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Abstract

Alzheimer’s disease (AD) affects an estimated 44 million individuals worldwide, yet no 

therapeutic intervention is available to stop the progression of the dementia. Neuropathological 

hallmarks of AD are extracellular deposits of amyloid beta (Aβ) peptides into plaques, 

intraneuronal accumulation of hyperphosphorylated tau protein forming tangles, and chronic 

inflammation. A pivotal molecule in inflammation is the pro-inflammatory cytokine TNF-α. 

Several lines of evidence using genetic and pharmacological manipulations indicate that TNF-α 
signaling exacerbates both Aβ and tau pathologies in vivo. Interestingly, preventive and 

intervention anti-inflammatory strategies demonstrated a reduction in brain pathology and an 

amelioration of cognitive function in rodent models of AD. Phase I and IIa clinical trials suggest 

that TNF-α inhibitors might slow down cognitive decline and improve daily activities in AD 

patients. In the present review, we summarize the evidence pointing towards a beneficial role of 

anti-TNF-α therapies to prevent or slow the progression of AD. We also present possible physical 

and pharmacological interventions to modulate TNF-α signaling in AD subjects along with their 

limitations.
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1. INTRODUCTION

Alzheimer’s disease (AD) is the most prominent form of dementia worldwide, affecting an 

estimated 44 million people [1]. Patients progressively become debilitated, placing a heavy 

emotional and financial burden on caregivers and healthcare systems [1]. 

Neuropathologically, AD is characterized by 1- the extracellular accumulation of amyloid 

beta (Aβ) oligomers and other materials into dense senile plaques; 2- the intraneuronal 

hyperphosphorylation of the microtubule-binding protein tau which induces its aggregation 

into tangles; and 3- chronic inflammation [2]. Together, these events disrupt the homeostatic 

functioning of neurons by affecting synaptic transmission and intracellular transport, 

ultimately leading to neuronal death. Amyloid beta is generated via the consecutive 

proteolysis of the amyloid precursor protein (APP) by β- and γ-secretases. The main β-

secretase in AD was identified as beta amyloid converting enzyme 1 (BACE1) [3]. Gamma 

secretase is a tetramer comprising presenilin 1 or 2 (PSEN1/2), anterior pharynx-defective 1 

(APH-1), nicastrin (NCT), and presenilin enhancer 2 (PEN-2) [4].

Following its discovery in 1984 [5], Aβ was found to be a hallmark of AD- and Down 

syndrome-associated brain plaques [6]. These observations seeded the formulation of the 

amyloid cascade hypothesis which describes Aβ as the central cause of AD neuropathology 

[7, 8]. Based on this hypothesis, blocking amyloidogenesis or preventing Aβ aggregation 

should lower brain Aβ loads and plaque formation, and thus improve cognition in AD 

subjects. Different strategies have been tested in clinical trials, including 1- BACE1 

inhibitors [9]; 2- γ-secretase inhibitors and modulators [10]; and 3- active and passive 

immunization targeting monomeric, oligomeric, and protofibril Aβ [11]. However, all trials 

completed to date have failed to meet the clinical end-points of significantly improving the 

cognition and daily living functions of AD patients. Furthermore, although bio-marker and 

post-mortem analyses suggest target engagement as identified by lower brain and CSF Aβ 
loads [12–14], most trials reported substantial adverse events, such as unexpected liver 

toxicity for the BACE1 inhibitor LY2886721 [15], weight loss and skin cancers for γ-

secretase inhibitors [16], and microhemorrhages, vasogenic edema, and meningoencephalitis 

for Aβ immunization [11, 17], sometimes leading to early termination of the trials. These 

results, combined with observations of elevated brain Aβ42 in aged, non-demented 

individuals with cerebral atherosclerosis [18], and the lack of correlation between dementia 

progression and brain Aβ levels [19] are feeding the debate about the validity of the amyloid 

cascade hypothesis (for recent discussions see [20–22]), and prompting the investigation of 

additional targets and methods for therapeutic interventions.

An alternative approach to Aβ modulation is immunization against hyperphosphorylated tau 

[23]. For example, following an encouraging Phase I study AXON Neuroscience is starting a 

Phase II trial with its AADVAC1 vaccine [24, 25].

Another possible strategy is the use of anti-inflammatory agents. A growing body of 

evidence implicates proinflammatory cytokines as enhancers of Aβ and tau pathologies (see 

section 3 below) [26, 27]. Several epidemiological studies suggest a sparing of AD in 

individuals taking non-steroidal anti-inflammatory drugs (NSAIDs) for at least two years 

prior to symptom onset (reviewed in [22]). NSAIDs are non-selective inhibitors of 
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cyclooxygenase-1 (COX-1) and COX-2. However, clinical trials did not corroborate these 

epidemiological findings [28]. A possible explanation for the latter result is that the cohorts 

treated during clinical trials were already suffering AD while epidemiological studies 

suggest a preventive action of NSAIDs on presymptomatic individuals. Nonetheless, further 

studies found no AD prevention effect by COX-2 specific inhibitors [22]. To note, NSAIDs 

are known to induce gastrointestinal and kidney adverse events [29], which limit enthusiasm 

for their chronic use on AD patients.

