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Abstract

The mechanical behavior of soft connective tissue is governed by a dense network of fibrillar 

proteins in the extracellular matrix. Characterization of this fibrous network requires the accurate 

extraction of descriptive structural parameters from imaging data, including fiber dispersion and 

mean fiber orientation. Common methods to quantify fiber parameters include fast Fourier 

transforms (FFT) and structure tensors, however, information is limited on the accuracy of these 

methods. In this study, we compared these two methods using test images of fiber networks with 

varying topology. The FFT method with a band-pass filter was the most accurate, with an error of 

0.71 ± 0.43 degrees in measuring mean fiber orientation and an error of 7.4 ± 3.0% in measuring 

fiber dispersion in the test images. The accuracy of the structure tensor method was approximately 

4 times worse than the FFT band-pass method when measuring fiber dispersion. A free software 

application, FiberFit, was then developed that utilizes an FFT band-pass filter to fit fiber 

orientations to a semicircular von Mises distribution. FiberFit was used to measure collagen fibril 

organization in confocal images of bovine ligament at magnifications of 63x and 20x. Grayscale 

conversion prior to FFT analysis gave the most accurate results, with errors of 3.3 ± 3.1 degrees 

for mean fiber orientation and 13.3 ± 8.2% for fiber dispersion when measuring confocal images at 

63x. By developing and validating a software application that facilitates the automated analysis of 

fiber organization, this study can help advance a mechanistic understanding of collagen networks 

and help clarify the mechanobiology of soft tissue remodeling and repair.
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1 Introduction

The mechanical function of biological tissue is primarily regulated by the underlying 

fibrillar architecture. In soft connective tissue, defects to the fibrillar collagen network are 

associated with acute and chronic disorders (Woo et al, 1989; Vogel et al, 1979; Makareeva 

et al, 2008). Therefore, an extensive amount of research has been devoted to characterizing 

collagen fiber organization in soft tissue (Polzer et al, 2013; Schriefl et al, 2012), and this 

requires the accurate extraction of descriptive structural parameters from imaging data 

(D’Amore et al, 2010). For tissues with multiaxial fiber networks, relevant structural 

parameters include fiber dispersion and mean fiber orientation, which are both properties of 

the fiber orientation distribution and are measures of material anisotropy. Accurate 

quantification of the fiber orientation distribution can advance a mechanistic understanding 

of collagen networks and clarify the mechanobiology of soft tissue remodeling and repair.

The measurement of the fiber orientation distribution has been advanced by the development 

of automated image analysis methods. A popular and robust method to analyze two-

dimensional images of fiber networks is the fast Fourier transformation (FFT) (Polzer et al, 

2013; Ayres et al, 2008; Sander and Barocas, 2009). The FFT method has been used to 

measure fiber orientation distributions in studies investigating electrospun tissue-engineered 

scaffolds (Ayres et al, 2008, 2006), corneal wound contraction (Petroll et al, 1993), and 

abdominal aortic aneurysms (Polzer et al, 2013). Another prevalent method is a gradient-

based structure tensor (Jahne, 1993; Bigun et al, 2004), which has been used to analyze fiber 

orientation distributions in arterial adventitia (Rezakhaniha et al, 2012) and actin filaments 

in the lamellipodium (Weichsel et al, 2012). While both these image analysis methods are 

commonly used, the accuracy of the FFT and structure tensor methods have not been 

quantitatively compared, and there is limited knowledge on which method is superior for 

analyzing fibrillar networks.

Over the past decade, free software applications have been developed that enable researchers 

to use FFT and structure tensor methods to measure fiber organization. Researchers can now 

generate fiber orientation distributions based on FFT methods by using Oval Profile Plot and 

Directionality, which are plugins for Image J and Fiji, respectively (Schneider et al, 2012; 

O’Connell, 2012; Schindelin et al, 2012; Tienevez, 2010). Software applications are also 

available that use the structure tensor method, which includes the Directionality plug-in and 

OrientationJ (Rezakhaniha et al, 2012). Although these software applications have assisted 

the quantification of fiber dispersion and mean fiber orientation, the accuracy of these 

software applications has not been characterized with validation studies. Moreover, the 

sensitivity of these image analysis programs to variations in image topology and noise 

removal are not well understood. Therefore, uncertainty exists in the accuracy and physical 
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meaning of the fiber organization parameters (D’Amore et al, 2010), when computed by 

these software applications.

The first objective of this study is to determine the accuracy of using FFT and structure 

tensors to measure fiber orientation distribution in two-dimensional images of fiber networks 

with variable fiber topology. The second objective is to develop and validate a free software 

application to accurately and automatically measure fiber orientation distribution in soft 

connective tissue.

