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Peroxisome biogenesis and human peroxisome-deficiency disorders
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Abstract: Peroxisome is a single-membrane-bounded ubiquitous organelle containing a
hundred different enzymes that catalyze various metabolic pathways such as O-oxidation of very
long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and
human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen
different complementation groups of Chinese hamster ovary (CHO) cell mutants impaired in
peroxisome biogenesis are isolated as a model experimental system. By taking advantage of rapid
functional complementation assay of the CHO cell mutants, successful cloning of PEX genes
encoding peroxins required for peroxisome assembly invaluably contributed to the accomplishment
of cloning of pathogenic genes responsible for PBDs. Peroxins are divided into three groups: 1)
peroxins including Pex3p, Pex16p and Pex19p, are responsible for peroxisome membrane biogenesis
via Pex19p- and Pex3p-dependent class I and Pex19p- and Pex16p-dependent class II pathways;
2) peroxins that function in matrix protein import; 3) those such as Pex11pO are involved in
peroxisome division where DLP1, Mff, and Fis1 coordinately function.

Keywords: CHO cell mutants, peroxisome biogenesis, protein import machinery, pathogenic
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1. Introduction

Peroxisomes are single-membrane-bounded
ubiquitous organelles containing a hundred different
enzymes that catalyze various metabolic pathways,
including O-oxidation of very long-chain fatty acids,
the synthesis of ether lipids such as plasmalogens,
and bile-acid metabolism1) (Table 1). They were
discovered in 1954, named peroxisomes in 1965,
and defined that peroxisomes contain one or more
enzymes that use molecular oxygen to remove
hydrogen atoms and form hydrogen peroxide from
organic substrates.2) Catalase, a typical marker

enzyme of peroxisomal matrix, degrades hydrogen
peroxides.

Peroxisomes are thought to form by the division
of pre-exiting peroxisomes after the import of newly
synthesized proteins.3) Molecular mechanisms of
peroxisome biogenesis, including peroxisomal import
of newly synthesized matrix and membrane proteins,
have been extensively investigated basically by
several eukaryotic systems. Studies at the molecular
level on both peroxisome assembly and peroxisome
biogenesis disorders (PBDs, Table 2) rapidly pro-
gressed in the last three to four decades. The
identification and isolation of over 30 essential genes
termed PEXs encoding peroxisome biogenesis factors
named peroxins, have been performed by means of
the genetic phenotype-complementation of peroxi-
some assembly-deficient cell mutants, named pex
mutants impaired in PEX genes. Such mutants from
Chinese hamster ovary (CHO) cells (Table 3; see
below),4),5) several yeast species including Saccharo-
myces cerevisiae,6) Pichia pastoris,7),8) Hansenula
polymorpha,9) and Yarrowia lipolytica10) (also see
reviews11)–16)), and plant Arabidopsis thaliana17) have
been successfully contributing to the investigations
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of peroxisome biogenesis and protein traffics in
eukaryotes.18),19) I herein review and address perox-
isome biogenesis and human deficiency disorders by
making use of mammalian model cell systems.

2. Genetic approaches to studying mammalian
peroxisome biogenesis

Two mutually complementary genetic ap-
proaches used for isolation of PEX genes encoding
peroxins were genetic phenotype-complementation
of peroxisome assembly-defective mutants of CHO
cells and a combination of the human orthologue
isolation by homology search on the human expressed
sequence tag database using yeast PEX genes and
cells from patients with PBDs of more than a dozen
different genotypes, i.e., complementation groups
(CGs) (Table 3; see below).4),5),20)–22)

2.1. Mammalian cell mutants deficient of
peroxisome.

2.1.1. Cell lines from patients with PBDs. The
PBDs include Zellweger syndrome (ZS), neonatal
adrenoleukodystrophy (NALD), infantile Refsum
disease (IRD), which are called Zellweger syndrome
spectrum, and rhizomelic chondrodysplasia punctata
(RCDP)23),24) (Table 2). Patients with ZS show
severe neurological abnormalities, characteristic dys-
morphism and hepatomegaly, and rarely survive with
an average life of only 6 months. NALD patients
have the symptoms similar to ZS patients, but they
survive a little longer, early childhood. By contrast,
patients with IRD do not manifest significant
abnormalities in the central nervous system, and
survive with the longest average life, 3–11 years.23)