Aged-related changes in the immune system, known as immunosenescence, and increased 

secretion of cytokines by adipose tissue represent the major causes of chronic inflammation 

during aging. This phenomenon is known as “in-flamm-aging” [30]. A major pro-

inflammatory molecule involved in neurological disorders, including AD, is tumor necrosis 

factor alpha (TNF-α) [30–33]. Anti-TNF-α interventions have been proposed to modulate 

AD neuropathology, and current data suggests it may also improve cognitive function (see 

section 4 below). In the present article we review the reasons behind targeting TNF-α for 

AD treatment and list several options to lower TNF-α, along with their potential challenges.

2. THE BIOLOGY OF TNF-α IN THE CENTRAL NERVOUS SYSTEM

TNF-α and its receptors regulate a plethora of physiological functions in the body, including 

immune surveillance, immune reactions to fight microbial infections, induction of cell death, 

for example to eliminate cancer cells or in pathological conditions like allergies [34–37]. In 

this section we provide a summary of TNF-α expression, signaling pathways, and 

physiological roles in the central nervous system (CNS).

2.1. TNF-α Expression

TNF-α controls numerous physiological processes in the CNS [34]. Therefore, it is not 

surprising that its expression is tightly regulated at the transcriptional, post-transcriptional, 

and translational levels to maintain homeostasis. The TNF-α gene is located within the 

Major Histocompatibility Complex (MHC) II region on the short arm of chromosome 6, and 

comprises four exons and three introns. A variety of transcription factors can bind and 

activate the TNF-α promoter, including NF-κβ, CCAAT/enhancer binding protein β (C/

EBPβ), SP-1, Erg-1, and c-Jun (summarized in [32]). TNF-α protein is synthesized as a type 

II transmembrane protein (tmTNF-α) of 26 kDa [38]. The metalloprotease TNF-α 
converting enzyme (TACE/ADAM17) can shed tmTNF-α from the plasma membrane and 

release a soluble form (sTNF-α) of 17 kDa into the extracellular milieu [39]. Interestingly, 

both tmTNF-α and sTNF-α assemble in homotrimers that are biologically active when 

engaging TNF-α receptors [32].

2.2. TNF-α Signaling

TNF-α exerts its actions by binding two distinct type I, high-affinity receptors located at the 

cell surface. TNF-RI (p55 or p60) is ubiquitously and constitutively expressed, except on 

erythrocytes, while TNF-RII (p75 or p80) expression is restricted to myeloid cells, 

endothelial cells, myocytes, thymocytes, oligodendrocytes, microglia, astrocytes, and sub-

populations of neurons (summarized in [40, 41]). TNF-RI binds equally well with the sTNF-
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α and the tmTNF-α, however TNF-RII preferentially binds to the tmTNF-α [42]. 

Historically, the two receptors were ascribed antagonistic effects with TNF-RI being pro-

apoptotic and TNF-RII playing a protective role. However, recent studies have shown that 

both receptors are capable of driving cell survival and cytotoxicity depending on age, 

extracellular TNF-α levels, the cell type expressing the receptors, and intracellular signaling 

pathways activated by other trophic factors (reviewed in [32,33]). TNF receptors mediate 

signals via the recruitment and inhibition of adapter proteins (for details see [32, 33]). 

Briefly, both receptors share similar signaling cascades that activate the mitogen-activated 

protein kinase (p38 MPAK), c-jun N-terminal kinase (JNK), extracellular-signal-regulated 

kinases (ERKs), acid sphingomyelinase (A-SMase), neutral sphingomyelinase (N-SMase) 

pathways, and the transcription factors AP-1 and NF-κB, which then induce the expression 

of molecules participating in inflammation and amyloidogenesis [32, 42, 43]. Interestingly, 

tmTNF-α is capable of reverse signaling, i.e. when tmTNF-α (or an agonist/antagonist) 

binds to its receptor it can increase intracellular calcium levels (in the cell bearing tmTNF-

α), which activates p38 MAPK, upregulates NF-κB signaling, and induces cell survival or 

death [44].

2.3. Sources of TNF-α and Its Roles in the Central Nervous System

In order to target TNF-α for AD treatment it is important to identify the cells expressing this 

pro-inflammatory cytokine in the CNS. In the past three decades, an increasing number of 

physiological and deleterious functions have been credited to TNF-α signaling in the CNS 

[32, 45, 46]. A non-exhaustive list of TNF-α roles in the CNS is provided in Table 1. Since 

TNF-α signaling stimulates NF-κB, many (though not all) of the functions attributed to 

TNF-α in the CNS are also controlled by NF-κB signaling (see recent reviews [47, 48] for 

details).

Numerous studies have shown that TNF-α is expressed at physiological levels by microglia 

and neurons; but its expression increases in activated microglia, neurons, oligodendrocytes, 

reactive astrocytes, epithelial cells, endothelial cells, and ependymal cells upon brain and 

peripheral injuries, and in chronic disorders [49–51]. Moreover, like other cytokines [52, 

53], TNF-α can cross the intact blood brain barrier (BBB) via transcytosis involving both 

TNF-RI and TNF-RII [54], and affect cognitive functions [55]. In addition, peripheral 

immunocompetent cells that produce TNF-α may migrate across the BBB to enter the brain 

parenchyma and cerebrospinal fluid (CSF) [56]. In aggregate, these findings suggest that 

several central and peripheral sources of TNF-α may contribute to AD neuropathology (see 

section 3 below) [57], although it is still unclear which source of TNF-α seeds chronic 

neuroinflammatory reactions.