2 Methods

2.1 Overview

The accuracy of using FFT and structure tensors to characterize fiber networks was 

determined using a three-stage process (Fig. 1). In stage I, test images with known fiber 

dispersion and mean fiber orientation were generated. In stage II, these test images were 

converted into fiber orientation distributions using formulations for FFT and structure tensor 

methods. Two established noise filtering techniques were investigated when using FFT 

analysis: band-pass and minimum. In stage III, mean fiber orientation and fiber dispersion 

were quantified by fitting the distribution data to an ellipse and semicircular von Mises 

distribution, respectively. Accuracy was determined by comparing the known parameter 

values used to generate the test images to the predicted parameter values measured using 

FFT or structure tensor analysis (Fig. 1). To determine the effect of image topology on 

accuracy, test images were generated with different fiber thickness, fiber dispersion, fiber 

aspect ratio and fiber network concentration. The FFT band-pass method was implemented 

into a new software application called FiberFit, which is now available as a free download 

(http://coen.boisestate.edu/ntm/fiberfit/). The FiberFit software was evaluated by measuring 

structural parameters of collagen fibril networks in confocal images of bovine ligament.

2.2 Image Generation

Test images were automatically generated using a custom Matlab program (Fig. 2). Two 

assumptions about soft tissue were made when generating these test images: 1) fiber 

networks contain straight fibers and 2) the orientation distribution follows a perfect 

semicircular von Mises distribution. A binary image was populated with straight lines based 

on a semicircular von Mises probability density function (PDF), for user-specified values of 

μ and k.

(1)

Where k is the dispersion parameter, μ is the mean fiber orientation parameter, and θ 
represents the angle orientation within the interval [0, π]. The dispersion parameter k is 

analogous to the reciprocal of variance, which is used to quantify the degree of fiber 

alignment (low k values = disordered networks, large k values = aligned networks). I0 (k) is 

the modified zero order Bessel function (Eq. 2).
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(2)

The seed point for each line was randomized and the line was grown incrementally until the 

number of pixels matched the number of pixels defined at that angle by the von Mises PDF. 

Lines with a small length to thickness aspect ratio (≤ 1 to 1) were not included in the test 

patterns, since the desired orientation cannot be captured. If the endpoint landed outside of 

the designated image area, a new seed point was chosen and the process repeated until the 

entire fiber was in the desired image dimension. In total, thirty-nine 1074 × 1074 network 

images were generated with varying k values (0.2 - 5.0; Fig. 2) and a fixed μ value (90 

degrees). The mean fiber orientation was fixed due to the nominal effect of image rotation 

on the measured structural parameters.

2.3 Image Conversion - FFT

Test images were converted to the frequency domain using Matlab’s fft2 function, which 

stems from the 2D discrete Fourier transform of an image (M × N pixels):

(3)

where x and y represent the spatial coordinates of the image, u and v are the frequency 

components in the x and y directions and . Frequencies are representative of changes 

in pixel intensity (Gonzalez and Woods, 2008). The transform is often complex and contains 

both real R(u,v) and imaginary I(u,v) parts, therefore we converted from the Fourier 

transform to a power spectrum with no imaginary parts (Eq. 4) (Sander and Barocas, 2009).

(4)

The two-dimensional power spectrum was rotated by 90 degrees to account for differences 

between power spectrum intensities and the physical orientation of the fibers. Power 

spectrum intensities were interpolated and a radial sum approach was used to define 

intensity at 1 degree increments to create a fiber orientation distribution of the fiber network 

(Ayres et al, 2008).

Due to inherent noise in FFT, two established noise filtering techniques were applied to 

modify the fiber orientation distribution. The first technique is the minimum method, which 

removes all data in the fiber orientation histogram below the minimum value (Ayres et al, 

2006). This effectively creates a vertical shift in the histogram until the minimum histogram 

value is zero (Fig. 1). The second technique is to apply a band-pass filter to the power 

spectrum to attenuate frequencies corresponding to small entities or larger features in the 
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image (Petroll et al, 1993; Sander and Barocas, 2009; Marquez, 2006). The frequency 

corresponding to a specific fiber diameter is given by:

(5)

where t is the fiber thickness in the 2D image and m is the image dimension (m x m pixels) 

(Marquez, 2006). For the band-pass method, preliminary tests were performed to determine 

the optimal radial band of cutoff frequencies to filter the power spectrum. These preliminary 

tests examined high cutoff frequencies that correspond to a t of 1-3, and low cutoff 

frequencies that correspond to a t of 10-100. For the images analyzed in this research, we 

determined that the accuracy of the FFT band-pass method was most sensitive to changes in 

the high cutoff frequency, and that an optimal radial band used a t of 32 (f = 17) and a t of 2 

(f = 267) for the low and high cutoff frequency, respectively. This optimal radial band of t 
between 2-32 was used for all FFT band-pass results. All FFT noise filtering techniques 

were completed using a custom Matlab program, which generated a histogram of fiber 

orientations for each image.

