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Abstract

The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction 

(NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle 

fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft 

between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix 

molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically 

localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and 

organization of synaptic vesicle release sites known as active zones. These individual laminin 

chains exert their role in organizing NMJs by binding to their receptors including integrins, 

dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the 

laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and 

Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins 

and their receptor interactions may be insightful in treating neuromuscular diseases and aging 

related degeneration of NMJs.
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Introduction

Neuromuscular junctions (NMJs) are chemical synapses located between nerve terminals 

and specialized sites on the post-synaptic skeletal muscle fiber plasma membrane (i.e., 

motor endplates). Innervation of muscle fibers by motor neurons establishes proper control 

of skeletal muscle contraction by the nervous system, and this innervation can become 

disrupted during disease and aging. Depolarization of motor neurons results in subsequent 
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depolarization of the skeletal muscle fiber plasma membrane or sarcolemma. On the 

presynaptic side, depolarization of motor neurons results in synaptic vesicle fusion with the 

plasma membrane and exocytosis of a chemical neurotransmitter, acetylcholine (ACh), into 

the synaptic cleft. Synaptic vesicle release sites of the nerve terminal are well-organized 

structures known as active zones (see Box 1 for expanded description of active zones) [1–5]. 

At the endplate, the sarcolemma uniquely folds to form junctional folds, and acetylcholine 

receptors (AChRs) accumulate at the crest of these junctional folds to rapidly and efficiently 

receive ACh released from motor neurons [6–10].

BOX #1

Active zone organization and active zone proteins

Active zones are a multiprotein complex accumulated at the presynaptic plasma 

membrane where synaptic vesicles accumulate, fuse with the plasma membrane, and 

release neurotransmitters into the synaptic cleft [1–5, 162, 204–208]. Using freeze-

fracture electron microscopy, active zones were identified as two parallel arrays of 10–12 

nm intramembranous particles arranged in two to four rows with each active zone 

containing 20 of these intramembranous particles [93, 96, 209, 210]. The density of 

active zones at the presynaptic membrane of NMJ is 2.4–2.7 active zones/μm2 in adult 

humans and mice [4, 93, 96, 97], and this density is maintained during postnatal 

maturation periods when NMJs enlarge [175]. A collection of proteins make up the active 

zones (also known as the cytoskeletal matrix of the active zone (CAZ)) including 

Bassoon, CAST/ELKS2/Erc2, CAST2/ ELKS/Erc1, Munc13, Piccolo, Rab3 interacting 

protein-1/2 (RIM1/2), as well as Brunchpilot inDrosophila that is a homolog of CAST/

ELKS/Erc (Figure 3) [211–223]. These active zone proteins are involved in accumulation 

of synaptic vesicles to the plasma membrane and neurotransmitter release upon 

stimulation by calcium influx through VGCCs. It is important to note that active zone 

density is independent of nerve transmission. In acetylcholine transferase knockout mice, 

ACh cannot be properly synthesized therefore synaptic transmission is absent. However, 

active zone density is normal in these mice [224]. Thus, proper nerve transmission is not 

necessary for proper active zone organization and formation.

The active zone proteins Bassoon and Piccolo were discovered in screenings to determine 

structural proteins in rat brain synaptic junctions, and these two proteins share many 

structural similarities [212, 215, 219, 225]. In NMJs of rodents, Bassoon and Piccolo 

display a punctate staining pattern by fluorescent immunohistochemistry (Figure 4), with 

these puncta localizing to presynaptic active zones [63, 175, 189]. Mice without 

functional Bassoon have normal synapse formation, but impaired synaptic transmission, 

abnormal dendritic branches, ectopic formation of active zones, and lack proper 

anchoring of photoreceptor ribbon synapses to active zones with otherwise normal retinal 

anatomy [226, 227]. Piccolo has been shown to aid in synaptic vesicle exocytosis, and 

when absent, synaptic vesicle trafficking is disrupted [228]. Importantly, Bassoon helps 

to position VGCCs near the synaptic vesicle release sites [223]. Although disruption of 

Bassoon reduces synaptic functionality in some regions of the central nervous system, the 

disruption of active zone proteins may or may not result in aberrant NMJ formation and 

needs to be further tested.
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The role of other active zone specific proteins in the formation of NMJ active zones is not 

as well established. CAST family of scaffolding protein CAST2/ELKS/Erc1 along with 

Piccolo, but not CAST/ELKS2/Erc2, are detected at NMJs [229]. In addition, CAST/

ELKS2/Erc2, similar to Bassoon, has been linked to VGCC functionality [230]. The role 

of CAST/ELKS2/Erc2 in active zone organization was confirmed in photoreceptor 

synapses and inhibitory synapses due to the loss of CAST/ELSK2α [231, 232]. Munc13 

has three homologous family members (Munc13-1/2/3) and has an essential role in 

neurotransmitter release and synaptic vesicle priming in synapses of the central nervous 

system [217, 233, 234]. Munc13-1/2 double knockout mice totally lack spontaneous and 

evoked synaptic transmission in excitatory and inhibitory synapses of hippocampal 

neurons [235], but exhibited residual amount of synaptic transmission at NMJs [236]. At 

the NMJ, these mice exhibit normal apposition between motor neuron terminals with 

endplates, and active zones with docked vesicles were detected [236, 237]. Therefore, 

Munc family of proteins may not be essential for the structural assembly of active zones. 

RIMs are multi-domain proteins consisting of three isoforms (α, β, γ) that also play 

essential roles in connecting active zone specific proteins to active zone structures and 

synaptic vesicles [238–244]. For example, direct interactions of PDZ domains in RIM 

and N- and P/Q-type VGCCs tether these VGCCs to presynaptic active zones [244]. 