3.TNF-α IN ALZHEIMER’S DISEASE

3.1. TNF-α Levels in Alzheimer’s Disease

Numerous studies have described elevated TNF-α levels in biological fluids in aging, mild 

cognitive impairment (MCI) and in AD patients (meta-analysis conducted in [77]). Early 

reports indicated that TNF-α levels are elevated in the CSF of AD patients compared to 

cognitively normal controls (e.g. [78]). However, a recent meta-analysis did not find a 
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significant difference between the two populations of patients [79]. From recent discussions 

[80] and our own experience, we hypothesize that part of the controversy might originate 

from the lack of standardization for sample collection, and the very low concentration of 

TNF-α in biological fluids (e.g. serum values ranging 0–4 pg/mL in healthy subjects), which 

likely impedes reproducible measurements across study centers. Nevertheless, it is widely 

accepted that TNF-α plasma levels are higher in MCI and AD vs. cognitively normal 

individuals [79, 81]. Importantly, both TNF-α and TNF-RI levels were shown to be 

increased in the postmortem brain of early-stage AD patients [82]. Furthermore, challenging 

primary cultures of rodent and human microglial cells with Aβ induces the release of high 

levels of TNF-α [83–85]. In addition, in a recent study human TNF-α cDNA flanked with a 

human cytomegalovirus promoter was delivered to the hippocampal CA1 region via an 

adeno-associated virus in 2 month-old 3xTg-AD mice (pre-pathological stage) for specific 

overexpression of TNF-α in neurons [86]. This manipulation induced the activation of 

microglia and neuronal death, revealing that TNF-α-driven inflammation may have a 

deleterious effect on neurons [86]. Combined with studies reporting activated microglia 

surrounding amyloid oligomers and senile plaques in acute and genetic rodent AD models 

[87], as well as in human brains [2], the data strongly suggests that TNF-α is chronically 

released during the course of AD, likely by activated microglia, neurons, and astrocytes 

stimulated by increased levels of extracellular Aβ [88].

Neurodegenerative disorders are associated with chronic central inflammation [73]. TNF-α 
increases the production of other pro-inflammatory cytokines, such as IL-1, IL-6, and IL-8 

[89], that can participate in the development of chronic inflammation when not counter-

balanced by anti-inflammatory cytokines (e.g. IL-10). Furthermore, TNF-α was shown to 

stimulate the expression of APP and BACE1 in primary cultures of mouse astrocytes, as well 

as stimulate γ-secretase activity in HEK cells, which results in the release of Aβ peptides in 

large amounts [70–72, 90]. Interestingly, a recent study indicated that rat neurons are 

differentially affected by TNF-α and Aβ42 during aging, with older neurons showing a 

decreased capacity to express TNF-α receptors than middle-aged neurons [91]. Collectively, 

the data suggests that, once chronic brain inflammation is engaged, a detrimental, auto-

amplified upward spiral maintains excessive levels of TNF-α, which could stimulate Aβ 
synthesis and neuronal loss, as well as inhibit microglia phagocytosis of Aβ [92]. Much less 

is known about the role of TNF-α in tau hyperphosphorylation and the molecular 

pathway(s) involved, though recent in vivo data suggests there may be a connection [93, 94].

3.2. TNF-α Single Nucleotide Polymorphism and Alzheimer’s Disease

The promoter region of the TNF-α gene bears several single nucleotide polymorphisms 

(SNPs). Of particular interest for AD, and other chronic disorders, is the mutation G308A 

(i.e. 308 bp prior to the start codon), which increases the expression of TNF-α mRNA and 

protein [95]. Careful experimentation revealed that the control of transcription does not 

occur via the regulation of transcription factors; instead it involves the generation of a high-

order of chromatin structure when G is at position −308, versus a low-order of chromatin 

structure that makes the region more accessible to transcription factors when the A mutation 

is present [96].
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Disease and meta-analyses studies reported that the frequency of the three possible −308 

mutation alleles in the general population are 70–80% (GG), 20–25% (GA), and 1–4% (AA) 

[97, 98]. Because of increased TNF-α expression with the A mutation, some authors 

suggested that this SNP could be linked with AD [99]. A recent meta-analysis did find, on 

one hand, a possible correlation between TNF-α G308A and the risk of AD in Chinese 

cohorts, but on the other hand reported a lower risk of suffering AD in northern European 

populations bearing this specific mutation [98]. Therefore, whether TNF-α G308A 

correlates with a higher probability of developing AD requires further investigation.