2.4 Image Conversion - Structure Tensor

An ImageJ plugin, called OrientationJ (Rezakhaniha et al, 2012), was used to perform image 

analysis using the structure tensor method (Jahne, 1993; Bigun et al, 2004). In brief, the 

program calculates a structure tensor for each pixel in the spatial domain by computing the 

pixel intensity gradients in the x and y directions within a user-specified Gaussian-shaped 

window. The local fiber orientation at each pixel is defined by the eigenvector corresponding 

to the smallest eigenvalue of the structure tensor, and the fiber orientation distribution is built 

from pixel orientations that are weighted by coherency values, so that elongated structures 

are emphasized (Jahne, 1993; Rezakhaniha et al, 2012). For this study, we used a value of 1 

for the standard deviation of the Gaussian local window, we used the Gaussian method to 

interpolate gradients, and we did not select coherency or energy thresholding values to 

remove areas of weak orientation (Sampo et al, 2014). OrientationJ generates a histogram of 

local fiber orientations, but does not fit the data to a specific statistical distribution 

(Rezakhaniha et al, 2012). We therefore only used OrientationJ to export a histogram of 

fiber orientations from each image (Fig. 1).

2.5 Parameter Fitting and Accuracy

Mean fiber orientation μ and fiber dispersion k were fit to the fiber orientation distributions 

determined from the FFT and structure tensor methods. The parameter μ was calculated 

using a direct least squares method (Fitzgibbon et al, 1999) to fit an ellipse to the fiber 

orientation distribution data, where μ was defined by the semi-major axis. The parameter k 
was then calculated by using the least squares method to fit a semicircular von Mises 

distribution to a histogram representation of the fiber orientation distribution data (Fig. 1). 

This two-step approach to parameter fitting was found to be more robust than fitting both 

parameters with a single von Mises fitting operation. These measured μ and k values were 

compared to the actual μ and k values that were used to generate the test images (Fig. 1). 
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Accuracy in measuring μ was defined by the absolute mean difference (|μactual–μmeasured|), 

while accuracy in measuring k was defined by the absolute mean percentage error (|kactual–

kmeasured| /kactual).

2.6 Sensitivity to Variation in Fiber Networks

The effect of fiber network topology on accuracy was tested by measuring μ and k in images 

with varying fiber thickness, fiber dispersion, fiber aspect ratio, and fiber concentration. 

These variables were selected based upon the diversity that exists in collagen networks of 

native and surrogate soft tissue (Polzer et al, 2013; Schriefl et al, 2012; D’Amore et al, 2010; 

Petroll et al, 1993; Sander and Barocas, 2009; Ayres et al, 2006). Images were created with 

fiber thicknesses of 1, 5, and 9 pixels, fiber dispersions of 1 and 5, and with fiber aspect 

ratios that were low (1 to 44), medium (1 to 89) and high (1 to 133). Three images were 

generated in each group for a total of 54 images. A second set of 200 images was generated 

to evaluate the effect of fiber concentration, or number of fibers per unit area. These images 

varied the number of fibers (Fig. 3), while holding fiber thickness and aspect ratio constant. 

Images were placed in incremental groups with fiber concentrations ranging from 2% to 

60%. This sensitivity analysis was performed using the FFT band-pass method.

2.7 Development of FiberFit Software

A portable software application, FiberFit, was developed in Python utilizing the FFT band-

pass method. This software was designed to support fast and intuitive two-dimensional 

analysis of fiber networks. The image analysis code in FiberFit was created by using numpy 

and scipy libraries to port the FFT band-pass method we developed into Python (Jones et al, 

2001). Testing was conducted to verify that FiberFit results were within 0.1 degrees for μ 
and within 0.01 for k compared to the results from the FFT band-pass code developed in 

Matlab. Therefore, the accuracy we report for the FFT band-pass method is applicable to 

FiberFit. Users can implement different cut-off frequencies for the band-pass filter and 

results can be exported for data storage.

2.8 Validation Experiment using FiberFit Software

The FiberFit software was evaluated using confocal images of ligament. Collagen fibril 

networks in five bovine ligament specimens were autofluoresced at 63x and 20x 

magnification, using a confocal microscope and ZEN imaging software (LSM 510 Meta; 

Carl Zeiss Inc., Thornwood NY). Z-stack images were acquired with a Diode laser source 

(405 nm), a 63x Plan-Apochromat oil-immersion (NA 1.4) or 20x Plan-Apochromat (NA 

0.8) objective and an emission long-pass filter of 505 nm (Monici, 2005). The three-

dimensional z-stack was then projected onto a two-dimensional surface (Fig. 4a,e).