RCDP patients show distinct phenotypic character-

Table 2. Peroxisomal disease

Peroxisome biogenesis disorders (PBDs)

Zellweger spectrum disorders

Zellweger syndrome (ZS)

Neonatal adrenoleukodystrophy (NALD)

Infantile Refsum disease (IRD)

Rhizomelic chondrodysplasia punctata (RCDP)

Single-enzyme deficiencies

Adrenoleukodystrophy (ALD)

Acyl-CoA oxidase deficiency

D-Bifunctional protein deficiency

3-Ketoacyl-CoA thiolase deficiency

Refsum disease (phytanyl-CoA hydroxylase deficiency), ,-Methylacyl-CoA racemase deficiency

Hyperoxaluria type I (alanine glyoxylate aminotransferase deficiency)

Mevalonate kinase deficiency

Glutaric aciduria 3 (glutaryl-CoA oxidase deficiency)

Acatalasemia

Table 1. Functions of peroxisomea

1. Respiration: H2O2-producing oxidases, catalase

2. Fatty acid O-oxidation: acyl-CoA oxidase, bifunctional protein (hydratase-dehydrogenase), thiolase

3. Ether glycerolipid (plasmalogen) biosynthesis: DHAP-ATPase, alkyl-DHAP synthase

4. Transamination and oxidation (gluconeogenesis): serine-pyruvate aminotransferase (alanine-glyoxylate aminotransferase)

5. Purine catabolism

6. Polyamine catabolism

7. Bile acid biosynthesis

8. Pipecolic acid catabolism

9. Phytanic acid catabolism
aRepresentative functions in mammalian peroxisomes are listed, where peroxisomal enzymes involved in the functions (1 to 4) are also
described.
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istics such as severe growth failure and rhizomelia.
Genetic heterogeneity consisting of 14 CGs has
been identified in PBDs by cell-fusion CG analysis
using fibroblast cell lines derived from PBD pa-
tients5),20),25)–27) (Table 3), where the primary cause
for PBDs was revealed to be the impaired biogenesis
of peroxisomes.5),20)

2.1.2. Isolation of CHO cell lines. Two methods
were developed for the isolation of mammalian
somatic cell mutants defective in peroxisome bio-
genesis: (i) colony autoradiographic screening with
a phenotypic marker, dihydroxyacetonephosphate
acyltransferase (DHAP-ATase) deficiency;28),29) and
(ii) the photo-sensitized selection method using 9-
(1B-pyrene)nonanol (P9OH) and an exposure to long
wave-length ultraviolet (UV) light which kills wild-
type cells incorporating P9OH as a fatty alcohol
into plasmalogens and survive cell mutants deficient
in such activity.30),31) We so far isolated 12 CGs
of peroxisome-deficient CHO cell mutants by these
methods (Table 3). All of CHO cell mutants showed
a typical phenotype of deficiency in peroxisome
biogenesis, such as the impaired protein import,
no catalase latency, severely affected DHAP-
ATase activity, as noted in fibroblasts from PBD
patients.5),29)

A complete set of CG analyses by cell-fusion
between 12 CGs of CHO cell mutants and 13 CGs

of fibroblasts from patients with PBDs revealed that
11 CGs of CHO mutants represent the human PBD
CGs5),29) (Table 3). A PBD patient of the 14th CG,
CG16, was recently identified.32) Together, genetic
heterogeneities comprising 15 CGs are currently
reported in mammals including humans and CHO
cells.

2.2. Peroxisome biogenesis genes.
2.2.1. Genetic phenotype-complementation screen-

ing. PEXs were isolated by genetic phenotype-
complementation of peroxisome biogenesis-deficient
mutants of mammalian somatic cells such as CHO
cells (Fig. 1A) and of several species of yeast
including S. cerevisiae, P. pastoris, Y. lipolytica,
and H. polymorpha.12),24),33),34) Forward genetics
method using animal somatic cell mutants such as
CHO cell mutants was shown to be a highly effective
approach for isolating essential genes including the
peroxin genes, PEXs.