4. EVIDENCE THAT TNF-α MODULATION MAY SLOW OR PREVENT 

ALZHEIMER’S DISEASE

4.1. Evidence From Genetic Manipulations in AD Rodent Models

A large number of transgenic mouse and rat models have been generated to study AD. Those 

interested in such models are referred to recent reviews [100–102]. With regards to TNF-α 
signaling, there are a few lines of evidence from work on rodents support the idea of 

modulating TNF-α to manage AD progression. Genetic manipulations showed that altering 

TNF-α signaling reduces AD-like brain pathology in mice. For example, the deletion of 

TNF-RI gene in both APP23 (mimics Aβ pathology only; knock in of human APP bearing 

the Swedish mutation [sw; K595N/M596L] driven by the mouse Thy1.2 promoter [87]) and 

3xTg-AD (mimics both Aβ and tau pathologies; triple knock in of human presenilin-1 

mutated M146V driven by the presenilin 1 mouse promoter, and human APPsw and tau 

bearing the mutation P301L driven by the mouse Thy1.2 promoter [103]) mice resulted in 

decreased brain inflammation and Aβ burden [104, 105], while tau pathology was also 

reduced in 3xTg-AD mice which had their TNF-RI knocked out (TNF-RI−/−) [105]. Partial 

analysis of the mechanisms revealed a reduction in BACE1 expression in APP23 mice [104], 

confirming that TNF-α likely regulates brain BACE1 expression. In addition, McAlpine and 

collaborators [105] used the intra-ventricular delivery of a lentivirus to overexpress a 

dominant negative (DN) soluble isoform of TNF-α in 3xTg-AD mice. The competition of 

DN against endogenous TNF-α for receptor binding resulted in decreased brain amyloid 

burden [105], similar to the TNF-RI manipulations indicated above.

4.2. Pre-Clinical Pharmacological Evidence

4.2.1. Anti-TNF-α Biologics—Several anti-TNF-α antibodies and recombinant fusion 

proteins, often developed for rheumatoid arthritis or cancer treatment, have been tested on 

AD rodent models using both central and peripheral routes of administration. For instance, 

the acute intracerebral delivery of the anti-TNF-α antibody infliximab (150 µg) to 12 month-

old APP/PS1 mice (knock in of both human APPsw driven by the hamster prion protein 

promoter [mouse model Tg2576] and human presenilin-1 mutated M146V driven by the 

PDGF-β promoter [106]) induced a rapid and transient reduction in Aβ loads and tau 

phosphorylation [107]. The authors described the activation of brain immune cells in the 

process, though it is unclear whether these cells play a role in Aβ and tau clearance. In 

addition, the bio-engineered, anti-rheumatoid, anti-TNF-α fusion protein etanercept (TNF-

RII extracellular domain fused to IgG1 Fc) was administered subcutaneously (range 3–30 
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mg/kg) in an acute Aβ25–35-infused mouse model of AD. The peripheral administration of 

30 mg/kg etanercept resulted in improved cognitive outcome measures accompanied by 

reduced TNF-α levels in the hippocampus [108]. Whether etanercept is able to alter AD-like 

neuropathology in AD chronic models remains to be explored.

4.2.2. Anti-TNF-α Pharmacological Compounds—Anti-inflammatory drugs capable 

of altering TNF-α levels and NF-κB signaling after peripheral administration showed 

promise in treating brain pathology in AD-like mice.

4.2.2.1. Rapamycin: A low dose of the immunosuppressant rapamycin (2.24 mg/kg in food 

pellets) improved cognitive measures while reducing both amyloid and tau pathologies in 

3xTg-AD mice after 10 weeks of treatment [109]. This may be mediated by modulating the 

expression of pro-inflammatory cytokines during the blockage of T and B cell activation via 

the inhibition of mammalian target of rapamycin (mTOR) kinase (see section 5.9. below).

4.2.2.2. Minocycline: The antibiotic minocycline (∼55 mg/kg/day from food pellets for 3 

months) lowered Aβ burden and improved cognitive performance in middle-aged J20 mice 

(knock in of human APP bearing both the Swedish and Indiana mutations [ind; V717F] 

driven by the PDGF-β promoter) [110]. Although the exact molecular mechanisms regulated 

by minocycline in J20 mice were not reported, it was observed that minocycline is a 

neuroprotectant and might possess anti-inflammatory properties [111]. Similar positive 

effects on cognition were obtained when minocycline was administered intraperitoneally 

(i.p.; 45 mg/kg/day for three weeks) to an Aβ1-42-infused rat model and Tg2576 mice 

(knock in of human APPsw driven by the hamster prion protein promoter; 10 mg/kg/day 

minocycline, 5 days a week for 9 months) [112]. Importantly, minocycline (50 mg/kg/day) 

lowered brain inflammatory markers (COX-2, iNOS, and IL-1β), APP expression, and 

BACE1 activity when administered intraperitoneally for one month to young, pre-plaque 

McGill-Thy1-APP mice (knock in of human APPsw/ind driven by the murine Thy1.2 

promoter) [113]. However, in the latter study the authors reported liver and peritoneal 

toxicity, which “precluded the completion of behavioral testing for learning and memory” 

[113].