Prior to using FiberFit, image preprocessing methods were applied using ImageJ. The first 

steps in image preprocessing included sharpening (3×3 weighted average), filtering (rolling 

ball background subtraction), smoothing (3×3 mean filter), and normalizing the intensity 

values of all images. Each image was then converted into two formats: 8-bit grayscale (Fig. 

4b) and binary (Fig. 4c). As a final noise removal step, a despeckle operation (3×3 median 

filter) was applied to all converted images. The grayscale and binary images were then 

analyzed using FiberFit to generate a fiber orientation distribution and calculate k and μ.
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To determine the accuracy of using FiberFit to calculate k and μ, a third set of images was 

created by manually tracing the start and end points of the imaged fibrils (Fig. 4d,f.). This 

set of images replicated the linear fiber segments that we used in our binary test images to 

quantify accuracy (Fig. 2). A discrete fiber orientation distribution, f (θi), was built for each 

of these manually traced images by using the total number of pixels for lines orientated 

along each angle θi. The mean (μ) and standard deviation (σ) of the discrete fiber orientation 

distribution were calculated using the following equations (Mardia and Jupp, 2000):

(6)

(7)

(8)

(9)

(10)

A two-term exponential relationship between σ and k was developed (Eq. 11) by calculating 

σ (Eq. 10) for distributions with known k values (from 0 to 10, incrementing by 0.1) and 

fitting the data in Matlab using an exponential function (R2 = 1.0):

(11)

The k and μ parameters calculated from the discrete fiber orientation distributions (kdiscrete, 

μdiscrete) were then used as a gold standard to determine the accuracy of using FiberFit (kf ft, 

μf ft), where error in measuring μ was defined by the absolute mean difference (|μf ft–

μdiscrete|), and error in measuring k was defined by the absolute mean percentage error (|

kdiscrete–kf ft|/ kdiscrete). These same methods were applied to determine the accuracy of 

measuring μ and k with the FFT minimum (Matlab) and structure tensor (OrientationJ) 

methods.
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To have confidence in using the manually traced images as a gold standard, these images had 

to pass a verification test. For this verification, we used FiberFit to directly calculate the k 
parameter of each manually traced image and compared this result with the k parameter 

calculated from the respective discrete distribution. If the k value determined from these two 

methods had a difference greater than 1.0, we excluded that manually traced image from 

further analysis. The ten manually traced images used in this study met the acceptance 

criteria and had a k value using FiberFit that was 0.28 ± 0.22 different than the k value using 

the discrete distribution method. Three additional images did not meet the acceptance 

criteria, and were rejected. Two of the rejected images had highly bimodal distributions. 

This verification test provided a baseline for using kdiscrete and μdiscrete to determine the 

accuracy of using FiberFit to analyze the preprocessed binary and grayscale confocal 

images.

2.9 Statistics

A MANOVA determined the effect of the image analysis method (FFT band-pass, FFT 

minimum, and structure tensor) on k and μ error. A MANOVA was also used to evaluate the 

effect of fiber thickness, dispersion, and aspect ratio on k and μ error when using the FFT 

band-pass method. Fiber concentration was evaluated separately using a MANOVA with 

four groups: k = 1, low aspect ratio; k = 1, high aspect ratio; k = 5, low aspect ratio; and k = 

5, high aspect ratio. For all MANOVAs, pairwise differences were analyzed with a 

Bonferroni or Games-Howell post hoc test (depending on if equal variances could be 

assumed). The goodness of fit between the fiber orientation histogram and the semicircular 

von Mises distribution was quantified using the coefficient of determination (R2). The 

cofficient of determination was also used to compare k and μ between the grayscale and 

binary confocal images (FFT band-pass) and the manually traced confocal images (discrete).

3. Results

3.1 Accruacy of FFT and Structure Tensor Methods

The FFT band-pass method was the most accurate method for measuring the fiber dispersion 

parameter k (Fig. 5a.). The absolute mean percentage error in measuring k was 7.4 ± 3.0%, 

72.4 ± 28.2%, and 47.4 ± 5.1%, for the FFT band-pass, FFT minimum, and structure tensor 

methods, respectively. The FFT band-pass method was also the most accurate method for 

measuring mean fiber orientation, μ (Fig. 5b.), but there was only a significant difference 

between the FFT band-pass and structure tensor methods (p <0.01). The absolute mean 

difference between actual μ and measured μ was 0.7 ± 0.4 deg, 3.2 ± 2.7 deg, and 4.8 ± 4.0 

deg for the FFT band-pass, FFT minimum, and structure tensor methods, respectively. For 

all methods, the error in measuring k and μ was highest for disordered networks.

