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Confounding is a major concern in epidemiology. Despite its significance, the different notions of con-
founding have not been fully appreciated in the literature, leading to confusion of causal concepts in
epidemiology. In this article, we aim to highlight the importance of differentiating between the subtly
different notions of confounding from the perspective of counterfactual reasoning. By using a simple
example, we illustrate the significance of considering the distribution of response types to distinguish
causation from association, highlighting that confounding depends not only on the population chosen as
the target of inference, but also on the notions of confounding in distribution and confounding in measure.
This point has been relatively underappreciated, partly because some literature on the concept of con-
founding has only used the exposed and unexposed groups as the target populations, while it would be
helpful to use the total population as the target population. Moreover, to clarify a further distinction
between confounding “in expectation” and “realized” confounding, we illustrate the usefulness of exam-
ining the distribution of exposure status in the target population. To grasp the explicit distinction be-
tween confounding in expectation and realized confounding, we need to understand the mechanism that
generates exposure events, not the product of that mechanism. Finally, we graphically illustrate this
point, highlighting the usefulness of directed acyclic graphs in examining the presence of confounding in
distribution, in the notion of confounding in expectation.

© 2016 The Authors. Publishing services by Elsevier B.V. on behalf of The Japan Epidemiological
Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Confounding is a major concern in epidemiology. Since the
publication of the seminal paper by Greenland and Robins,' many
epidemiologists have explained the concept of confounding by
examining risk measures under a simple potential-outcome (or
counterfactual) model for a cohort of individuals.>® Exchange-
ability of potential outcomes between the exposed and unexposed
groups is one of the most fundamental assumptions in making
causal inference, and confounding is a common source of lack of
exchangeability.? Despite its significance, the different notions of
confounding have not been fully appreciated in the literature,
leading to confusion of causal concepts in epidemiology.
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This article aims to highlight the importance of differentiating
between the subtly different notions of confounding from the
perspective of counterfactual reasoning. We also show that
directed acyclic graphs (DAGs) provide a simple algorithm to
identify a sufficient set of confounders if the underlying causal
structure is properly reflected. To achieve these goals, we use the
concept of response types in a simple example. The concept of
response type is an essential foundation of causal inference because
the causal effect of exposure on disease frequency in a population
depends on the distribution of the response types of individuals in
that population, not necessarily on the population distribution of
the covariates.! This point, however, has been relatively underap-
preciated because, despite its sophistication and usefulness, the
response type of each individual is unobservable.

2. Overview of a simple example

To consider the effect of smoking cessation on lung cancer
during a defined time period, we use an example of four subjects
(Table 1). In an epidemiologic study of these subjects, let us suppose

0917-5040/© 2016 The Authors. Publishing services by Elsevier B.V. on behalf of The Japan Epidemiological Association. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



50 E. Suzuki et al. / Journal of Epidemiology 27 (2017) 49—55

Table 1

Characteristics of the four smoking subjects during the target time period.?
Subject ID Sex History of asbestos Smoking Lung cancer Lung cancer if male/female® Response

. . . . . t
exposure Quit smoking (i.e., exposure) Did not quit (i.e., non-exposure) ype

Subject #1 Male Yes Quit Diseased Diseased (Diseased) Doomed
Subject #2 Male No Did not quit Diseased (Non-diseased) Diseased Preventive
Subject #3 Female No Quit Non-diseased Non-diseased (Non-diseased) Immune
Subject #4 Female No Did not quit Diseased (Non-diseased) Diseased Preventive

@ Effect of smoking cessation on lung cancer.
b parentheses indicate that these particular outcomes are counterfactual.

that subjects #1 (male) and #3 (female) were actually exposed (i.e.,
quit smoking) and subjects #2 (male) and #4 (female) were actually
unexposed (i.e., did not quit smoking). During the follow-up, one of
the exposed and both of the unexposed subjects suffered from lung
cancer. Consequently, the observed risk difference (RD) estimate for
the effect of smoking cessation on lung cancer can be calculated as:
1/2 —2/2 = —1/2. Likewise, the observed risk ratio (RR) estimate can
be calculated as: (1/2)/(2/2) = 1/2. These results suggest that
smoking cessation can prevent lung cancer.