We searched for the gene encoding a factor
complementing the impaired peroxisome biogenesis
of one, Z65, of the CHO cell mutants by transfecting
a rat liver cDNA library.35) Transfectants were
selected by the 12-(1B-pyrene) dodecanoic acid
(P12)/UV method,36) showing peroxisomes as
verified by staining with anti-catalase antibody
(Fig. 1B). An open reading frame encoded a novel
35-kDa peroxisomal integral membrane protein with

Table 3. Complementation groups (CGs) and PEX genes of peroxisome deficiencies

Gene
CG

PBD CHO mutants
Ps-memb.

biogenesisa
Peroxin

US/EU Japan (kDa) Characteristics

PEX1 1 E ZS, NALD*, IRD* Z24, ZP107 D 143 AAA family

PEX2 10 F ZS, IRD* Z65 D 35 PMP, RING

PEX3 12 G ZS ZPG208 ! 42 PMP, PMP-DP

PEX5 2 ZS, NALD ZP105*, ZP139 D 68 PTS1 receptor, TPR family

PEX6 4(6) C ZS, NALD* ZP92 D 104 AAA family

PEX7 11 R RCDP ZPG207 D 36 PTS2 receptor, WD motif

PEX10 7(5) B ZS, NALD D 37 PMP, RING

PEX11O 16 ZS D 28 PMP

PEX12 3 ZS, NALD, IRD ZP109 D 40 PMP, RING

PEX13 13 H ZS, NALD* ZP128 D 44 PMP, PTS1-DP, SH3

PEX14 15 K ZS ZP110 D 41 PMP, PTS1-DP, PTS2-DP

PEX16 9 D ZS ! 39 PMP, PMP-DP

PEX19 14 J ZS ZP119 ! 33 CAAX motif, PMP receptor

PEX26 8 A ZS, NALD*, IRD* ZP124, ZP167 D 34 PMP, Pex1p-Pex6p recruiter

ZP114 D

*, temperature-sensitive phenotype. aPeroxisomal membrane assembly is normal (D) or impaired (!).
PBD, peroxisomal biogenesis disorders; ZS, Zellweger syndrome; IRD, infantile Refsum disease; NALD, neonatal adrenoleukodys-
trophy; RCDP, rhizomelic chondrodysplasia punctata; DP, docking protein; PMP, peroxisome membrane protein; TPR,
tetratricopeptide repeat.
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two membrane-spanning segments and a RING
finger motif, C3HC4,37) termed peroxisome assembly
factor-1 (PAF-1)35) (Table 3; Fig. 1B). PAF-1 was
unified as PEX2 in 1996.33) Expression of PEX2
(called Zellweger gene) in fibroblasts from a ZS
patient of CG10 (F) complemented the impaired
peroxisome biogenesis38) (Fig. 1B). Dysfunction of
PEX2 caused by a homozygous nonsense point
mutation at R119ter was shown for the first time to
be responsible for ZS, a prototype of the PBDs.38)

A more practical approach, i.e., a transient
expression assay skipping the revertant selection by
P12/UV,39) was also developed for further isolation
of PEX cDNAs including nine others, PEX1, PEX3,
PEX5, PEX6, PEX12, PEX13, PEX14, PEX19,
and PEX26 21),34),40)–48) (Table 3; Fig. 2). Human
PEX5,49),50) PEX14,51) and PEX19 (PXF)52) were
earlier identified. These PEXs were shown to be
the pathogenic genes involved in PBDs of nine
CGs22),24),34),53),54) (Table 3).

α-PTS1

α-PMP70

CHO-K1 ZP119Z65
a b c

d e f

A

B

Z65

ZS
fibro.

a
-

c

b
PEX2 (PAF-1)

d

 <α-catalase>
Fig. 1. Morphology of peroxisomes in CHO cell mutants defective in peroxisome biogenesis and pathogenic gene cloning of PBDs.