3.2 Sensitivity to Image Topology

When using the band-pass FFT method, the accuracy of measuring fiber dispersion k was 

affected by interactions between fiber dispersion and fiber thickness (Fig. 6a.; p < 0.001), 

but was not affected by interactions between fiber dispersion and fiber aspect ratio (Fig. 6a.; 

p = 0.22). As fiber thickness increased in aligned fiber networks, the accuracy of measuring 

k decreased by 5.3%. Conversely, as fiber thickness increased in disordered fiber networks, 
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the accuracy of measuring k increased by 6.5%. The accuracy of measuring mean fiber 

orientation μ, when using the band-pass FFT method, was not affected by fiber dispersion (p 
= 0.407), but was dependent on both fiber thickness and fiber aspect ratio (Fig. 6b.; p = 

0.002 and p = 0.008, respectively). Despite these significant differences, the average error 

was below 1 degree for all groups.

Variation in fiber concentration did affect the accuracy of measuring fiber dispersion k when 

using the FFT band-pass method for both disordered and aligned fiber networks (Fig. 7; p < 

0.001 and p < 0.001, respectively). The accuracy of measuring the mean fiber orientation μ, 

was not affected by fiber concentration for both disordered (0.6 ± 0.4 degrees) and aligned 

(0.4 ± 0.3 degrees) fiber networks (p = 0.73 and p = 0.77, respectively).

3.3 Validation Experiment using FiberFit Software

The FiberFit software quantified k and μ for all ligament confocal images with an average 

runtime of 2.4 ± 0.3 seconds on a 2.7 GHz processor. The measurement of k with FiberFit 

had the strongest correlation to the manual tracing method when analyzing grayscale images 

at 63x (Fig. 8a,c), while the measurement of μ with FiberFit had very strong correlations to 

the manual tracing method for both grayscale and binary images at 63x and 20x (Fig. 8b,d). 

A strong positive correlation existed between the k values that FiberFit calculated at 63x and 

20x (R2 = 0.65); however, k values calculated at 20x had 22% greater error than k values 

calculated at 63x (Table 1, p=0.02). A very strong positive correlation existed between the μ 
values that FiberFit calculated at 63x and 20x (R2 = 0.98). The fiber orientation distributions 

generated by FiberFit had an average R2 fit to a von Mises distribution of 0.82 ± 0.10 (range 

from 0.6 to 0.95).

Overall, the FFT band-pass method used by FiberFit had the best accuracy in measuring 

fiber dispersion k, compared to the FFT minimum and structure tensor methods (Table 1). 

The FFT band-pass method was 49% more accurate at measuring k than the FFT minimum 

method at 20x (p = 0.02), and was 39% more accurate at measuring k than the structure 

tensor method at 63x (p = 0.02). The FFT band-pass method and structure tensor method 

were both able to measure fiber orientation μ with an average error less than 5 degrees.

4. Discussion

This study has validated a computational methodology to measure structural parameters in 

fibrillar networks of soft connective tissue. We achieved our first objective by determining 

that FFT with a band-pass filter had the most accurate results, with an average error less than 

8% in detecting fiber dispersion, and an average error less than 1 degree in detecting mean 

fiber orientation. We achieved our second objective by developing the software application, 

FiberFit, which uses FFT with a band-pass filter to automatically measure structural 

parameters in two-dimensional images of fibrillar networks. FiberFit was successfully used 

to measure collagen fibril networks in confocal images of bovine ligament.

Our findings clearly demonstrate that using a band-pass filter with FFT is more accurate 

than filtering noise with a minimum technique or using a structure tensor. In highly 

disordered networks (small k), the FFT band-pass method had marginal errors (<10%), 
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while the FFT minimum and structure tensor methods had large errors (>50%). The large 

errors observed with the structure tensor method are potentially caused by noise from the bi-

directional gradients at the fiber endpoints, which were more numerous in the disordered test 

images. Structure tensor accuracy may be improved by using coherency or energy thresholds 

(Rezakhaniha et al, 2012). The large errors observed with the FFT minimum method are 

related to this methods vertical shift of the fiber orientation distribution, which removed 

pertinent data in highly disorganized networks (Fig. 2a.), and resulted in false peaks at 90 

degree offsets to the mean fiber orientation (Fig. 1). The FFT band-pass method directly 

filtered noise in the power spectrum and preserved pertinent data in the fiber orientation 

distribution (Fig. 1). In highly disordered networks (k = 0.2), the FFT band-pass method was 

the only method able to measure fiber dispersion k and mean fiber orientation μ within 0.06 

and 1.9 degrees of the actual value, respectively. In addition, the FFT band-pass method gave 

the most accurate results when analyzing confocal images of ligament fibril networks (Table 

1). These results indicate that the FFT band-pass method is an appropriate choice for 

analyzing disordered fiber networks.