4.2.2.3. Thalidomide and Analogs: Compounds of the thalidomide family are referred to as 

immunomodulators and are known to reduce the half-life of TNF-α mRNA [114], thereby 

lowering TNF-α protein levels. Interestingly, thalidomide administered per orens to an 

Aβ1–40-infused mouse model (20 mg/kg/day thalidomide for two hours to three days after 

Aβ1–40 infusion) lowered hippocampal TNF-α mRNA levels, which translated to improved 

cognitive performance in an object recognition task carried out seven days after Aβ1–40 

infusion [115]. Test experiments conducted in our laboratory showed a 25% reduction in 

brain TNF-α protein levels in 12 month-old APP23 mice receiving thalidomide 100 

mg/kg/day via i.p. injections for three months (unpublished data). In addition, a recently 

developed analog, 3,6’-dithiothalidomide, at the dose of 50 mg/kg/day i.p. significantly 

reduced brain TNF-α mRNA and protein levels in 6 month-old 3xTg-AD mice (pre-plaque 

and tau pathologies), and this was accompanied by improved cognitive measures [116]. 

These studies showed the increased potency of 3,6’-dithiothalidomide compared to 
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thalidomide [116]. Furthermore, 3,6’-dithiothalidomide (42 mg/kg/daily. i.p. for 6 weeks) 

reduced Aβ loads and tau hyperphosphorylation, while improving cognitive performance in 

17 monthold 3xTg-AD mice [117]. In the latter study there had no demonstration that brain 

TNF-α levels were lowered in old 3xTg-AD mice, although complementary experiments 

suggest this. Further, the authors reported a significant down-regulation of the human 

APPsw transgene expression in old 3xTg-AD mice treated with the drug [117], concluding 

that “the possibility that some actions of 3,6′-dithiothalidomide may be mediated via 

suppression of this unnatural transgene promoter cannot be ruled out”. Complementary 

experiments using different AD mouse models could help solving this issue and ascertain 

that the compound reduces Aβ loads when a different promoter than Thy1.2 drives the 

expression of an hAPPsw transgene.

4.2.2.4. Celastrol: Celastrol is known for its antioxidant and anti-inflammatory properties, 

such as lowering of TNF-α and IL-1β expression in human monocytes and macrophages 

[118]. Recently, celastrol (1 mg/kg/day i.p. for four days) was reported to alter Aβ loads in 

PSAPP mice (knock in of both human APPsw driven by the hamster prion protein promoter 

[model Tg2576] and human presenilin-1 mutated M146V driven by the HMG-CoA 

reductase promoter [119]) [120].

4.2.2.5. NF-κB Modulation: As indicated in section 2.2 above, the binding of TNF-α to 

TNF-RI and TNF-RII triggers NF-κB signaling [42, 43, 48]. Consequently, most anti-TNF-

α drugs (including etanercept [121], infliximab [122], minocyclin [113], thalidomide [123], 

and celastrol [120]) were shown to reduce NF-κB phosphorylation (active state [48]) in 

various research models of inflammation. Interestingly, all these drugs reduced AD-like 

neuropathological features and, when assessed, improved cognitive measures (see references 

in sections 4.2.2.1–4 above).

4.2.2.6. Translation to Human Studies: Extrapolating pre-clinical pharmacological data to 

Phase I clinical trials involves deciding the starting drug dose to administer to human 

volunteers while ensuring their safety. The method recommended by the U.S. Food and 

Drug Administration (FDA) is the body surface area (BSA) normalization method [124]. 

This method calculates the quantity of drug per body surface area (e.g. mg/m2) rather than 

weight (e.g. mg/kg). While helpful, the BSA method does not necessarily correlate with the 

pharmacologically active dose. Thus, the FDA allows scaling to demonstrate therapeutic 

effect in human subjects using physiologic, pharmacokinetic, and toxicology data instead of 

the BSA method if scientifically supported (for recent discussion, see [125]).

4.3. Clinical Evidence

In addition to pre-clinical studies, two bodies of work in humans suggest that medications 

altering TNF-α signaling might prevent or lower AD neuropathology.

4.3.1. Non-Steroidal Anti-Inflammatory Drugs—The first agents are non-steroidal 

anti-inflammatory drugs (NSAIDs). Epidemiological studies indicate that some of these 

compounds, like ibuprofen, might help prevent AD-related cognitive decline if taken 

chronically by prodromal subjects [126]. However, clinical trials failed to detect cognitive 
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improvements in AD patients; thus it appears unlikely that NSAIDs alone are sufficient to 

treat AD after cognitive deficiencies develop [28].

4.3.2. Etanercept—Etanercept was reported to dramatically improve the condition and 

cognition of an AD patient after a single dose (25 mg) via perispinal administration [127]. 

Perispinal extrathecal administration is defined as the injection of molecules into the 

anatomic area within 10 cm of the spine (for etanercept, between the spinous processes of 

the C6 and C7 vertebrae) which contains numerous veins proposed to allow some transport 

into the brain via retrograde venous flow [128]. The chosen route of administration is due to 

etanercept’s large size (150 kDa) which prevents it crossing the BBB by passive diffusion 

[129]. Thus, this chimeric molecule must be delivered into the CNS for central inhibition of 

TNF-α. Further testing in 12 mild to moderate AD patients confirmed the potential of 

etanercept (25–50 mg weekly for 6 months) to slow AD-associated cognitive decline [130]. 