When we consider a binary exposure and a binary outcome,
individuals can be classified into the following four different
response types.!

e Type 1 or “doomed” persons: Exposure is irrelevant because
outcome occurs with or without exposure

e Type 2 or “causal” persons: Outcome occurs if and only if they
are exposed

e Type 3 or “preventive” persons: Outcome occurs if and only if
they are unexposed

e Type 4 or “immune” persons: Exposure is irrelevant because
outcome does not occur with or without exposure

Response types of the four subjects are shown in Table 1. No
subjects are classified as a “causal” response type, implying that the
effect of smoking cessation is in the same direction for all four
subjects. This assumption has been referred to as negative mono-
tonicity.!%!! Although monotonicity assumptions may be biologi-
cally plausible in some situations, they can never be empirically
verified with data because they make reference to all individuals in
the population. Here, we use such an assumption to simplify the
discussion. The conditions presented in our paper can be used even
when the monotonicity assumption is violated.

In the following sections, we illustrate a typology of four notions
of confounding by exploring and extending this simple example
(Box 1 and Fig. 1). For simplicity, we use deterministic counterfac-
tuals for each subject and assume that no random error attributable
to sampling variability exists.®

3. Significance of differentiating between the notions of
confounding in distribution and confounding in measure

The causal effect of exposure on disease frequency in a popu-
lation depends on the distribution of response types of individuals
in that population. Table 2 shows the distribution of response types
in the exposed and unexposed groups of the abovementioned
example. We also show the distribution in the total population; let
Di» Gi, and 1, i = 1—4, be proportions of response type i in the
exposed group, the unexposed group, and the total population,
respectively. Note that r; can be calculated as p;/2 + qj/2 because the
numbers of the exposed and unexposed groups are balanced
(Table 1). Among the exposed group, only type 1 and type 2 persons
will develop the outcome, and the risk, or incidence proportion, of
lung cancer in the exposed group is p; + p2. Among the unexposed

Box 1
Four notions of confounding

e Confounding in distribution: We say that there is no
confounding in distribution of the effect of exposure on
outcome if the group that actually had a particular expo-
sure is representative of what would have occurred had
the entire target population been exposed to the same
level of exposure.

e Confounding in measure: We say that there is no con-
founding in measure of the effect of exposure on outcome
if a particular measure of interest is equivalent to the
corresponding causal measure in the target population.

e Confounding in expectation: We say that there is no
confounding in expectation of the effect of exposure on
outcome if the exposure assignment mechanism results
in balance.

e Realized confounding: We say that there is no realized
confounding of the effect of exposure on outcome if a
particular exposure assignment results in balance, irre-
spective of the exposure assignment mechanism.

Confounding in expectation

Confounding
in measure

Confounding
in distribution

1l 1V

Realized confounding

Fig. 1. Typology of four notions of confounding. DAGs are primarily useful to examine
the presence of confounding in the first quadrant. DAG, directed acyclic graph.

group, only type 1 and type 3 persons will develop the outcome,
and the corresponding risk is q; + g3. Therefore, the associational
RD can be obtained using the proportions of response types as:
(p1 +Dp2) — (@1 + gq3) = 1/2 — 2/2 = —1/2, which is equivalent to the
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Table 2
Response types and their distribution in Table 1.

Response type Response under Description Proportion of response types in
Exposure Non-exposure Exposed? Unexposedb Total population®
1 1 1 Doomed p1=1/2 q1=0 r=1/4
2 1 0 Causal p2=0 q2=0 r,=0
3 0 1 Preventive p3=0 qs =22 r3=2/4
4 0 0 Immune pa=1/2 qs=0 rg=1/4

Effect of smoking cessation on lung cancer (1 = diseased, 0 = non-diseased). The associational risk difference is calculated as: (p1 + p2) — (g1 + q3) = 1/2 — 2/2 = —1/2. Note that

the distribution in this table applies to scenario #2 in Table 3.