Results from this study can support and advance previous research that has investigated the 

FFT method. The superior accuracy we found with the FFT band-pass method agrees with 

Sander et al., who reported that the FFT band-pass method was more accurate at calculating 

fiber dispersion than using the mean intercept length method or the line fraction deviation 

method (Sander and Barocas, 2009). Sander et al. also found that when the network 

dispersion increases (greater disorder), the error in measuring μ also increases. Our results 

support this finding, and we further determined that when the network dispersion increases, 

the error in measuring k also increases (Fig. 5a.). The error we calculated when measuring 

mean fiber orientation with the FFT band pass method (0.7 ± 0.4 degrees) is slightly better 

than reported by Sander et al. (2.9 ± 6.7 degrees), and is also better than the error acquired 

by the equation developed by Marquez (2.1 degrees; when using parameters n=13, l =44, 

and C =0.5) (Marquez, 2006). Other studies that examined the application of FFT toward 

fiber networks used a qualitative approach or a limited number of test images (< 5 total) 

(Sampo et al, 2014; Polzer et al, 2013; Schriefl et al, 2012), and therefore a direct 

comparison to our study is not feasible.

Our FFT sensitivity study revealed that the error in measuring fiber dispersion was also 

dependent on fiber thickness and fiber network concentration (Fig. 6,7). In general, 

increasing fiber thickness resulted in a decrease in the measured k value. As a consequence, 

increasing fiber thickness in aligned networks raised the fiber dispersion error, while 

increasing fiber thickness in disordered networks lowered the fiber dispersion error. This 

error may be decreased by modifying the band-pass cutoff frequencies (Sander and Barocas, 

2009). A similar dependence on fiber anisotropy was observed when studying the effect of 

fiber concentration on accuracy. Aligned fiber networks with a high fiber concentration had 

large errors, while disordered fiber networks with a high fiber concentration had marginal 

errors. For aligned networks, the fiber dispersion error exceeded 10% once the fiber 

concentration reached 30%. The confocal images analyzed in this study had fiber 

concentrations safely below 20%, but studies that analyze images with very high fiber 

concentrations may consider modifying filter cutoff frequencies to improve error. Our 

findings on fiber concentration support previous work by Marquez. Although our study did 
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not find an effect of aspect ratio on accuracy, it is recommended that aspect ratios should be 

greater than 10:1 to accurately measure the fiber orientation distribution using FFT 

(Marquez, 2006).

A novel aspect of this study was the computational generation of test images that resemble 

the collagen microstructure of soft connective tissue. Our study used a semicircular von 

Mises distribution to generate 293 binary test images with known structural parameters (k 

and μ) and variable fiber aspect ratios, thicknesses, and concentrations. This enabled us to 

investigate the sensitivity of FFT to the natural diversity of fibrillar networks observed in 

native and healing soft tissue (Chamberlain et al, 2011; Hurschler et al, 2003). Other groups 

have used different approaches to create test images of fiber networks (Polzer et al, 2013; 

Schriefl et al, 2012; Sander and Barocas, 2009; Sampo et al, 2014; Marquez, 2006). 

Marquez generated test images that were composed of a grid of geometric cells, where each 

cell constrained a single fiber with an orientation determined from a von Mises distribution. 

This approach allowed Marquez to analyze the effect of fiber thickness and fiber 

concentration on FFT accuracy; however, the images had limited fiber intersections and 

assumed all fibers were equal length. Sander et al. developed random test images with 

realistic fiber intersections and variable fiber lengths to examine the effect of orientation, 

anisotropy, and fiber concentration. An important difference between Sander et al. and the 

current study, is that we directly generated normalized test images from known structural 

parameters for comparison with FFT predicted parameters, while Sander et al. generated 

random test images and used length-weighted 2D tensors to measure the structural 

parameters for comparison with FFT predicted parameters. An advantage of our approach is 

that it ensures that no measurement error exists in the known structural parameters (kactual 

and μactual), but a disadvantage is that all of our test images have a normal distribution of 

fiber orientations. Therefore, our accuracy results do not account for fiber networks that 

exhibit bimodal distributions or have isotropic subpopulations of fibers (Gouget et al, 2012). 

A subset of our study’s test images are available for download (http://

coen.boisestate.edu/ntm/fiberfit/), and may be useful to other research groups that are 

optimizing an image analysis technique.