RIM1 interacts directly with VGCC β subunit and suppresses voltage-dependent 

inactivation of neuronal VGCCs [242, 243]. RIM1/2 knockout mice have a reduced 

number of docked vesicles at active zones with reduced density of VGCCs in the calyx of 

Held synapse without loss of active zone density [245]. Further work is needed to 

elucidate the molecular mechanisms that underlie changes in active zone protein content 

during aging and other neuromuscular diseases.

During development, motor neurons must seek out and find nascent endplates making up 

only approximately 0.1% of the sarcolemmal surface area [11]. Individual components of 

the skeletal muscle fiber basement membrane help to guide the process of innervation by 

motor neurons, and also proper organization of pre- and post-synaptic NMJ morphology. 

Laminins play a large role in this process and individual laminin subunits are responsible for 

organizing different components of the NMJ structure [11, 12]. Laminin receptors, including 

basal cell adhesion molecule/Lutheran blood group antigen (Bcam), dystroglycan, integrins, 

and voltage-gated calcium channels (VGCCs), assume different roles influenced by each 

laminin chain (see Box 2 for expanded description of VGCCs at NMJs) [10–20]. These 

interactions are disturbed during some diseases and aging, thus influencing the morphology 

and function of pre- and post-synaptic NMJ structures. In this review, we will highlight the 

relationship of laminins and laminin receptors in the organization of the pre- and post-

synaptic components of NMJs and how these molecular mechanisms relate to some disease 

processes.

BOX #2

Voltage-gated calcium channels

VGCCs localize at presynaptic active zones and are responsible for calcium influx upon 

sensing depolarization of the presynaptic plasma membrane. The rise of calcium 
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concentration in nerve terminals results in fusion of synaptic vesicles and exocytosis of 

neurotransmitters into the synaptic cleft. This process is essential for communication 

between neurons as well as between motor neurons and skeletal muscle fibers. A number 

of VGCC types exist, including P/Q-, N-, L-, and R-type VGCCs (Cav2.1, Cav2.2, 

Cav2.3, and Cav1.2, respectively), but the P/Q- and N-type VGCCs are enriched 

specifically at motor nerve terminals [64, 246–248]. Synaptic transmission in NMJs at 

perinatal stages depends on both N-and P/Q-type VGCCs; however, the 

electrophysiological dependence shifts towards P/Q-type VGCCs for synaptic 

transmission in adulthood [64]. These calcium channels have two transmembrane 

subunits (α1 and α2δ) and a cytosolic β subunit [246]. Interestingly, N- and P/Q-type 

VGCCs are receptors for laminins containing the β2 chain. A leucine-arginine-glutamic 

acid (LRE) segment in laminin β2 binds directly to the 11th extracellular loop of the α 
subunit of P/Q- and N-type VGCCs [63]. The 11th extracellular loop of the P/Q-type 

VGCC has structural homology with the L5III loop of L-type VGCC (Cav1.1), whose 3-

dimensional structure has been elucidated recently using single-particle cryo-electron 

microscopy [249]. The L5III domain formed one of the most exposed domains of the α 
subunit. The interaction between laminin β2 chain and P/Q- and N-type VGCCs is 

essential for NMJ function as well as presynaptic active zone formation and organization 

[63, 90].

P/Q-type VGCCs localize at motor terminal active zones [89, 189]. These VGCCs 

directly interact with synaptic vesicle related proteins syntaxin, synaptosomal associated 

protein of 25 kDa (SNAP-25), and synaptotagmin, and in turn SNAP-25 and syntaxin 

modify VGCC function [250–255]. In addition, a number of active zone proteins interact 

with different subunits of the VGCCs (Figure 3)[63, 90, 223, 242–244, 256–258]. 

Bassoon and CAST/ELKS2/Erc2 interact with the P/Q-type VGCC β subunits [90, 258], 

Bassoon interacts indirectly with P/Q-type VGCCs [223], and RIM1/2 interacts with 

P/Q- and N-type VGCC α subunits and β subunit [242–244, 256]. Bassoon and RIM1 

have also been shown to inhibit the inactivation properties of P/Q-type VGCCs, 

prolonging the opening of these calcium channels localized with Bassoon and RIM1 

compared to VGCCs without interacting with these active zone proteins [189, 242, 243]. 

Piccolo has been shown in pancreatic beta cells to interact with L-type VGCC α subunits 

aiding in vesicle secretion [257]. Thus, binding of active zone proteins to the VGCCs 

appears to be important for properly positioning these channels within active zones and 

regulating calcium influx. Alternatively, evidence supports that laminin β2 in the synaptic 

cleft binds to and organizes the locations of VGCCs, and it is this interaction that results 

in proper positioning of the active zones in front of junctional folds [63, 65]. Disruption 

of the VGCC-active zone protein relationship may reduce calcium influx during repeated 

depolarization and aged NMJs.

The basal lamina of NMJs

Skeletal muscle fibers are surrounded by a layer of connective tissue, the basement 

membrane, which can be further subdivided into an internal basal lamina layer connecting to 

the sarcolemma and an external reticular lamina layer [11, 12]. The basal lamina envelops 
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the entire muscle fiber including the synaptic cleft between the nerve terminal and endplate, 

but the reticular lamina is excluded from the synaptic cleft of NMJs [12]. The basal lamina 

is made up largely of collagen IV molecules, laminins, and other non-collagenous proteins 

including entactin/nidogen, perlecan, and fibronectin [11, 12, 21–23]. The network of 

laminins and collagen are connected to one another by the glycoprotein entactin/nidogen, 

but also anchored to the sarcolemma and intracellular cytoskeleton by binding to laminin 

receptors integrin and dystroglycan [14, 17, 24, 25]. The basal lamina provides strength and 

structure to the skeletal muscle fibers, but rather than being a static structure, the basal 

lamina plays a direct role in key biological functions.