@ Causal risk difference in the exposed group is defined as: (p; + p2) — (p1 +p3)=p2 —p3=0-0=0.

b Causal risk difference in the unexposed group is defined as: (q; + q2) — (q1 + q3) = 2 — 3 = 0 — 2/2 = —2/2..

¢ As shown in Table 1, numbers of the exposed and unexposed groups are balanced, so a proportion of response type i in the total population, r;, can be calculated as:
Di/2 + qi/2. The causal risk difference in the total population is defined as: (ry +12) —(r1 +1r3) =1, —13=0 - 2/4 = -2/4.

abovementioned observed RD estimate under the assumption of no
sampling variability.

It has been well established that the target population concept
plays a key role in discussions of causal inference in epidemiology.*>
Based on the distribution of these response types, we can define the
true value of the causal parameters of interest in the corresponding
target populations. For example, if exposure had been absent in the
exposed group, only type 1 and type 3 persons would have developed
the outcome, and the counterfactual risk of lung cancer would have
been p; + ps. Therefore, the causal RD in the exposed group
(i.e., subjects #1 and #3) can be calculated as: (p; + p2) — (p1 +
p3) =Dp2 — p3 =0 — 0= 0. Likewise, the causal RDs in the unexposed
group (i.e., subjects #2 and #4) and the total population can be
calculated as: (q1+q2) — (@1 +q3)=q2—q3=0—-2/2=-2/2and (r; +
r2) —(r1 +13) =13 —13=0— 2/4 = —2/4, respectively.

These descriptions in terms of response types are valuable in
highlighting the significance that the notion of confounding can be
defined with respect to both the distribution of potential outcomes
(i.e., confounding in distribution) and a specific effect measure (i.e.,
confounding in measure).>'>'3 If we use RD as a measure of interest,
when the exposed group is the target population, we say that there
is confounding in measure if the causal RD in the exposed group (i.e.,
(p1 + p2) — (p1 + p3)) is not equivalent to the associational RD (i.e.,
(p1 + p2) — (q1 + g3)). Therefore, a sufficient and necessary condi-
tion for no confounding in measure is given by':

(P1+p2) — (P1 +Pp3) = (P1 +D2) — (91 +G3)

<(p1+p3) = (1 +q3), M

which is violated in Table 2. Conversely, when the unexposed group
is the target population, a sufficient and necessary condition for no
confounding in measure is given by:

(g1 +42) — (91 +493) = (P1 +P2) — (q1 +q3)

_ (2)
<(P1+DP2) = (91 +q2),

(r1+12)/(r1 +13) = (P1 +P2)/(q1 +q3)

exposed group is the target population, we say that there is con-
founding in distribution if the actual unexposed group is not
representative of what would have occurred in the actual exposed
group had they been unexposed. Therefore, a sufficient and
necessary condition for no confounding in distribution is identical to
Equation (1). When the exposed and unexposed groups are used as
target populations, distinguishing between the notions of con-
founding in distribution and confounding in measure becomes a
subtle issue, and there is confounding in distribution and con-
founding in measure in Table 2. When the target is the total popu-
lation, however, it is crucial to distinguish between these because
conditions for no confounding vary according to the two notions of
confounding. If we use the notion of confounding in distribution, a
sufficient and necessary condition for no confounding is given by:

{(r1 +12) = (P1 +P2)IA{(r1 +13) = (@1 +q3)} 3)
<{(p1+Dp2) = (g1 + @2)}M{(P1 +P3) = (q1 +43)},

which is obviously violated in Table 2. If Equation (3) holds, the
groups that are actually exposed and unexposed are representative
of what would have occurred had the total population been
exposed and unexposed, respectively. Note that confounding in
distribution is scale-independent. Meanwhile, if we use RD as a
measure of interest, a sufficient and necessary condition for no
confounding in measure is given by:

