST. Seven
housekeeping gene allele types, i.e., adk, fumC, gyrB, icd, mdh, purA, recA, were identified as follows: 10, 11, 4, 8,
274, 8, 42. IPM, imipenem; MEM, meropenem; AMC amoxicillin-clavulanate; FOX, cefoxitin; CTX, cefotaxime; ATM,
aztreonam; CIP, ciprofloxacin; DO, doxycycline; FFC, florfenicol; FOS, fosfomycin; GEN, gentamicin; SXT, trim-
ethoprim-sulfamethoxazole; PB, polymyxin B.

Kong et al. Antimicrobial Agents and Chemotherapy

March 2017 Volume 61 Issue 3 e02167-16 aac.asm.org 2

http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/nucleotide/KF220657
https://www.ncbi.nlm.nih.gov/nucleotide/CP015977
http://aac.asm.org


detection of antimicrobial resistance profiles and screening for the presence of blaNDM-5

and mcr-1. Conjugation frequencies were calculated as the number of transconjugants
per recipient cell and are shown in Table 1. When imipenem was used as the selection
pressure, transfer frequencies of blaNDM-5 varied from 7.7 � 10�2 to 5.7 � 10�4. When
polymyxin B was used as the selection pressure, transfer frequencies of mcr-1 varied
from 5.8 � 10�5 to 5.3 � 10�7, and similar transfer frequencies of 2.9 � 10�7 to 2.5 �

10�5 were detected when imipenem and polymyxin B were used as the selection
pressure. It was very interesting that the cotransfer of blaNDM-5 and mcr-1 was detected
in a few transconjugants when using polymyxin B or imipenem alone. Three different
transconjugants were obtained, MYNDM-5 carrying pECNDM101, MYmcr-1 carrying
pECMCR-1101, and MYNDM-5�mcr-1 carrying pECNDM101 and pECMCR-1101.

The fitness costs of pECNDM101 and pECMCR-1101 were determined by growth
curves and competition experiments as previously described (30, 31). Growth curves of
transconjugant MYNDM-5 and recipient E. coli EC600 were similar, and they arrived at
the same concentration at the stationary phase (optical density at 600 nm [OD600] �

1.166). However, transconjugants MYmcr-1 and MYNDM-5�mcr-1 had a slight growth
disadvantage and a lower concentration at the stationary phase (OD600 � 1.132 and
1.130, respectively) (Fig. 2A). For the competition experiment, a constant increase in the
proportion of transconjugant MYNDM-5 was observed from day 3 on. In contrast,
constant decreases in the proportion of transconjugants MYmcr-1 and MYNDM-
5�mcr-1 were observed from day 2 on and day 1 on, respectively (Fig. 2B). Transcon-
jugants MYmcr-1 and MYNDM-5�mcr-1 presented competitive disadvantages of
�11.45% and �9.67% per 10 generations relative to those of E. coli EC600. Interest-
ingly, transconjugant MYNDM-5 showed a competitive advantage (�3% per 10 gen-
erations) (Fig. 2C), which might contribute to the propagation of blaNDM-5.

In conclusion, to our knowledge, our study is the first to report that a blaNDM-5-
carrying IncX3 plasmid (pECNDM101) and an mcr-1-carrying IncX4 plasmid (pECmcr-
1101) coexist in various sequence types of E. coli on a commercial pig farm, and they
can transfer together at a low fitness cost. Note that the cotransfer of blaNDM-5 and
mcr-1 by an IncX3-X4 hybrid plasmid was detected in a clinical E. coli isolate in China
very recently (32). The results highlight that a swine farm is an important reservoir of
E. coli carrying blaNDM-5 and mcr-1, which presents a serious challenge for public health
via food-chain transmission.

TABLE 1 Transconjugative frequencies of pECNDM101 and pECmcr-1101 plasmids in 16
different E. coli strains

E. coli strain
(transconjugant)

Transconjugative frequenciesa

pECNDM101b pECmcr-1101c

pECNDM101 and
pECmcr-1101d

ECMY1 1.1 � 10�3 8.7 � 10�6 4.0 � 10�6

ECMY2 1.1 � 10�2 9.2 � 10�7 5.5 � 10�7

ECMY3 7.7 � 10�2 4.6 � 10�6 2.8 � 10�6

ECMY4a 5.3 � 10�2 1.6 � 10�5 5.7 � 10�6

ECMY4b 1.3 � 10�2 9.4 � 10�7 4.3 � 10�7

ECMY5 1.7 � 10�2 5.3 � 10�6 1.2 � 10�6

ECMY6 8.0 � 10�3 6.3 � 10�6 8.9 � 10�7

ECMY9 5.7 � 10�4 5.8 � 10�5 2.5 � 10�5

ECMY10 1.1 � 10�3 7.1 � 10�7 4.3 � 10�7

ECMY11 5.3 � 10�3 5.6 � 10�5 2.3 � 10�5

ECMY12 1.8 � 10�3 3.0 � 10�5 1.7 � 10�5

ECMY13 5.6 � 10�3 5.3 � 10�7 2.9 � 10�7

ECMY14 1.4 � 10�3 3.0 � 10�6 1.3 � 10�6

ECMY16 9.1 � 10�4 6.6 � 10�6 3.9 � 10�6

ECMY17 2.2 � 10�3 1.7 � 10�5 1.2 � 10�5

ECMY18 1.8 � 10�3 5.0 � 10�5 1.6 � 10�5

aThe results shown are presented as the average value of 3 parallel experiments.
bImipenem was used as selection pressure in conjugation experiments.
cPolymyxin B was used as selection pressure in conjugation experiments.
dImipenem and polymyxin B were used as selection pressure in conjugation experiments.
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Accession number(s). The complete nucleotide sequences of the blaNDM-5-
carrying IncX3 plasmid (pECNDM101) and the mcr-1-carrying IncX4 plasmid (pECmcr-
1101) characterized in this study were submitted to GenBank and assigned accession
numbers KX507346 and KX570748, respectively.
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