Components of the basal lamina have important regulatory roles in myogenesis and 

synaptogenesis, as these molecules help guide cell growth, cell migration, and adhesion of 

motor neuron axons [12, 26–30]. Localization of specific collagen and laminin chains to 

regions of the endplate basal lamina plays a role in organizing the pre- and post-synaptic 

structures of the NMJ. In mammals, collagen IV α2, α3, and α6 chains, as well as collagen 

XIII, are concentrated at mouse NMJs [12, 31–34]. Collagen molecules are important for 

development of NMJs. For instance, collagen IV α2 chains are necessary for formation of 

NMJs and differentiation of motor neuron terminals during embryonic development, and 

collagens IV α3 and α6 are required for maintenance of mature NMJs [33]. As will be 

described below, both laminin α and β chains play a prominent role in the development of 

pre- and post-synaptic structures of NMJs, with each laminin chain playing a specific role. 

Disruption of individual components of the basal lamina or the connections of the basal 

lamina to the muscle fiber itself results in muscular dystrophy and degeneration of muscle 

fibers and NMJs [35–38].

The role of laminins in NMJs and active zone organization

Laminins are important components of the basal lamina. These large, multi-armed 

glycoproteins (~400–900 kDa) assemble into heterotrimers composed of three different 

chains: α, β, and γ [11, 12, 21, 39–43]. In mice and humans, five different α chains, three 

different β chains, and three different γ chains have been identified. To date, 19 laminin 

trimers have been described (laminin 1–15, as well as laminin 5B) with laminin-111 

(α1β1γ1, formerly laminin-1) being the first characterized in Engelbreth-Holm-Swarm 

(EHS) tumors. The different laminin chains assemble into cross or T-shaped molecules. C-

terminal ends of laminin α chains wrap into a coiled structure containing laminin globular 

(LG) domains. N-terminal ends, known as “short arms,” are free and contain N-terminal 

globular (LN) domains [11, 12, 21, 39–43].

Laminins have been shown to play an essential role in myogenesis and synaptogenesis as 

these molecules guide cell differentiation, migration, and adhesion [12, 26–29, 44, 45]. 

Specific heterotrimers of laminin chains assemble in specific regions of different tissues. In 

the case of skeletal muscle, laminin-211 (α2β1γ1, laminin-2) predominates throughout the 

extrasynaptic basal lamina, but laminin-421 (α4β2γ1, laminin-9), laminin-521 (α5β2γ1, 

laminin-11), and laminin-221 (α2β2γ1, laminin-4) are expressed specifically at the synaptic 

cleft of NMJs (Figure 1A) [46]. Laminin γ1 chains are found throughout the sarcolemma 

and are essential for formation of basement membranes as knockout of laminin γ1 is lethal 

Rogers and Nishimune Page 5

Matrix Biol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[45]. Both laminin α and β chains have been described to play specific roles in different 

aspects of development and maintenance of NMJs, as well as organization of presynaptic 

active zones.

Laminin β chains

Laminin β1 and β2 chains are homologous with nearly identical structures [31, 47]; 

however, localization patterns of these laminin chains vary even between different locations 

on the same cellular basal lamina. Laminin β2, formerly known as s-laminin due to its 

synaptic localization, is located at NMJs (Figure 1A and Figure 2), and also in developing 

brain, spinal cord, retina, and lens, capillaries, and kidney glomerulus [47–53]. In skeletal 

muscles, laminin β2 chains assemble with γ1 chains and either α2, α4, or α5 chains to form 

specific laminin molecules that are secreted from muscle and incorporated into the synaptic 

basal lamina [46, 47, 49, 54, 55]. Importantly, laminin β2 is specifically enriched at the basal 

lamina of NMJs but is not found at the extrasynaptic basal lamina (Figure 1A) [46, 55]. On 

the other hand, laminin β1 is found throughout the extrasynaptic basal lamina but excluded 

from NMJs [46, 55].

Early on, laminin β2 was shown in vitro to guide neurite outgrowth from motor neurons and 

promote differentiation into mature nerve terminals [30, 46, 56, 57]. The generation of a 

mouse model lacking laminin β2 proved insightful in the precise role of laminin β2 in 

synaptic development at the NMJ. Laminin β2 knockout mice die between days P15 and P30 

due to failure of the renal glomerular filtration barrier [58, 59], and display malformed NMJs 

[58, 60, 61]. Despite being innervated initially, NMJs of laminin β2 knockout mice lack 

appropriate formation of pre- and post-terminal structures including a lack of junctional 

folds, reduced number of active zones, and Schwann cell infiltration of the synaptic cleft 

(Figure 1B) [58, 62, 63]. Different molecules have been shown to sequentially play a role in 

the development of NMJs from early embryonic stages to maintenance of adult NMJs [33]. 

Laminin β2 is important for maintenance and maturation of NMJs during the first few weeks 

after birth [33, 63]. On a functional level, NMJs of laminin β2 knockout mice have lower 

miniature endplate potential (mEPP) frequency and a higher likelihood of failure of synaptic 

transmission compared to wild-type mice [58, 60]. The reduction in neurotransmitter release 

in these mice relates to a reduced number of active zones and synaptic vesicles near the 

presynaptic membrane, as well as reduced protein levels of the active zone specific protein 

Bassoon and synaptic vesicle related proteins [58, 60, 61, 63]. Furthermore, laminin β2 

knockout mice also have a failure in maturation of VGCC types that are present at 

presynaptic terminals of NMJs [61]. Laminin β2 knockout mice retained N-type VGCCs at 

presynaptic terminals, and fail to transition from expressing N- and P/Q-type VGCCs at 

presynaptic terminals shortly after birth to expressing predominately P/Q-type VGCCs 

during the first 2–3 weeks following birth that typically occurs in wild-type mice [61, 64]. 