(A) CHO cells are stained with antibodies to PMP70 (a-c) and PTS1 (d-f ). Cells are as indicated at the top. Scale bar, 20µm. pex2
Z65 contains PMP70-positive peroxisomal remnants, whereas pex19 ZP119 is absent from such peroxisome ghosts, indicative of the
defect of membrane protein import. PTS1 proteins are discernible in the cytosol in pex2 Z65 and pex19 ZP119 cells, in contrast to the
wild-type CHO-K1 cells where PTS1 proteins are in peroxisomes. (B) Cloning of pathogenic gene responsible for PBD. Peroxisome-
restoring PEX genes were isolated by functional phenotype-complementation assay using CHO mutants. Restoration of peroxisomes
was searched by transfection of rat liver cDNA library (a) in Z65 (b). Transformed cells positive in catalase import contained PEX2
(formerly PAF-1). In fibroblasts from a patient with ZS of CG10 (d), expression of PEX2 restored the impaired import of catalase (c).
Scale bar, 20 µm (a and b); 30 µm (c and d).
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2.2.2. Expressed sequence tag homology search.
An alternative strategy, i.e., the homology search
by screening the expressed sequence tag database
using yeast PEX genes, successfully made it feasible
to isolate human orthologue genes responsible
for PBDs:22),24),34) PEX1,55),56) PEX3,57) PEX5,58)

PEX6,59) PEX7,60)–62) PEX10,63),64) PEX12,65)

PEX13,66) PEX14,67) and PEX16.68),69)

A PBD patient of the 14th CG, CG16, was
recently identified with pathogenic gene PEX11O.32)

Therefore, 14 PEXs are now shown to be responsible
for PBDs of 14 distinct CGs5),22),24),27),53),70) (Table 3).

2.2.3. Genotypes of RCDP. Several recent
findings classified RCDP into five genotypes, of
which responsible pathogenic genes are delineated.

RCDP type 1 is caused by mutation of PEX7
encoding the peroxisome-targeting signal 2 (PTS2)
receptor;60)–62) types 2, 3, and 4 are impaired in three
genes, DHAPAT, ADAPS, and FAR1, encoding
peroxisomal enzymes, DHAP-ATase, alkyl-DHAP
synthase, and fatty acyl-CoA reductase, respectively,
involved in the synthesis of plasmalogens;71)–73)

type 5 manifesting a mutation of Pex5pL74) that
transports PTS1 proteins and Pex7p-PTS2 protein
complex to peroxisomes.75)

2.2.4. Genotype–Phenotype Relationships. Pa-
tients with milder form of PBDs, NALD and IRD,
tend to manifest less severe biochemical abnormal-
ities, whose specimen including skin fibroblasts likely
contain residual peroxisomes, occasionally termed
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Fig. 2. A schematic view of peroxisome biogenesis in mammalian cells. The subcellular localization and molecular characteristics of
peroxins are shown. Peroxins are classified into three groups: 1) peroxins including Pex3p, Pex16p and Pex19p that are responsible for
peroxisome membrane assembly via classes I and II pathways required for matrix protein import; 2) those required for matrix protein
import; 3) those such as three forms of Pex11p, Pex11p,, Pex11pO, and Pex11p., apparently involved in peroxisome division where
DLP1, Mff, and Fis1 coordinately function. PTS1 and PTS2 matrix proteins are recognized by Pex5p and Pex7p, respectively, in the
cytoplasm. Two isoforms, Pex5pS and Pex5pL with an internal 37-amino-acid insertion, of Pex5p are identified in mammals. PTS1
proteins are transported by homo- and hetero-oligomers of Pex5pS and Pex5pL to peroxisomes, where Pex14p functions as a
convergent, initial docking site of the ‘protein import machinery’ translocon. Pex5pL directly interacts with the PTS2 receptor,
Pex7p, carrying its cargo PTS2 protein in the cytosol and translocates the Pex7p-PTS2 protein complex to Pex14p. PTS1 and PTS2
proteins are then released at the inner surface and/or inside of peroxisomes, downstream Pex14p and upstream Pex13p. Pex5p and
Pex7p subsequently translocate to other translocon constituents, named translocation complex consisting of the RING peroxins,
Pex2p, Pex10p, and Pex12p. Both Pex5p and Pex7p finally shuttle back to the cytosol. At the terminal step of the matrix protein
import reaction, Pex1p and Pex6p of the AAA family catalyze the export of Pex5p, where Cys-monoubiquitination of Pex5p is a
prerequisite to the Pex5p exit. Moreover, a cytosolic factor, AWP1/ZFAND6 (p40), is involved in the export of Ub-Pex5p in
mammals.
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mosaicism. However, clinical severity or prognosis of
patients with PBDs cannot be readily predicted only
on the basis of biochemical analyses. Various types of
mutations such as nonsense point mutations, mis-
sense mutations, insertion and deletion of nucleotides
mostly with concomitant frameshifts, splicing de-
fects, etc. in both homozygotic and heterozygotic
alleles have been identified in PBD patients. Patients
with severe ZS tend to carry severe mutation such
as nonsense mutations, frameshifts, and deletions,
while many patients with NALD or IRD patients
frequently harbor missense mutations.76),77) There is
also a relationship between severe phenotype and
absence of peroxisomal ghosts. Defects of PEX3,
PEX16 and PEX19 encoding membrane-assembly
peroxins lead to absence of ghosts and cause ZS
phenotypes.22),24),34) Many cell lines from milder PBD
patients, those with NALD and IRD with missense
PEX mutations, showed a temperature-sensitive (ts)
phenotype, restoration of peroxisome biogenesis at
30 °C78)–81) (Table 3).