While encouraging, it is to note that results about etanercept on AD patients were collected 

during open-label trials without placebo controls, and the long-term effects on the sample 

population after drug wash out has not been reported. Moreover, a recent study using I-125-

labeled etanercept in rats did not demonstrate any penetration of the compound into the CNS 

after perispinal delivery [131], which contrasts with a previous study using the same 

paradigm [132]. Therefore, it is currently unclear whether the fast improvement of cognitive 

abilities recorded for etanercept in AD patients is due to a central or peripheral action of the 

drug, or possibly the placebo effect.

In summary, both animal and human studies suggest that modulating TNF-α synthesis 

and/or signaling may be viable therapeutic interventions to prevent or slow the progression 

of AD. Recent discussions argue that mouse models of AD recapitulate asymptomatic 

phases of the disease [133]. In addition, an increasing body of evidence suggest that 

neuroinflammation occurs at early stages of AD neuropathology (summarized in [134]). 

Taken together, pre-clinical and clinical data support the idea that anti-inflammatory 

strategies, including anti-TNF-α, might be more efficient when administered at early, or 

even at prodromal stages of AD, rather than at later stages of the disease. TNF-α inhibition 

strategies now need to be explored in clinical trials to confirm this hypothesis and assess 

tolerability and efficacy.

5. STRATEGIES AND CHALLENGES INVOLVING CENTRAL TNF-α 

SIGNALING MODULATION

Using the knowledge acquired in the past decades about the synthesis and 

physiopathological roles of TNF-α (see sections 2 and 3 above), physical and 

pharmacological interventions can be tested in clinical trials to modulate TNF-α levels or 

signaling, and to lower inflammation-driven AD neuropathology. In this section we present a 

non-exhaustive list of options and their limitations, which are summarized in Table 2.

5.1. Physical Exercise

In the past decade, a very interesting line of research has shown that physical exercise is able 

to reduce age-related low-grade inflammation (reviewed in [135, 136]). Several laboratories 
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reported that muscle contraction induces the synthesis and release of IL-6 from muscle cells 

during acute (single 2–4h long) exercises, as well as other cytokines which are referred to as 

myokines [137–140]. In addition, long-term (several weeks long) physical exercise lowered 

peripheral markers of inflammation in a small group of MCI patients (n=20) above 60 years 

of age and age-matched cognitively normal (CN) subjects (n=15) [141]. At baseline, both 

plasma IL-6 and TNF-α were elevated in MCI vs. control individuals (IL-6: 1.53 vs. 1.17 

pg/mL; TNF: 1.74 vs 1.48 pg/ml, respectively; p<0.05). After a 16 week period of 

multimodal exercise adapted to a population of this age range (see [142] for details), at the 

frequency of three weekly-one-hour-sessions, both plasma IL-6 and TNF-α levels dropped 

compared to baseline in the two cohorts (MCI IL-6: 1.36 vs 1.53 pg/L; MCI TNF: 1.49 vs. 

1.74; CN IL-6: 1.02 vs 1.17 pg/L; and CN TNF: 1.29 vs. 1.48; all values post- vs. pre-

exercise respectively; p<0.05) [141]. Furthermore, this chronic regimen of physical exercise 

improved cognition in active MCI patients vs. inactive, control MCI individuals [141], 

although it is not clear whether the benefit is solely the product of exercising or is combined 

with increased social interactions during exercise. While IL-6 is generally considered a 

proinflammatory cytokine, it may also act as an anti-inflammatory cytokine in human 

monocytic cells [143], likely via a post-transcriptional regulation mechanism [144], though 

the exact molecular mechanisms are unclear. Nonetheless, if these findings are confirmed, 

such therapeutic intervention might be safer to administer to large scale populations than 

some of the pharmacological agents described below. Therefore, the potential benefits might 

warrant broader experimentation, although attrition is often recorded in trials involving long-

term physical exercise (e.g. [145]) and such trials are open-label rather than double-blind.

5.2. IL-6 Supplementation

Since physical exercise may induce the release of IL-6 from muscle cells into the blood, one 

could ask whether the administration of IL-6 alone is sufficient to reduce peripheral TNF-α 
levels. Starkie and collaborators infused physiological levels (dose not described) of 

recombinant human IL-6 (rhIL-6) for 3h to a small group of healthy subjects [139]. The 

authors recorded a drop in plasma TNF-α levels in a manner similar to physical exercise 

[139]. In addition, they observed that pre-infusion of rhIL-6 blocks the induction of TNF-α 
production following acute administration of endotoxin, again very similar to the effect of 

physical exercise. The authors concluded that administering rhIL-6 or physical exercise 

produce an anti-inflammatory effect that has the potential to reduce low-grade-inflammation 

[139].