Due to the loss of laminin β2, these knockout mice also have a loss of laminin-421 

(laminin-9) and laminin-521 (laminin-11) at NMJs, which leads to investigation of the role 

of laminin α chains in organization of NMJs [58]. In summary, the loss of laminin β2 

influences NMJ morphology and functionality partly by disrupting active zone formation 

and organization, and changing the composition of VGCC types at NMJs.
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Laminin α chains

Laminin α2, α4, and α5 chains are essential for proper muscle development, as well as 

specifically establishing and maintaining the structure of NMJs and alignment of presynaptic 

active zones [20, 65–67]. Each of these laminin α chains plays a specific role in these 

processes. Laminins containing the laminin α2 chain are collectively known as merosin. 

Laminin α2 subunits assemble into laminin-211 (laminin-2) throughout the extrasynaptic 

skeletal muscle basal lamina [67–69], and assemble into laminin-221 (laminin-4) that is 

specific to NMJs. Laminin-211 promotes axon growth, migration of muscle cells, and 

Schwann cell functionality [56, 70, 71]. Mice harboring mutations of the laminin α2 gene 

display a muscular dystrophy-like syndrome [67], which is also observed in humans 

harboring genetic mutations in the gene encoding laminin α2 (lama2) [37, 72–75]. Laminin 

α2 mutant mice with a spontaneous hypomorphic allele (i.e., dy and dy2J mice) and other 

laminin α2 mutant models (dyW and dy3K mice) do not develop post-synaptic junctional 

folds at motor endplates, display partial detachment of motor neuron terminals from the 

endplate, have demyelination of motor axons, and minor Schwann cell infiltration into 

synaptic cleft (Figure 1E) [35, 36, 76–86]. However, these mutant mice do assemble active 

zones, which properly oppose AChRs that accumulate at endplates [11, 77]. Thus, laminin 

α2 is essential for skeletal muscle maintenance and formation of structures at muscle 

endplates, but may not be required for formation of presynaptic structures of NMJs.

Laminin α4 and α5 chains appear to be directly responsible for organizing presynaptic 

active zones and endplate structures in NMJs, with each of these laminin chains playing an 

individual role. Laminin α4 chains are part of laminin-421 (laminin-9) molecules and 

concentrate to the synaptic cleft of NMJs [46]. Laminin α4 localizes within the basal lamina 

where active zones are absent, and does not localize at the crest of junctional folds (Figure 

1A) [65]. This locational specificity may serve as a mechanism by which laminin α4 aligns 

presynaptic active zones and post-synaptic endplate structures. Consistent with this 

hypothesis, laminin α4 knockout mice have a normal number of active zones and junctional 

folds; however, the alignment of these pre- and post-synaptic structures is disrupted (Figure 

1C) [65]. In wild-type mice, 78% of active zones align with the junctional folds; however, 

this was reduced to 23% in laminin α4 knockout mice [65]. Furthermore, laminin α4 

knockout mice suffer a neuromuscular defect and display a phenotype that resembles 

premature aging of NMJs; however, these mice do not display signs of myopathy or 

muscular dystrophy [65, 87].

Laminin α5 is expressed throughout the basement membrane of developing skeletal muscle 

during embryonic stage, but becomes concentrated at the synaptic cleft shortly after birth 

[46]. In postnatal stages, laminin α5 chains follow an expression pattern paralleling laminin 

β2 chain location, but the role of laminin α5 is different from laminin β2. Complete loss of 

laminin α5 is embryonically lethal due to multiple developmental defects [88]. However, 

mice with a muscle-specific laminin α5 knockout display arrested postsynaptic maturation 

of NMJs to the early postnatal stage [20]. To further investigate the role of laminin α4 and 

α5 in skeletal muscle, laminin α4 knockout mice were crossed with muscle-specific laminin 

α5 knockout mice to generate double knockout mice of laminin α4/α5 [20]. These double 

mutants are smaller and weaker than either single mutant and survived to three months of 
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age [20]. In these double knockout mice, synapse elimination occurs normally. However, the 

remaining axon does not take over the AChR territory that was previously innervated by the 

losing axons (Figure 1D) [20]. In wild-type mice, the vacated area of an endplate will be 

occupied by the remaining winning axon. These results suggest a role for laminin α4 and α5 

in presynaptic maturation. Furthermore, maturation of AChR clusters is arrested in laminin 

α4/α5 double knockout mice, and levels of the laminin receptor dystroglycan are reduced at 

NMJs [20]. Dystroglycan conditional knockout mice also have arrested maturation of AChR 

clusters on the post-synaptic membrane [20]. In support of these in vivo observations, 

primary myotube cultures prepared from laminin α4/α5 double knockout mice or muscle-

specific laminin α5 knockout mice fail to form mature AChR clusters appropriately; 

however, myotube cultures prepared from laminin α4 or laminin β2 knockout mice are still 

capable of forming mature AChR clusters in vitro [20]. These results implicate the laminin 

α5-dystroglycan interaction is important for the maturation of AChR clusters in postnatal 

stages.

The role of laminin receptors in NMJ organization

A number of laminin receptors, including Bcam, dystroglycan, integrins, and VGCCs are 

localized to NMJs and participate in organizing pre- and post-synaptic structures as 

described briefly for dystroglycan above [10–20].