(ry +13) = (r1 +13) = (P1 +P2) — (1 +q3)
©P2+q92)/2 - (p3+q3)/2 = (p1 +D2) — (1 +G3) (4)
<(p1 +p3) + (P1 +DP2) = (@1 +93) + (@1 + G2),

which is weaker than Equation (3) and is met in Table 2. Note that
confounding in measure is scale-dependent. For example, if we use
RR as a measure of interest, a sufficient and necessary condition for
no confounding in measure is given by:

<[{(P1+q1) + (P2 +q2)}/2]/[{(P1 +491) + (P3 +43)}/2] = (P1 +DP2)/(d1 +q3) (5)

<(p1 +p2)(P1+P3) = (@1 +93)(q1 + 2),

which is also violated in Table 2. Note that these conditions can be
also derived when the notion of confounding is defined with
respect to the distribution of potential outcomes, rather than with
respect to a specific effect measure.'>'> For example, when the

which is, though weaker than Equation (3), violated in Table 2.
Consequently, even if the distribution of response types in the
exposed and unexposed groups are not comparable (i.e.,
(p1.p2,p3.p4) * (91,.92,3.94)), as in Table 2, we may obtain an un-
confounded estimate for the target population. Complete



52 E. Suzuki et al. / Journal of Epidemiology 27 (2017) 49—55

comparability of response types between the exposed and unex-
posed groups (i.e., (p1,p2,P3.P4) = (q1,.92,93,94)) is a sufficient, but not
a necessary, condition for no confounding in the three target
populations, irrespective of whether one uses the notion of con-
founding in distribution or confounding in measure.

In conclusion, confounding depends not only on the population
chosen as the target of inference, but also on the notion of con-
founding itself, when the target is the total population.>'?!® This
point has been relatively underappreciated, partly because some
books (including Modern Epidemiology’ and Encyclopedia of Epide-
miology') discuss the concept of confounding using only the
exposed and unexposed groups as the target populations. As ex-
amples of the confusion surrounding the concept of confounding, a
recent review article by Gatto et al."” explains the conditions for no
confounding that are implicitly derived from the notion of con-
founding in distribution, whereas Maldonado'® implicitly used the
notion of confounding in measure when discussing the concept of
confounding. To clarify the significance of differentiating the two
notions of confounding, it would be helpful to use not only the
exposed and unexposed groups, but also the total population as the
target populations.

4. Extension of a simple example to clarify a further
distinction between confounding “in expectation” and
“realized” confounding

As discussed in an update of the classic methodology paper by
Greenland and Robins,!” a further distinction can be drawn be-
tween confounding “in expectation” and “realized” confounding.?
Epidemiologic literature has typically addressed the issue of “no
confounding” in the notion of realized confounding; however, the
notion of confounding in expectation is also valuable. The concept of
bias is defined by comparing the expected value of an estimator and
the true value of the parameter,'32? and confounding is a common
source of bias.

In an ideal randomized controlled trial, the randomized groups
will be comparable in their potential outcomes on average, over
repeated experiments. For any given experiment, however, the
particular randomization may result in imbalances by chance,
because of the particular allocation or exposure assignment.>! Such
a scenario would result in no confounding in expectation but there
would be realized confounding for that particular trial.'? Confound-
ing in expectation and realized confounding have been also referred
to as confounded mechanisms and confounded assignments,
respectively.!® To grasp the explicit distinction between these no-
tions of confounding, we need to understand the mechanism that
generates exposure events, not the product of that mechanism. In
the example of four smokers, the mechanism that generates the
exposure events remains unknown. The lack of comparability of
response types between the exposed and unexposed groups in the
example could be because the configuration was observed
randomly, with the estimator being unconfounded in expectation,
or there could be a reason for the lack of comparability that is not
revealed in the above explanation.

To obtain the expected value of an estimator in the target
population, we need to consider the distribution of exposure status
in that population. To illustrate this, the following discussion fo-
cuses on the situation in which the target population is the total
population. Note that Table 1 shows only one pattern of exposure
status of the four subjects. Given a total of four subjects, we can
consider a maximum of six patterns of exposure status, when the
numbers of the exposed and unexposed groups are balanced
(Table 3) (The exposure status shown in Table 1 corresponds to
scenario #2 in Table 3.). In each scenario, we can calculate an RD
estimate for the four subjects.

