Table 1.
Classification Technique | Sensitivity | Specificity | Accuracy |
---|---|---|---|
Traditional Single Classifiers | |||
LDA | 0.50 ± 0.13 | 0.67 ± 0.13 | 0.58 ± 0.08 |
QDA | 0.51 ± 0.10 | 0.56 ± 0.11 | 0.54 ± 0.07 |
Naïve Bayes | 0.32 ± 0.06 | 0.70 ± 0.09 | 0.51 ± 0.05 |
CART | 0.59 ± 0.18 | 0.53 ± 0.17 | 0.56 ± 0.10 |
SVM | 0.60 ± 0.15 | 0.56 ± 0.15 | 0.58 ± 0.09 |
Selective Voting Ensemble Classification Approach | |||
SVA-SVM with δ = 0.5 | 0.70 ± 0.07 | 0.45 ± 0.03 | 0.58 ± 0.04 |
SVA-SVM with δ = 0.8 | 0.85 ± 0.08 | 0.27 ± 0.09 | 0.56 ± 0.05 |