Voltage-gated calcium channels

In adult NMJs, P/Q-type VGCCs localize at presynaptic terminals specifically at active 

zones. For a more detailed description of VGCCs, please refer to Box #2. P/Q-type and N-

type VGCCs have been identified as receptors for laminin β2, and the interaction of these 

two molecules is important for organizing presynaptic active zones as cytosolic domains of 

VGCCs also bind with active zone proteins (see Box #2, Figure 3, and [63]). A leucine-

arginine-glutamic acid (LRE) segment in laminin β2 binds to the 11th extracellular loop of 

the α subunit of P/Q- and N-type VGCCs, but does not bind to other VGCC types (R- and 

L-type VGCCs) expressed in motor neurons [63]. The LRE sequence mediates cell adhesion 

and neurite outgrowth of ciliary ganglion neurons (muscle innervating neuron) induced by 

laminin β2 [28, 30]. Laminin β1 does not bind to P/Q-, N-, R-, or L-type VGCCs [63]. 

Disruption of the interaction between VGCCs and laminin β2 results in a loss of active zone 

proteins without influencing NMJ area or morphology [63].

Direct evidence for the role of VGCCs in organizing NMJ active zones comes from VGCC 

knockout mice. P/Q-type VGCC knockout mice show decreased active zone formation and 

reduced protein levels of Bassoon in NMJs [63]. These knockout mice display a 

compensatory increase in NMJ localization of other VGCC isoforms (i.e., N- or R-type 

VGCCs) [63, 89]. This is problematic as typically during postnatal maturation there is a 

decrease in the dependence on N-type VGCCs and a shift towards dependence on P/Q-type 

VGCCs for synaptic transmission at NMJs [64]. Thus, NMJs from these mice display 

delayed maturation of NMJs as they fail to properly switch from N-type to P/Q-type VGCCs 

with compensatory upregulation of N-type VGCCs [61] that also bind laminin β2 chains 

confounding the interpretation of these results. To overcome the confluence of this 
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compensation, P/Q- and N-type VGCC double knockout mice were generated [90]. These 

double knockout mice display proper NMJ innervation, but a loss of synaptic transmission 

and reduced levels of active zone specific proteins Bassoon, CAST2/ELKS/Erc1, and 

Piccolo [90]. Furthermore, VGCC α2δ subunit in Drosophila plays a role in synapse 

formation and loss of the α2δ-3 subunit results in disorganized active zones [91]. These 

findings support the role of VGCCs in active zone organization in NMJs.

Disruption of the interaction between laminin β2 and P/Q-type VGCCs also results in loss of 

active zone structures. Soluble recombinant proteins generated from P/Q-type VGCCs 

containing only the 11th extracellular loop block the binding of P/Q-type VGCCs with 

laminin-421 (laminin-9) or a recombinant protein of LRE segment [63]. This indicates that 

the binding site for laminin in P/Q-type VGCCs is contained in the 11th extracellular loop of 

the α subunit. In contrast, recombinant protein containing the 11th extracellular loop of L-

type VGCCs did not block this binding [63]. Consistently, injecting mice with the 

recombinant protein of P/Q-type VGCC’s 11th extracellular loop to block the binding of 

laminin β2 with P/Q-type VGCCs results in a greater than 50% decrease in active zone 

number without altering postsynaptic AChR clustering [63]. Similarly, LEMS patients 

develop autoantibodies against P/Q-type VGCCs and cause internalization of P/Q-type 

VGCCs into nerve terminals [92–94]. Interestingly, some LEMS patients develop 

autoantibodies specifically against the laminin β2-binding domain on P/Q-type VGCCs, 

which may disrupt the binding of these molecules [95]. This loss of interaction between 

laminin β2 and VGCCs may lead to a reduced number of presynaptic active zones and 

muscle weakness [63, 96]. Consistently, mice injected with LEMS patient IgGs display 

reduced active zone number similar to patients [97]. Thus, VGCCs and their interaction with 

laminin β2 play an essential role in organizing the presynaptic active zones.

Dystroglycan

Dystroglycan is a laminin receptor that anchors the basement membrane laminin chains to 

the intracellular cytoskeleton of skeletal muscles by binding with dystrophin/utrophin/

syntrophins/dystrobrevin [18, 98–104]. Dystroglycan is a component of the dystrophin-

glycoprotein complex and is composed of α- and β-dystroglycan subunits encoded by a 

single gene [18]. α-dystroglycan functions as an extracellular receptor that binds to laminins 

but it also binds to perlecan, agrin, and neurexin. β-dystroglycan subunit is a transmembrane 

protein that links the extracellular α-dystroglycan to the cytoskeletal protein dystrophin [18]. 

Although dystroglycan is expressed throughout the sarcolemma, this receptor has higher 

concentration at NMJs [105]. Laminins (α4 and α5 chains) appear to be responsible for 

accumulating dystroglycan receptors to the post-synaptic membrane and this relationship is 

important for the maturation of AChR clusters [20, 106, 107]. Loss of dystroglycan in mice 

is embryonically lethal [108], and embryonic myotubes from dystroglycan null mice have 

poor AChR clustering and NMJ formation [109–111]. Arrested maturation of AChR cluster 

was confirmed in postnatal skeletal muscles of muscle-specific dystroglycan knockout mice 

[20]. As described earlier, mice lacking both laminin α4 and a muscle-specific knockout of 

laminin α5 (laminin α4/α5 knockout mice mentioned previously) also have arrested 

maturation of AChR clustering and reduced dystroglycan content at NMJs [20]. Thus, the 
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relationship between laminin α4/α5 and dystroglycan is important for appropriate endplate 

development.