Table 3
Six possible scenarios when the numbers of the exposed and unexposed groups are
balanced.?

Actually exposed Actually unexposed

Scenario #1
Subject ID
Response type
Scenario #2°

#1, #2
doomed, preventive

#3, #4
immune, preventive

Subject ID #1, #3 #2, #4

Response type doomed, immune preventive, preventive
Scenario #3

Subject ID #1, #4 #2, #3

Response type doomed, preventive preventive, immune
Scenario #4

Subject ID #2, #3 #1, #4

Response type preventive, immune doomed, preventive
Scenario #5

Subject ID #2, #4 #1, #3

Response type preventive, preventive doomed, immune
Scenario #6

Subject ID #3, #4 #1, #2

Response type immune, preventive doomed, preventive

? Scenarios #1 and #3 are identical from the perspective of counterfactual
reasoning, because the distributions of response types are the same in these sce-
narios. Similarly, scenarios #4 and #6 are identical from the perspective of coun-
terfactual reasoning. Consequently, these six scenarios are grouped into a total of
four patterns in terms of the distributions of response types.

b Exposure status shown in Table 1 corresponds to scenario #2.

From the perspective of counterfactual reasoning, scenarios #1
and #3 in Table 3 are essentially identical; the distributions of
response types in the exposed and unexposed groups are the same.
Therefore, the observed RD estimates are identical in these sce-
narios (i.e., 0). Similarly, scenarios #4 and #6 are essentially iden-
tical, because the distributions of response types in these scenarios
are the same. As a result, the six scenarios can be grouped into a
total of four patterns in terms of the distributions of response types.
To highlight the distinction between confounding in expectation and
realized confounding, we discuss two situations below, according to
different mechanisms that generate the exposure events. In Situa-
tion 1, the treatment assignment is randomly determined, whereas,
in Situation 2, the treatment assignment is causally influenced by
the subject's sex. See eAppendix 1 and eTable 1, eTable 2, eTable 3,
and eTable 4 for a technical discussion of these situations.

4.1. Situation 1 (with random assignment of the treatment)

When the treatment assignment of each subject is randomly
determined, we assume the probability of the two males quitting
smoking is equal to the probability of the two females quitting
smoking (i.e., P[quitting | male] = P[quitting | female] = 1/2). In this
situation, the six scenarios are induced randomly, with a proba-
bility of 1/6 (Table 4).

The expected values of the estimators for risk in the exposed and
unexposed groups are calculated as: 3 x (1/6 x 1/2) + 3 x (1/6 x
0/2)=1/4and 3 x (1/6 x 1/2) + 3 x (1/6 x 2/2) = 3/4, respectively
(Table 4). Consequently, the expected value of the estimator for RD
in the four subjects is calculated as: 1/4 — 3/4 = —1/2, which is
equivalent to the causal RD in the four subjects. In the notion of
confounding in expectation, we say that there is no confounding in
measure of the effect of smoking cessation on lung cancer in the
four subjects (i.e., the second quadrant in Fig. 1). In this case, we
describe the estimator as being an unbiased estimator and the
realized value is referred to as an unbiased estimate.'®?° Using the
notion of confounding in expectation, each of the observed RD es-
timates in the six scenarios is referred to as an unbiased estimate
for the four subjects, even if it is not equivalent to the causal RD in
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Table 4
Expected values of the estimators for risk and their difference in Situations 1 and 2.
Observed values Situation 1 Situation 2
Risk estimates in RD estimates ~ Weights®  Observed RD estimator ~ Weights®  Observed RD estimator
risk x weight risk x weight
Exposed  Unexposed Exposed  Unexposed Exposed  Unexposed
Scenario #1 1/2 1/2 0 1/6 1/12 1/12 16/33 8/33 8/33
Scenario #2 12 2/2 -1/2 1/6 1/12 2/12 4/33 2/33 4/33
Scenario #3 1/2 1/2 0 1/6 1/12 1/12 4/33 2/33 2/33
Scenario #4 0/2 2/2 -2/2 1/6 0 2/12 4/33 0 4/33
Scenario #5 0/2 1/2 -1/2 1/6 0 1/12 4/33 0 2/33
Scenario #6 0/2 2/2 —2/2 1/6 0 2/12 1/33 0 1/33
Expected value 1/4 3/4 -1/2 4/11 7/11 —3/11

RD, risk difference.