Interestingly, another group showed that both IL-6 and IL-10 reduce TNF-α expression in 

primary rat astrocytes via regulation of translation [146]. Furthermore experimentation in 

healthy humans revealed that an acute arterial infusion of rhIL-6 (30 µg/h for 3h) induces a 

transient increase in plasma anti-inflammatory cytokines IL-1 receptor antagonist (IL-1ra) 

and IL-10 [147], paralleling results obtained in subjects who completed a marathon race 

[140]. Surprisingly, plasma TNF-α levels remained unchanged during and after rhIL-6 

infusion. Importantly, however, both blood cortisol levels and the number of circulating 

neutrophils increased during rhIL-6 infusion [147]. This is of great importance for TNF-α 
modulation because 1- corticoids are inhibitors of TNF-α synthesis (see section 5.7 below); 

and 2- activated neutrophils release pro-inflammatory cyctokines, incuding TNF-α, which 
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facilitate extravasation through the endothelium (including in the BBB) and increase the 

levels of cytokines in tissues [148], but cortisol alters the binding of neutrophils to the 

endothelial membrane and prevents infiltration and release of cytokines into tissues [149]. 

Thus, treatment of patients with rhIL-6 appears to be a possible therapeutic intervention, for 

example for subjects with limited physical abilities such as after amputation or when 

suffering joint diseases. However, we did not find any literature about the long-term effect of 

IL-6 supplementation on inflammatory markers. Consequently, we believe that caution 

should be exerted before treating large AD cohorts since high levels of IL-6 were reported to 

correlate with increased risks of metabolic and immune diseases, such as coronary heart 

diseases [150, 151], and diabetes [152], though it is unclear whether IL-6 causes these 

diseases or is released by the body to prevent them.

5.3. Acetylcholinesterase Inhibitors and Nicotine

Acetylcholine (ACh) is one of the major neurotransmitters affected by AD. But, beside its 

role at the synaptic level in the brain, in recent years it was shown that ACh also modulates 

inflammation via what is referred to as the “immune cholinergic system” [153]. The system 

works thanks to lymphocytes and monocytes possessing the enzymatic machinery to 

synthesize (Choline acetyltransferase; ChAT) and degrade (Acetylcholinesterase; AChE) 

ACh. Activation of these immune cells leads to increased expression of ChAT and synthesis 

of ACh. After release, ACh can bind muscarinic and nicotinic receptors located on effector 

cells, which lowers the production of pro-inflammatory cytokines. The effects of ACh were 

mimicked by infusion of macrophages with nicotine (1–100 µM range), but not muscarine 

(1–100 µM range) [154]. Interestingly, both macrophages and microglia were shown to 

express the α7 subunit of the nicotinic receptor (α7 nAChR) [155]. This particular subunit 

was demonstrated to downregulate the NF-κB-mediated transcription of pro-inflammatory 

cytokines (summarized in [156]).

Of particular interest for AD, Aβ was shown to increase the activity of AChE in a 

neuroblastoma cell line, likely by slowing down the degradation of this enzyme rather than 

increasing its synthesis [157]. Similarly, challenging human THP-1 and peripheral blood 

mononuclear cells with Aβ induced the synthesis of pro-inflammatory cytokines, including 

TNF-α [158]. This increase was mitigated by infusing the cells with AChE inhibitors [158]. 

Furthermore, it was recently shown that anti-ACh drugs exacerbate systemic inflammation 

in a mouse model of tauopathy [93], though the exact molecular mechanisms remain to 

investigate. In addition, the acute administration of the AChE inhibitor galantamine (1–4 

mg/kg i.p.) 1h prior to endotoxin (6 mg i.p.) in mice significantly reduced TNF-α serum 

levels, and this process required normal signaling by the vagus nerve [159]. Taken together, 

the data suggests that a systemic reduction in ACh may drive chronic inflammation by 

stimulating the production of pro-inflammatory cytokines, which could be modulated by 

AChE inhibitors. AChE inhibitors are one of the few FDA-approved drugs for AD treatment 

to date. Given their potential on the immune cholinergic system, it is possible that their 

transient slowing down of AD symptoms is mediated not only by central neurotransmission 

regulation, but also by affecting peripheral and central inflammation. However, it is well 

known that the effect of AChE inhibitors is short in duration (several months only), 

suggesting that this approach alone is not sufficient to counteract AD-related inflammation 
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after symptoms appear, and additional therapeutic interventions are likely required to 

produce lasting effects.

5.4. Etanercept

Following the positive outcome of etanercept perispinal administrations on cognitive 

performance in AD subjects in small scale studies (see section 4.3 above), this biologic 

could be tested on a larger sample population, in a randomized, double-blind, placebo-

controlled study, to confirm the original findings. Since it is not clear whether perispinal 

administration carries etanercept into the CNS [131], while TNF-α is transported across the 

BBB (as explained in section 2 above), it is possible that altering peripheral TNF-α might 

lower its brain levels since less TNF-α would cross the BBB.

Interestingly, the subcutaneous administration of etanercept in an acute murine model of AD 

(30 mg/kg) improved cognitive measures and lowered TNF-α levels in the hippocampus 

[108] (section 4.2 above). This approach was then translated into a double-blind, 

randomized clinical trial on 41 mild to moderate AD patients receiving etanercept (n=20) 

and placebo control (n=21). The study reported that weekly subcutaneous injections of 

etanercept (50 mg for 24 weeks) was well tolerated in AD patients whose main adverse 

events were increased, but manageable infections [160]. However, compared to placebo 

controls, no significant amelioration in cognitive outcomes and daily activities were 

demonstrated in patients treated with etanercept [160]. The authors concluded that 

increasing the number of patients might be needed to obtain significant improvement of 

cognitive performance.