Integrins

Integrins are a well-characterized family of laminin receptors. Cooperation between laminin 

and integrins help to link the interior cytoskeleton of muscle cells to the extracellular 

laminin molecules of the basal lamina [14]. These transmembrane proteins mediate cell-to-

cell and cell-to-matrix interactions, and these receptors also possess the ability to activate 

intracellular signaling pathways [14]. Integrins form heterodimers consisting of integrin α 
and β chains, each consisting of a number of different variants. Six members of the β1 

family of integrins (α1β1, α2β1, α3β1, α6β1, α7β1, and α9β1) and three αv family 

members (αvβ3, αvβ5, αvβ8), as well as α6β4, have been shown to interact with different 

laminin chains [14, 39, 112–117]. Laminin α1, α2, α3, and α5 chains have integrin binding 

sites located mainly in the C-terminal LG domain, although binding sites in the “short arm” 

N-terminus have been shown for integrin α1β1 and α2β1 [116–119].

Integrin α7 is enriched at NMJs and remain present at NMJs following denervation [13]. 

Through alternative splicing, integrin α7 is cleaved into three cytoplasmic domain variants 

(α7A, α7B, and α7C) [120–122]. Variants of integrin α7 are expressed differentially during 

development with the integrin α7A variant appearing immediately postnatally at NMJs, 

while the integrin α7B variant does not concentrate at NMJs until 2 weeks postnatally [13]. 

The integrin α7C variant is expressed both at NMJs and extrasynaptically [13]. In humans, 

genetic mutations of the gene encoding integrin α7 result in myopathy [123]. In mice, 

knockout of integrin α7 result in a loss of postsynaptic junctional folds, detachment of the 

myotendinous junction through loss of binding with laminin-211 (laminin-4), and 

myopathies similar to muscular dystrophy [124–126]. Dimers of integrin α7 and integrin β1 

are predominately expressed in skeletal muscle [121, 127]. Both integrin α7β1 and 

dystroglycan are required for polymerization of laminins on the cell surface of cultured 

myotubes and these two receptors link actin filaments of the skeletal muscle fiber 

cytoskeleton to extracellular laminins [14, 71, 128]. Dystroglycan links to actin by binding 

to a complex of dystrophin/utrophin/syntrophins while integrin α7β1 links to actin by 

binding to a complex of talin and vinculin/metavinculin, and these two structures are linked 

to one another extracellularly by laminin [14]. Thus, cooperation between integrin α7β1 and 

dystroglycan link the cytoskeleton to laminins in the basal lamina in skeletal muscle, 

anchoring interior components of the muscle fiber with the basement membrane.

Other integrin subunits are important for muscle and active zone formation. Integrin β1 

regulates skeletal muscle fiber development and is essential for myotube fusion and 

assembly of sarcomeres [129]. Furthermore, integrin β1 in skeletal muscle, but not in motor 

neurons, is required for innervation of NMJs [130]. Similar to integrin α7, integrin β1 is 

spliced and the integrin β1D variant appears to be the dominant integrin variant expressed in 

adult skeletal muscle [131, 132]. Integrin α3β1 has also emerged as important laminin 

receptor for active zone organization aiding laminin α4 in this process. Both integrins α3 

and β1 are located at NMJs and expressed in motor neurons [13]. Integrin α3 is found at 

nerve terminal of Torpedo californica electric organs and concentrates near active zones of 

Rogers and Nishimune Page 10

Matrix Biol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nerve terminals in Xenopus laevis [133–135]. Laminin molecules containing laminin α4 

chains bind with integrin α3, α6, and α7 chains, which complex with integrin β1 chains 

[136–138]. Integrin α3β1 dimers have been reported to complex with laminin 421 

(laminin-9), active zone proteins Bassoon and Piccolo, and VGCCs in Torpedo californica 
electric organ synapses, which is a modified neuromuscular synapse [135, 139]. Thus, it has 

been hypothesized that this interaction between laminin α4 and integrin α3β1 is important 

for laminin α4’s role as an active zone organizer in Torpedo electric organ synapses [135]. 

In summary, interactions between laminin receptors such as VGCCs, dystroglycan, and 

integrins with specific laminin chains are important for multiple aspects of NMJ 

development and maturation, especially development of presynaptic active zones.

Diseases associated with the loss of laminins or laminin-receptor 

interactions

Disorders that alter the NMJ organization and muscle function have been associated with the 

loss of specific laminin chains or disruption of the interaction between laminins and laminin 

receptors. In humans, laminin β2 gene (lamb2) has been localized on chromosome 3p21 and 

consists of 32 exons spanning 12 kb of genomic DNA making a protein consisting of 1,798 

amino acids [140]. Recently, 49 different mutations in lamb2 gene have been described 

resulting in recessive genetic disorders of varying degrees of severity including Pierson 

syndrome [140]. Pierson syndrome gives rise to a disruption of NMJs, ocular anomalies (i.e., 

microcoria, abnormal lens shape, and retinal abnormalities), and severe congenital nephrotic 

syndrome [140–144]. Pierson Syndrome patients usually pass away shortly after birth due to 

kidney disease. Individuals that do survive for longer can display developmental and 

neurological defects, including disrupted function and organization of NMJs [140, 142, 143, 

145]. A patient suffering from a congenital myasthenic syndrome with a mutation of lamb2 
showed reduced mEPP amplitude, decay, and frequency, reduced quantal content, reduced 

endplate area, reduced number of active zones, reduced number of synaptic vesicles, and 

Schwann cell infiltration of NMJs [144]. The symptoms of Pierson syndrome patients are 

consistent with what is observed in laminin β2 knockout mice.