Search for pathogenic genes responsible for all
PBD CGs is accomplished.82) Prenatal DNA diag-
nosis using PEX genes is now possible for PBDs of all
14 CGs.

3. Biogenesis of peroxisomes

3.1. Membrane biogenesis.
3.1.1. Peroxins essential for membrane assembly

of peroxisomes. Three mammalian peroxins, Pex3p,
Pex16p, and Pex19p, exclusively required for
peroxisomal membrane assembly were isolated by
the functional phenotype-complementation assay on
pex3 and pex19 CHO cell mutants41),47) and the EST
database search using yeast PEX genes.52),57),68),69)

Malfunctions of Pex3p, Pex16p, and Pex19p, causes
the most severe PBD, ZS, of three CGs, CG12 (G),
CG9 (D), and CG14 (J), respectively22),24),34),83)

(Table 3).
Pex3p, Pex16p, and Pex19p were identified as

essential factors for assembly of peroxisomal integral
membrane proteins (PMPs) in several species includ-
ing humans25),47),68),69),84)–89) (Fig. 2). They function
as essential factors in the transport process of
membrane proteins and membrane vesicle assembly
in a concerted manner. Pex19p is 33-kDa farnesy-
lated protein harboring farnesylation CAAX box
motif and localized mostly in the cytosol and only
partly anchored to peroxisomal membranes.47)

Pex19p has a chaperone-like role in the cytosol or
at the peroxisome membrane and/or functions as
a cycling import receptor for newly synthesized

PMPs.90),91) Pex19p forms stable Pex19p-PMP com-
plexes except for Pex3p in the cytosol with a broad
PMP-binding specificity.91)–93) Pex3p, 42-kDa inte-
gral membrane protein of peroxisomes, serves as
the membrane-anchoring site for Pex19p-PMP com-
plexes, termed Class I pathway.91),94) Very recently,
we demonstrated that translocation of PMPs includ-
ing topologically distinct PMPs such as multi-
membrane spanning PMPs and an N-terminally
signal-anchored protein via the class I pathway is a
common event in mammalian cells.91)

Pex16p, a protein absent in most yeasts,69),95)

functions as the receptor for Pex19p complexes with
newly synthesized Pex3p,94) named Class II pathway
(Fig. 2). The function of Pex16p is not conserved
between different species. It is noteworthy that C-
tailed anchor-type peroxin Pex26p, the recruiter of
Pex1p-Pex6p complex, is transported in a class I
pathway,96) which is distinct from the GET3-
dependent topogenesis of yeast Pex15p, a functional
orthologue of Pex26p.97)

At the step of docking of a cytosolic Pex19p-
PMP complex onto Pex3p, Pex19p unloads the cargo
PMP and shuttles back to the cytosol for a next
round of PMP transport, while the released PMP
integrates into the membrane. The membrane
insertion of PMPs proceeds in the absence of
ATP.96),98)–100) Pex19p and Pex3p apparently facili-
tate the insertion of transmembrane domains in a
concerted manner.101),102) Investigation of molecular
mechanisms underlying the membrane integration of
the cargo PMPs is under way.