2 Probability of the four subjects quitting smoking is 1/2, so the six scenarios are induced randomly. See Table 3 and eAppendix 1 for details.
b Probabilities of the two males and the two females quitting smoking are 2/3 and 1/3, respectively, so scenario #1 is expected to occur 16 times (i.e., 2%) as often as scenario
#6. Likewise, each of the scenarios #2—>5 is expected to occur four times (i.e., 22) as often as scenario #6. See Table 3 and eAppendix 1 for details.

the four subjects. Conversely, if the notion of realized confounding is
used, we simply compare the observed RD estimate in each sce-
nario with the causal RD in the four subjects. Although there is no
realized confounding in measure in scenarios #2 and #5, there is
realized confounding in measure in scenarios #1, #3, #4, and #6 (i.e.,
the third quadrant in Fig. 1). This clearly demonstrates that realized
confounding can be present even if the exposure assignment
mechanism is completely random, especially if the study size is
small.

A similar discussion applies when examining the presence of
confounding in distribution. Note that the expected values of
the estimators for risk in the exposed and unexposed groups (i.e.,
1/4 and 3/4, respectively) are equivalent to the risk if all four
subjects had been exposed and unexposed, respectively (Table 4).
In the notion of confounding in expectation, there is no confounding
in distribution of the effect of smoking cessation on lung cancer in
the four subjects (i.e., the first quadrant in Fig. 1). Conversely, if the
notion of realized confounding is used in Table 1, the observed risk
in the exposed group (i.e., 1/2) is not equivalent to the risk if all four
subjects had been exposed (i.e., 1/4). The observed risk of the
unexposed group (i.e., 2/2) is not equivalent to the risk if all four
subjects had been unexposed (i.e., 3/4). In the notion of realized
confounding, there is confounding in distribution (i.e., the fourth
quadrant in Fig. 1).

4.2. Situation 2 (with non-random assignment of the treatment)

Here, we consider a situation in which the treatment assign-
ment of each subject is influenced by his or her sex. For example,
the probability of the two males quitting smoking is twice as
high as the probability of the two females quitting smoking (i.e.,
P[quitting | male] = 2/3 and P[quitting | female] = 1/3). Conse-
quently, scenario #1 is expected to occur 16 times (ie. 2%) as
often as scenario #6. Likewise, each of the scenarios #2—5 is
expected to occur four times (i.e., 2%) as often as scenario #6. In
other words, scenario #1 is expected to occur with a probability
of 16/33; each of the scenarios #2—5 is expected to occur with a
probability of 4/33; and scenario #6 is expected to occur with a
probability of 1/33 (Table 4).

The expected values of the estimators for risk in the exposed and
unexposed groups are calculated as: (16/33 x 1/2) + 2 x (4/33 x
1/2) + 2 x (4/33 x 0/2) + (1/33 x 0/2) = 4/11 and (16/33 x 1/2) + 2
x (4/33 x 2/2) + 2 x (4/33 x1/2) + (1/33 x 2/2) = 7/11, respec-
tively (Table 4). Consequently, the expected value of the estimator
for RD in the four subjects are calculated as: 4/11 — 7/11 = -3/11,

which is not equivalent to the causal RD in the four subjects
(i.e., —1/2). In this case, the estimator is a biased estimator, and the
differential between the two values (i.e., —=3/11 — (—1/2) = 5/22) is
called bias.?® In Situation 2, the observed RD estimate in Table 1
(i.e., —1/2) is confounded in the notion of confounding in expecta-
tion (i.e., the second quadrant in Fig. 1), although it is equivalent to
the causal RD in the four subjects. In contrast, in the notion of
realized confounding, there is no confounding in measure of the effect
of smoking cessation on lung cancer in the four subjects (i.e., the
third quadrant in Fig. 1).