The FiberFit software we developed for this study includes unique features that can support 

and expedite research in biomechanics and mechanobiology. A novel feature of FiberFit is 

the automated extraction of descriptive structural parameters (k and μ) based on the fitting of 

a semicircular von Mises distribution to the FFT generated fiber orientation distribution. The 

quantification of structural parameters from imaging data is a critical step to understanding 

the interrelations between biological processes, such as collagen remodeling, and the 

mechanical environment (Driessen et al, 2008; Grytz et al, 2011; Loerakker et al, 2014; 

Machyshyn et al, 2010). For example, the structural parameters acquired by FiberFit can be 

used to model the mechanical behavior of multi-axial fiber networks (Gasser et al, 2006; 

Holzapfel et al, 2000; Lanir, 1981). Constitutive models have been developed that use k and 

μ as material coefficients to describe a continuous fiber distribution (Girard et al, 2009), and 

these models are now available through the finite element solver FEBio (Maas et al, 2012; 

Gouget et al, 2012). Therefore, FiberFit can facilitate the development of models with 

realistic representations of fiber microstructure to study the mechanical effect of collagen 

organization, remodeling and repair. To our knowledge, FiberFit is the first free software to 
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implement a band-pass filter for the FFT analysis of fiber networks. The band-pass cutoff 

frequencies are adjustable, and therefore users can optimize noise reduction for specific 

applications. To expedite the analysis of numerous 2D images, FiberFit can process a batch 

of images and will export summary tables and reports to make results easily accessible to the 

user. FiberFit is also a portable application, which allows users to run FiberFit without 

needing to install additional software.

Other software applications are also available that use FFT to characterize fiber networks, 

but these programs have not been validated and their accuracy is unclear. For example, the 

software application Directionality calculates a histogram of fiber orientations using either a 

Fourier method or a local gradient method to fit a Gaussian curve. The mean fiber direction, 

fiber dispersion, and goodness of fit are automatically calculated, however, the noise 

removal method for the Fourier transform is unknown. When we used Directionality with 

ten disordered test images (k = 1), we found that the mean fiber orientation results had a 

large error (5.8 ± 3.6 degrees) compared to results using FiberFit (0.7 ± 0.4 degrees). This 

finding highlights the importance of selecting an appropriate noise removal method and 

verifying accuracy using test images of known structure. The plugin Oval Profile Plot can 

automatically create a fiber orientation histogram from the FFT power spectrum using radial 

sums, however, it lacks options for noise removal and it does not quantify structural 

parameters by fitting a continuous probability distribution to the fiber orientation histogram.

This study has provided insight into the effect of image processing and image magnification 

on FFT accuracy. We determined that converting images to grayscale prior to using FiberFit 

(Schriefl et al, 2012; Sander and Barocas, 2009; Ayres et al, 2006) gave the most accurate 

results when quantifying fiber dispersion and mean fiber orientation in confocal images of 

ligament. Converting images directly to binary gave less accurate results for highly aligned 

fiber networks. Both these image processing techniques required background filtering to 

remove noise, otherwise mean fiber orientation error was almost two times greater (data not 

shown). We also determined that image magnification did not affect the accuracy of 

measuring mean fiber orientation, but did affect the accuracy of measuring fiber dispersion, 

k. The larger k errors we observed at lower magnifications may be caused by the presence of 

curvilinear fiber crimp, which is difficult to model using discrete fiber networks (Fig. 4f). In 

addition, at lower magnifications, the fibers become less distinct, and this naturally adds 

noise to the fiber orientation histogram, resulting in lower k values (less fiber alignment). 

Nevertheless, a strong positive correlation did exist when using FiberFit to measure the fiber 

dispersion of the same ligament specimens at different magnifications.

While this study only evaluated confocal images of ligament, FiberFit can also be used to 

analyze discrete fiber networks in other types of fibrous soft tissue and from other imaging 

modalities. For example, FFT has previously been used to analyze fiber networks from 

tendon, artery walls and tissue engineered scaffolds, when using imaging modalities that 

include scanning electron microscopy, standard light microscopy, and multiphoton 

microscopy (Frisch et al, 2012; Schriefl et al, 2012; Polzer et al, 2013; Ayres et al, 2006). 

Although FiberFit can analyze the fiber orientation distribution in any fiber network, it is 

important to note that image noise will be dependent on multiple factors (e.g. tissue type, 

magnification, operator), and therefore different image processing operations may be 
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required prior to using FiberFit to ensure accurate analysis. In this study, we developed a 

validation strategy using discrete distributions from the manual tracing of images to assess 

FiberFit accuracy. This novel approach may be useful for evaluating and optimizing the use 

of FiberFit when new tissue types and imaging modalities are analyzed.