3.1.2. ER is involved in peroxisome biogenesis?
In regard to peroxisomal membrane assembly, the
concepts of the Pex19p- and Pex16p-dependent
direct import as well as the ER-dependent indirect
import have recently emerged.94),103) ER was postu-
lated to provide the initial ‘seed’ for recruiting Pex3p
and Pex16p required for peroxisome assembly.104)–106)

Several groups suggested a different view of
peroxisomal membrane biogenesis that peroxisomes
are formed from ER107),108) upon induction of
Pex3p;104),109),110) another study111) proposed that all
peroxisomal membrane proteins are transported via
ER. Several peroxisomal membrane proteins might be
transported to peroxisomes via ER,112)–114) implying a
semi-autonomous property of peroxisomes. A recent
proximity-specific ribosome profiling suggested that
many PMPs are translated at the ER in both
mammalian and yeast cells, implying that they are
plausible substrates for the indirect route.115) Inter-
estingly, several PMPs seem to target to peroxisomes
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both directly from the cytosol91),94),96),116) and in-
directly via the ER.103),117),118)

However, the significance of such observations
remains under debate. A study119) suggested that
peroxisomes are generally formed by growth and
division under normal conditions and that only under
a condition where no peroxisome is present in a cell,
they can be formed from the ER after the expression
of the complementing PEX gene. Meanwhile, we
demonstrated that Pex3p, the membrane receptor for
Pex19p-complexes with PMPs including Pex16p, is
directly targeted to peroxisomes in a Pex19p-Pex16p
dependent class II pathway in mammalian cells.94)

Moreover, we very recently provided several lines
of evidence that most, if not all, mammalian PMPs
are indeed authentic substrates for the Pex19p- and
Pex3p-mediated class I direct pathway.91) At any
event, future investigations on whether the two
distinct routes exist simultaneously in cells and when
cells use these routes are required for comprehensive
understanding of PMP biogenesis.24),83),105),106)

3.2. Matrix protein import. Ten peroxins
including Pex1p, Pex2p, Pex5p, Pex6p, Pex7p,
Pex10p, Pex12p, Pex13p, Pex14p, and Pex26p
are involved in protein import into peroxisomal
matrix24),34),90) (Fig. 2).

3.2.1. PTS import receptors. PTS1 and PTS2
proteins are recognized by Pex5p and Pex7p,
respectively, in the cytoplasm. Two isoforms of
Pex5p, Pex5pS and Pex5pL with an internal 37-
amino-acid insertion, are identified in mammals.
PTS1 proteins are transported by homo- and
hetero-oligomers of Pex5pS and Pex5pL to perox-
isomes, where Pex14p of an 800-kDa complex
functions as the initial Pex5p-docking site (Fig. 2).
Pex5pL translocates the Pex7p-PTS2 protein com-
plex to Pex14p.120),121) After releasing the cargoes,
Pex5p and Pex7p translocate to a 500-kDa ‘trans-
location complex’ consisting of the RING peroxins,
Pex2p, Pex10p, and Pex12p.121) Both Pex5p and
Pex7p finally translocate back to the cytosol.121)–126)

At the terminal step of the protein import reaction,
AAA peroxins, Pex1p and Pex6p, recruited to
Pex26p (Pex15p in yeast) on peroxisomes catalyze
the ATP-dependent export of Pex5p.121),124),127)