When examining the presence of confounding in distribution, the
expected values of the estimators for risk in the exposed and un-
exposed groups (i.e., 4/11 and 7/11, respectively) are not equivalent
to the risk had all four subjects been exposed and unexposed,
respectively (Table 4). In the notion of confounding in expectation,
there is confounding in distribution of the effect of smoking cessa-
tion on lung cancer in the four subjects (i.e., the first quadrant in
Fig. 1). Using the notion of realized confounding in Table 1, there is
also confounding in distribution of the effect of smoking cessation on
lung cancer in the four subjects (i.e., the fourth quadrant in Fig. 1).

4.3. Further implications from the extended simple example

A simple example to clarify the distinction between confounding
in expectation and realized confounding is a useful educational tool
to explain the concept of confounding more clearly. However, it is
important to note that the exposed and unexposed groups are, by
definition, determined by the specific pattern of exposure status. If
these subpopulations are used as target populations, the discussion
is logically restricted to the notion of realized confounding for the
two target populations in that particular pattern. Therefore, to
teach a generalized concept of bias, it is important to use the total
population as the target population, as this facilitates the differ-
entiation between notions of confounding in expectation and real-
ized confounding.

As pointed out in a recent review by Schwartz et a there are
discrepancies in the literature regarding whether random error
should be included as a bias. Part of the confusion stems from lack
of appreciation of the distinction between the notions of con-
founding in expectation and realized confounding. Similarly, the
notion of confounding in expectation is essential to understand the
relationship between accuracy, validity, and precision. See
eAppendix 2 for further discussion, including a numerical
description of the relationships in Situations 1 and 2. We also show

122
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mathematical definitions of the four notions of confounding in
eAppendix 3.

5. Notions of confounding and directed acyclic graphs

In epidemiologic research, DAGs have been used extensively to
determine the variables for which it is sufficient to control for
confounding to estimate causal effects.>3>2% In this section, we
graphically illustrate this point, highlighting the usefulness of DAGs
in examining the presence of confounding in distribution in the
notion of confounding in expectation (i.e., the first quadrant in
Fig. 1).1214

Fig. 2 shows a DAG for the total population in the example. The
presence of a dashed arrow from “Male” to “Smoking Cessation” is
determined by comparing the probability of the two males quitting
smoking (i.e., P[quitting | male]) and the probability of the two
females quitting smoking (i.e., P[quitting | female]). This is
explained simply, using the two previously discussed situations.

5.1. Situation 1 (with random assignment of the treatment)

When the treatment assignment of the four subjects is
randomly determined (i.e., P[quitting | male] = P[quitting |
female] = 1/2), “Male” and “Smoking Cessation” are independent;
there is no association between these two events. The dashed ar-
row from “Male” to “Smoking Cessation” in Fig. 2 is absent, and
there is no backdoor path (i.e., a non-causal path that has an arrow
pointing into the exposure) from “Smoking Cessation” to “Lung
Cancer”. Consistent with our explanation in the previous section, in
the notion of confounding in expectation, when the target popula-
tion is the total population, bias does not occur in Situation 1; there
is no confounding in distribution.

5.2. Situation 2 (with non-random assignment of the treatment)

When the treatment assignment of the four subjects are influ-
enced by their sex (i.e., P[quitting | male] # P[quitting | female]),
“Male” and “Smoking Cessation” are not independent; there is a
causal association between these two events. The dashed arrow
from “Male” to “Smoking Cessation” in Fig. 2 is present, resulting in
a backdoor path from “Smoking Cessation” to “Lung Cancer”.
Consistent with our explanation in the previous section, in the
notion of confounding in expectation, when the target population is
the total population, bias occurs in Situation 2; there is confounding
in distribution.