Further discussion is warranted on the methods used in FiberFt to fit a semicircular von 

Mises distribution to the fiber orientation data. In FiberFit, the parameters μ and k are 

sequentially fit to the fiber orientation distribution data, where μ is first calculated and then 

k. This two-step process proved to be more robust than fitting the parameters simultaneously 

using least squares or the Matlab Circular Statistics Toolbox (Berens, 2009). This strategy 

resulted in excellent fits of the semicircular von Mises distribution to the test images (R2 = 

0.92 ± 0.07) and grayscale confocal images (R2= 0.77 ± 0.13). The R2 value of 0.77 

indicates that a semicircular von Mises distribution was an appropriate probability 

distribution to describe the collagen fiber networks in the ligament specimens that we 

analyzed in this study.

Limitations exist in this study. We investigated two FFT noise removal methods, but other 

techniques exist that may provide superior performance (Polzer et al, 2013; Schriefl et al, 

2012; Sampo et al, 2014). It is important to note that if an FFT noise removal method was 

not applied, the inherent noise in FFT would result in the calculation of k values less than 

0.2 (nearly isotropic) for all test images, regardless of the actual fiber network alignment. 

Although we investigated the structure tensor method, we did not incorporate coherency or 

energy thresholds into the structure tensor algorithm. The application of these thresholds 

may improve the accuracy of the structure tensor and should be examined in future studies. 

Another limitation is that this study only analyzed two-dimensional images at a single size 

(1074 × 1074 pixels). However, our accuracy results should be valid to any image size, since 

the formulation of the band-pass filter used in FiberFit is automatically adjusted to image 

size (Eq. 5). In addition, the test images were generated with straight fibers, and therefore 

these results are not directly applicable to collagen networks that exhibit crimp or waviness. 

Images containing fiber crimp may exhibit a more disperse distribution of fiber orientations, 

as was observed in this study when confocal magnification was reduced from 63x to 20x. 

Finally, the confocal images used for validation covered a small field of view in relation to 

the entire specimen. In order to measure fiber organization at larger fields of view, other 

techniques may be more appropriate, such as quantitative polarized light imaging (Tower et 

al, 2002).

In conclusion, we found that using FFT with a band-pass filter gave accurate results when 

quantifying fiber orientation distributions in aligned and disordered fiber networks. A free 

software application, FiberFit, was developed that utilizes an FFT band-pass filter to fit fiber 

orientations to a semicircular von Mises distrution. FiberFit was able to quickly, 

automatically, and accurately extract fiber dispersion and mean fiber orientation from 

collagen fiber networks in ligament. We determined that converting images to grayscale 

prior to using FiberFit gave good results. This study provides guidelines, experimental 

methodologies and computational tools for researchers that are investigating the 

microstructure and mechanics of fibrillar networks in biological tissue.
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Fig. 1. 
Experimental approach to calculate accuracy of FFT and structure tensor methods. In stage 

I, test images were generated from semicicular von Mises distributions. In Stage II, images 

were converted to a fiber orientation distribution using FFT or structure tensor methods. In 

Stage III, mean fiber orientation μ and fiber dispersion k were calculated by fitting the fiber 

orientation distribution data to an ellipse and a semicircular von Mises distribution, 

respectfully. Accuracy was determined by comparing the fitted parameter values (measured) 

with the user-specified parameter values (actual). All analysis was done using custom 

Matlab programs, unless otherwise noted (* = utilized OrientationJ software). The example 

image shown in this figure has a k = 1.0 and μ = 90°
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Fig. 2. 
Generation of test images. Von Mises distributions (a, c, e) were converted into binary 

images (b, d, f) with known k and μ. Fiber alignment will increase with greater k values.
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Fig. 3. 
Representative test images showing variations in fiber concentration. (a) 8% fiber 

concentration and (b) 56% fiber concentration. Both images have a k = 1, fiber thickness of 

5, and medium aspect ratio
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Fig. 4. 
Images used for confocal validation. (a) Example confocal image at 63x, with corresponding 

(b) grayscale processing, (c) binary processing, and (d) manual tracing. (e) Example 

confocal image at 20x, with corresponding (f) manual tracing.
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Fig. 5. 
Comparison of image analysis methods. (a) Error in measuring k and (b) error in measuring 

μ when fiber networks vary from disordered to aligned. Bars represent standard deviation 

(*p < 0.05)
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Fig. 6. 
Sensitivity of FFT band-pass to fiber thickness and aspect ratio (AR). (a) Error in measuring 

k and (b) error in measuring μ. Bars represent standard deviation (*p < 0.05)
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Fig. 7. 
Sensitivity of FFT band-pass to fiber concentration. Bars represent standard deviation (*p < 

0.05 between k = 1 and k = 5)
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Fig. 8. 
Correlation of FFT band-pass and corresponding discrete distribution analysis for grayscale 

and binary processing at (a,b) 63x and (c,d) 20x.
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