Loss of laminin α2 results in a muscular dystrophy-like syndrome. In humans, recessive 

familial disruption of the gene encoding laminin α2 protein (lama2), located on 

chromosome 6q22-q23, results in merosin-deficient congenital muscular dystrophy type 1A 

(MDC1A) [66, 146]. At birth or shortly thereafter, patients are hypotonic becoming non-

ambulatory, require respiratory assistance, and pass away in the first decade of life or soon 

after in severe cases. Cerebral white matter abnormalities have been found by magnetic 

resonance imaging (MRI) in many cases, and seizures and mental retardation have been 

reported in a small portion of cases [66]. A number of different mutations have been 

observed resulting in a complete or partial loss of laminin α2 protein [37, 66, 72–75, 146–

150]. Some patients have only a partial decrease in laminin α2 protein levels, and these 

patients have better prognosis becoming ambulatory with longer life expectancy although a 

progressive muscle weakness may persist [72, 149]. The human form of MDC1A mimics 

animal models where reduced levels of laminin α2 protein results in muscular dystrophy. In 

these animal models, severity of reductions in laminin α2 protein levels correlates with the 
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severity of phenotype [66, 67]. As mentioned previously, these mice have reduced junctional 

folds, detachment of motor neuron from the endplate, demyelination, and infiltration of 

Schwann cells into the synaptic cleft.

LEMS is a form of myasthenia resulting from autoimmune attack of VGCCs leading to 

neuromuscular failure [92–97, 151]. These patients have muscle weakness and fatigue, 

reduced synaptic transmission, and reduced active zone number. Over half of the patients 

have small cell lung carcinoma and the treatment of cancer reduces auto-antibodies [152–

155], which can be the source of the VGCC antigens [156, 157]. The auto-antibodies 

produced against P/Q-type VGCCs result in internalization of VGCCs into nerve terminals, 

and potentially disrupt binding between laminin β2 and VGCCs, both of which leads to a 

loss of presynaptic active zones and muscle weakness [96]. The most common treatment for 

LEMS patients is the use of 3,4-diaminopyridine (3,4-DAP), a potassium channel blocker 

that prolongs the length of action potentials, leading to modest improvements in 

symptomology [158]. Recently, combining 3,4-DAP with a novel calcium channel agonist 

(GV-58) has led to a reversal of symptomology in a mouse model of LEMS [159, 160]. 

GV-58 acts specifically towards N- and P/Q-type VGCCs, not L-type VGCCs, increasing 

calcium influx during depolarization [159]. Use of this pharmacological combination 

restores neurotransmitter release in a LEMS mouse model [160]. These findings highlight 

the importance of VGCCs in the organization of presynaptic active zones, but also introduce 

this interaction as a favorable treatment target in some neuromuscular disorders.

Laminins, aging, and exercise

Aging skeletal muscle undergoes a progressive loss of muscle mass (sarcopenia) and 

strength leading to decreased quality of life and increased risk of falling, fractures, and 

mortality [161–163]. During aging, the pre- and post-synaptic NMJ morphology becomes 

disrupted. On the presynaptic side, motor neuron terminals atrophy during aging compared 

to young humans and rodents although the number of nerve terminal branches increases 

[164–170]. In addition, there is altered synaptic transmission, increased quantal release, 

decreased synaptic vesicle number, and a decrease in the number of active zones and content 

of active zone proteins [164, 171–175]. On the post-synaptic side, the endplate area expands 

despite AChR cluster area becoming fragmented ultimately leading to a progressive 

denervation of the NMJ [164, 166, 170, 172, 176–185]. These findings have been 

complicated by the examination of different muscle fiber types as fast and slow muscle 

fibers display differences in the influence of aging on NMJ morphology. Fast muscle fibers 

(i.e., extensor digitorum longus, EDL, muscle) typically show age-related changes in 

morphology prior to slow muscle fibers (i.e., soleus, diaphragm muscles) [179, 181, 186, 

187]. Denervation during aging may be different between muscle fiber types as one report 

showed that denervation was greater in 29 month old mice in fast-twitch muscle fibers (i.e., 

EDL muscle) compared to slow twitch muscle fibers (i.e., soleus) [181]; however, another 

report shows that denervation differences between muscle fiber types was not different in 

two year old mice [188]. Thus advanced aged beyond two years may be necessary to 

compare denervation patterns between muscle types.
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The loss of NMJ innervation precedes the degradation of spinal motor neurons [180, 181], 

which suggest a dying back neuropathy or distal axonopathy. In mice, partial denervation 

within individual NMJs begins to occur at approximately 18 months of age, and becomes 

more pronounced by 24 months of age and older [180]. In addition, we have observed that 

aging results in a reduced number of presynaptic active zones and a reduced level of 

Bassoon protein at presynaptic terminals [175, 189]. The loss of Bassoon will impair VGCC 

functionality and depress nerve transmission potentially leading to a loss of muscle strength 

or denervation [189]. One study has shown that protein levels of laminin α4, α5, and β2 

chains are not reduced in NMJs during aging; however, the pattern of laminin localization in 

NMJs changes in parallel to changes of NMJ morphology [87]. This opens the possibility of 

changes in localization of specific laminin chains are partly causative of NMJ degeneration 

during aging.

Exercise has been shown to positively influence NMJs in aging muscle [168, 180, 183–185, 

190–193]. Voluntary wheel running and treadmill running in aged mice and rats has been 

shown to reduce aging induced post-synaptic AChR fragmentation and help maintain NMJ 

innervation [180, 184, 193]. Even just one month of voluntary wheel running in 22-month-

old mice reduces denervation of aged NMJs [180]. In rodents, endplate area expands and 

AChR clusters become fragmented during aging. However, forced treadmill running reduces 

post-synaptic endplate area and decreases fragmentation of AChR clusters in aged animals 

[168, 183, 191, 194]. Importantly, resistance training has also been shown to positively 

influence NMJ morphology and reduce AChR fragmentation in both adult and aged humans 

and rodents [185, 195].