Male ——— > Asbestos

Smoking Lung
Cessation Cancer

Fig. 2. DAG for a study of the effect of smoking cessation on lung cancer. The presence
of a dashed arrow from “Male” to “Smoking Cessation” is determined by comparing the
probabilities of the two males and two females quitting smoking. If we use a DAG with
signed edges in Situation 2, all the edges including the dashed arrow are positive. By
applying the signed DAG approach, the sign of a backdoor path from “Smoking
Cessation” to “Lung Cancer” is the product of the signs of the edges that constitute that
path, and we can conclude that the sign of the bias is positive. This is consistent with
the fact that, when the target population is the total population, there is positive bias
in Situation 2 in the notion of confounding in expectation. DAG, directed acyclic graph.

5.3. What are the implications from the directed acyclic graph?

DAGs are primarily useful to examine the presence of con-
founding in distribution in the notion of confounding in expectation
(i.e., the first quadrant in Fig. 1). They are also practical tools to
identify realized confounding, if the size of population is large
enough. Furthermore, it has been shown that DAGs with signed
edges, or signed DAGs, are useful in drawing conclusions about the
direction of bias because of unmeasured confounders (Fig. 2).2”

Finally, although the causal effect of exposure on disease fre-
quency in a population depends on the distribution of response
types of individuals in that population, and DAGs have been used to
provide visual summaries of hypothetical relationships among
variables, they do not describe the relationships between under-
lying response types. To overcome this, Suzuki et al.?° discussed
how DAGs can be extended by integrating response types and
observed variables, showing the conceptual link between unob-
servable response types and observed (or observable) data fre-
quencies in the population. As an example of their usefulness, the
principal stratification approach can be illustrated using extended
DAGs. >0

6. Discussion

In this paper, we provide a typology of the four notions of
confounding in epidemiology from the perspective of counterfac-
tual reasoning. In eTable 5, we summarize sufficient and necessary
conditions for no confounding in terms of response types, when the
target population is the total population. Confounding in expectation
is dependent on each mechanism that generates exposure events,
whereas realized confounding is dependent on each product of that
mechanism (or scenario). In both the notions of confounding in
expectation and realized confounding, no confounding in distribution
is a sufficient condition for no confounding in measure, irrespective
of whether RD or RR are used as a measure of interest. Both con-
founding and selection bias result in a lack of exchangeability,? and
comparable conditions apply to selection bias.

The different notions of confounding have not been fully
appreciated in the literature, which has led to confusion of causal
concepts in epidemiology. This lack of clear understanding could
lead to inappropriate use of and underappreciation of DAGs,!631
which provide a simple algorithm for examining the presence of
confounding in distribution in the notion of confounding in
expectation.

For simplicity, throughout this paper we have ignored that
causal effects estimated in one population are often intended for
use in making decisions in another population.>?~° This has been
referred to as “transportability” of the causal effect, 3?33 and this is a
question of external validity. When transporting the causal effect
estimates to external targets, we need to consider the distributions
of effect modifiers, interference patterns, and versions of treatment
across populations.3? Although we have focused on the three usual
internal target populations (i.e., the exposed group, the unexposed
group, and the total population), our discussion about the notions
of confounding analogously applies when using external targets.
The potential outcomes and causal graph frameworks are also
relevant, as they are for internal targets.

Simple examples can be powerful tools for understanding
complex causal concepts; the power of simplicity, however, should
be carefully exercised to achieve this goal.’! Recent developments
in epidemiologic methods have demonstrated that substantial
insight can be obtained from simplified representations of complex
biological reality. None of us would deny the value of an old dictum
(often referred to as Occam'’s razor) that one should not introduce
needless complexity for purposes of prediction or explanation.
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Undeniably, however, all of us should also keep in mind Einstein's
razor, the warning against being too simplistic: “Everything should
be made as simple as possible, but not simpler”.3® We hope that our
simple example can serve as an effective tool to illustrate a typology
of notions of confounding.
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