3.2.2. Peroxisome-cytoplasmic shuttling of import
receptors. Mono-ubiquitination via the thioester
bond of the conserved cysteine residue at position 11
in the N-terminal region of Pex5p (Ub-Pex5p) is a
prerequisite for the Pex5p recycling, i.e., in the
export step from peroxisomes to the cytosol,128)–131)

as in yeast132),133) (Fig. 2). Moreover, a cytosolic

factor, AWP1/ZFAND6 involved in the export of
Ub-Pex5p is identified in mammals;131) USP9X and
Ubp15 are suggested as a potential deubiquitinase
in mammals134) and yeast,135) respectively. A distinct
redox state may affect the recycling of Pex5p
requiring Cys-ubiquitination, thereby being as a
possible cause to the phenotype of deficiency in
matrix protein import in PEX-defective cells.136)

4. Gene defects of proteins for peroxisomal
morphogenesis

Three isoforms of Pex11p family, Pex11p,,137),138)

Pex11pO,139)–142) and Pex11p.,138),143) are identified as
factors involved in morphogenesis of peroxisomes in
mammals.142),144)–147) In mammalian cells, dynamin-
like protein 1 (DLP1),148)–151) Fis1,144),152) and mito-
chondrial fission factor (Mff)147),153)–155) are shown to
be involved in the fission of peroxisomes156) (Fig. 2).

We first reported a CHO cell mutant ZP121 in
mammalian cells that was impaired in DLP1 with
one point dominant-negative mutation at G363D in
the middle region.150) With respect to peroxisomal
dysmorphogenesis in humans, only three patients
have been identified with a different defect in two
proteins involved in the proliferation and division
of peroxisomes. The first reported patient was a
severely affected female patient, who died one month
after the birth and postmortally was found to have a
dominant-negative heterozygous mutation at G395D
in DLP1 resulted in a severe fission defect of both
peroxisomes and mitochondria.151) The second pa-
tient with dysfunctional Dnm1L (DLP1) harboring
G362D mutation was most recently reported.157) The
first patient with a defect of peroxisomal division due
to a homozygous non-sense mutation in the PEX11O
gene was recently reported as the 14th CG (CG16) of
PBDs32) (Table 3).

5. Turnover of peroxisomes

Several hundred peroxisomes in mammalian
cells are maintained by peroxisome homeostasis,
a balance between the biogenesis and turnover of
peroxisomes. A form of autophagy specific for
peroxisomes, named pexophagy, is the main pathway
for peroxisome degradation in mammals.158) Pexoph-
agy is well studied at a molecular level in yeast
because the strong peroxisome-induction condition
and the sensitive detection and gene screening
systems of pexophagy are established.159)–161) In
contrast to the yeast system, however, molecular
mechanisms of mammalian pexophagy remained
largely unknown for long time.
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In recent years, several reports described six
different types of inducing conditions for pexophagy
in mammalian cells by different stimuli, including (a)
nutrient-replenishment for short period of starva-
tion,162),163) (b) Ub-anchored peroxisomal membrane
proteins,164) (c) NBR1, one of the autophagy adaptor
proteins,165) (d) Pex3p,166) (e) mono-Ub-Pex5p,167)

and (f ) H2O2.168) Common aspects include that
peroxisomal ubiquitination is recognized by autoph-
agy adaptor proteins, p62 and/or NBR1, and that
peroxisomes are then connected to autophagy machi-
neries. Such useful and effective systems will shed
light to mechanisms of mammalian pexophagy.

6. Perspective

Mammalian cell mutants of 15 CGs defective of
peroxisome biogenesis have been identified, including
PBD patients’ fibroblasts and CHO mutant cell lines
(Table 3). Pathogenic genes are now elucidated for
all 14 CGs of PBDs. Biochemical functions of
peroxins involved in the import of matrix proteins
are better elucidated, whilst molecular mechanisms
underlying the membrane assembly are less under-
stood. Defects in peroxisomal morphogenesis have
also been reported. Investigations using the cloned
peroxins and pex mutants including CHO cell
mutants, cell lines from PBD patients, and PEX
gene-knockout mice141),169)–172) will shed light on the
mechanisms involved in biogenesis, morphogenesis,
and homeostasis of peroxisomes and pathogenesis of
PBDs.
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