Exercise has also been shown to modulate presynaptic active zone protein content. Active 

zone protein levels in NMJs are reduced during aging, but resistance training of 24-month 

old rats restores Bassoon to young adult levels [189]. No other reports, to our knowledge, 

have investigated active zone proteins at the NMJ with exercise training. More work is 

needed to elucidate the molecular mechanisms by which exercise modulates active zones 

and active zone proteins during aging. It is possible that exercise stimulates expression of 

activity dependent genes, synaptic laminin expression, and laminin-receptor interactions that 

in turn positively influence pre- and post-synaptic gene expression level, NMJ morphology, 

and innervation. Exercise activates AMPK by phosphorylating AMPKα (Thr172) in 

muscles [196–199] and directly phosphorylates and activates peroxisome-proliferator-

activated receptor gamma co-activator 1α (PGC-1α) [200]. PGC-1α enhances transcription 

of NMJ genes including laminin β2 in C2C12 muscle cells [201]. However, laminin β2 

mRNA expression did not increase in vivo in gastrocnemius muscle from transgenic mice 

overexpressing PGC-1α [201]. In a single human study, four hours after a single bout of 

resistance exercise laminin β2 gene expression was increased in subjects that previously 

performed 12 weeks of resistance training [202]. Elsewhere, Ogasawara et al. showed that 

resistance exercise increases integrin β1 levels without changing laminin α2 or integrin α7, 

however other laminin chains were not examined [203]. Thus, upstream regulators that 

govern the response to exercise may have a direct influence over synaptic laminins and NMJ 

organizers.
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Conclusion

Synapse specific laminin chains and their interaction with laminin receptors are essential for 

NMJ formation and organization of pre- and post-synaptic structures. Loss of specific 

laminin chains or laminin receptors, as well as blocking the interaction between laminins 

and laminin receptors results in changes in NMJ innervation, morphology, and organization 

of pre- and post-synaptic structures including the active zones and junctional folds. 

Increasing levels of laminins, especially laminin β2, or increasing the signaling pathways 

stimulated by synaptic laminins are a viable molecular target to improve neuromuscular 

disease outcomes.
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3,4-DAP 3,4-diaminopyridine

ACh acetylcholine

AChR acetylcholine receptor

AMPK adenosine monophosphate-activated protein kinase

Bcam basal cell adhesion molecule/Lutheran blood group antigen

CAZ cytomatrix of the active zone

CAST CAZ-associated structural protein

EHS Engelbreth-Holm-Swarm

EDL extensor digitorum longus

LEMS Lambert-Eaton myasthenic syndrome

LRE leucine-arginine-glutamic acid

MDC1A segment, merosin deficient congenital muscular dystrophy type 1A

mEPP miniature end plate potential

NMJ neuromuscular junction

RIM Rab3-interacting molecule

SNAP-25 synaptosomal associated protein of 25 kDa

VGCC voltage-gated calcium channel
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Figure 1. 
The role of laminins at the NMJ. Laminin chains have specific roles in organizing the 

presynaptic active zones and endplate morphology. (A) Represents an NMJ of adult wild-

type mouse. (B) Represents an NMJ of laminin β2 knockout mouse. There is a loss of active 

zones, reduced number of synaptic vesicles and junctional folds, and infiltration of the 

synaptic cleft by Schwann cells. (C) Represents an NMJ of laminin α4 knockout mouse. 

There is a misalignment between active zones and junctional folds. (D) Represents an NMJ 

of laminin α4 and α5 double knockout mouse where the nerve terminal size is small. (E) 
Represents an NMJ laminin α2 knockout mouse where there is a reduced number of 

junctional folds and moderate infiltration of synaptic cleft by Schwann cells.
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Figure 2. 
Laminin β2 localization at an NMJ. Immunohistochemistry detection of laminin β2 in an 

NMJ of an adult (4 month old) wild-type C57Bl/6 mouse. Longitudinal sections of 

gastrocnemius muscle were stained with primary antibodies against laminin β2 (green), 

synaptic vesicle protein-2 (SV-2) and neurofilament to visualize the nerve terminal (Nerve, 

blue), and Alexa Fluor 594-labeled α-bungarotoxin to visualize acetylcholine receptors 

(AChRs, red). An NMJ was imaged on a confocal microscope and deconvolved. Scale bar 

represents 5 μm.
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Figure 3. 
Schematic of active zone organization in mammalian neuromuscular junctions. Laminin β2 

is a muscle derived active zone organizer that binds with presynaptic voltage-gated calcium 

channels (VGCC). Active zone proteins, Bassoon, CAST2/ELKS/Erc1, Piccolo, and 

Rim1/2, bind with VGCCs at the cytosolic domains and subunits. This link of laminin β2 of 

the basal lamina with active zone proteins organizes the active zones.
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Figure 4. 
Bassoon localization at an NMJ. Immunohistochemistry detection of active zone specific 

protein Bassoon in an NMJ of an adult (4 month old) wild-type C57Bl/6 mouse. 

Longitudinal sections of gastrocnemius muscle were stained with primary antibodies against 

Bassoon (green), SV-2 and neurofilament to visualize nerve terminal (Nerve, blue), and 

Alexa Fluor 594-labeled α-bungarotoxin to visualize acetylcholine receptors (AChRs, red). 

An NMJ was imaged on a confocal microscope and deconvolved. Scale bar represents 5 μm.
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