Since inflammation exacerbates AD neuropathological features, which build up during the 

pre-symptomatic phase of the disease [134, 161], we suggest that clinical trials targeting 

inflammatory molecules and pathways should recruit patients suffering mild cognitive 

impairment (MCI) to early AD to try preventing further neuronal death rather than treating 

patients at mild to moderate stages who already suffer significant neuronal loss. But caution 

is required for long term administration of etanercept because psychiatric adverse events, 

such as schizophrenia-like disorders [162], have been reported, indicating that some patients 

may require close monitoring. Nonetheless, if the peripheral administration of etanercept 

proves effective to slow AD progression, then peripheral administration of other biologics, 

such as anti-TNF-α and anti-TNFRI antibodies, could also be tested in the future.

5.5. Anti-TNF-α Antibodies

Another option to capture soluble TNF-α and prevent its binding and activation of cellular 

receptors is to use highly specific, bioengineered anti-TNF-α antibodies such as infliximab 

and adalimumab [163]. Infliximab was administered intracerebroventricularly (150 µg daily 

injection for three days) to the AD mouse model APP/PS1 at 12 months of age, i.e. when 

brain pathology is established. The authors reported a rapid reduction in brain TNF-α, Aβ, 

and tau phosphorylation levels, which were accompanied by an activation of monocytic 

CD11c-positive cells [107]. However, no cognitive data were provided. On a cautious note, 

adverse events have been reported in patients treated with anti-TNF-α antibodies for 

rheumatoid arthritis, including lymphoma, neuropathies, and infections [164]. In addition, 
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like etanercept [129] most antibodies show very limited crossing of the BBB via passive 

diffusion [165], thus they must be administered either centrally to efficiently inhibit CNS 

TNF-α, or in the periphery to lower circulating TNF-α and its crossing of the BBB. In 

addition, the ability of anti-TNF-α antibodies, administered peripherally, to reduce central 

TNF-α and AD-like neuropathology in rodent models has not been reported yet.

5.6. Anti-TNFRI Antibodies

As an alternative to capturing sTNF-α, TNF-α signaling could be reduced by antagonizing 

its receptors. As indicated in section 3.4. above, TNF-RI is mostly pro-apoptotic. The 

genetic deletion of this receptor showed improvement in AD-like pathology in rodent 

models (see section 4.1 above). For clinical applications, an anti-TNF-RI antibody has been 

bioengineered with a modified Fc region and named ATRO-SAB. Although no data are 

currently available on its effects on AD pathology, its in vitro bioactivity showed blockage 

of TNF-α-induced expression of IL-6 and IL-8 in HeLa cells via reduction of NF-κB 

activation [166]. In addition, the authors showed that the classical pathway of activation of 

the complement system was not activated by this antibody, indicating that once it binds to 

the cell surface it does not stimulate opsonization and cell lysis. Like for etanercept and anti-

TNF-α antibodies, inhibition of CNS-located TNF-RI would likely require central 

administration given the low rate at which antibodies penetrate the brain parenchyma by 

passive diffusion through the BBB [165]. Furthermore, additional testing is required to 

determine whether peripheral administration of ATROSAB could reduce AD-like 

neuropathology and cognitive impairment in rodent models. Finally, the toxicity profile of 

this antibody will need to be assessed in Phase I studies before planning Phase II clinical 

trials on AD cohorts.

5.7. Corticoids

Corticoids are well known general inhibitors of inflammation used in many pathological 

conditions such as asthma and skin rashes. Mechanistically, corticoids are plasma 

membrane-soluble molecules that bind cytoplasmic glucocorticoid receptors (GR), inducing 

their nuclear translocation (summarized in [167]). Once in the nucleus, the corticoid-GR 

complex can either bind DNA glucorticoid response elements (GRE) to increase the 

transcription of anti-inflammatory cytokines (e.g. IL-10), or regulate other transcription 

factors, including depressing the NF-κB-driven transcription of pro-inflammatory cytokines. 

It is also proposed that corticoids may destabilize some pro-inflammatory mRNAs, though 

the exact mechanisms are unclear [167]. At the cellular level, corticoids prevent the 

attachment of neutrophils to endothelial cells, which reduces the extravasation of these cells 

and build up of cytokines in tissues [148]. Pilot experiments were conducted with 

dexamethasone (10 µM) on LPS-challenged whole blood samples from AD patients and 

healthy subjects. The authors reported that dexamethasone was more efficient on AD 

samples vs. controls [168]. Interestingly, dexamethasone is commonly co-administered with 

thalidomide analogs in cancer treatment (see section 5.8 below) because a cumulative effect 

on inflammation reduction was noted during clinical trials. However, long term 

administration of corticoids often results in adverse events such as increased risks of 

infection, osteoporosis, and mental depression via alteration of the hypothalamic-
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pituitaryadrenal (HPA) axis [168, 169], limiting their potential to treat chronic disorders like 

AD.

5.8. Thalidomide and Analogs

Because AD is a complex disease [161], the use of pleiotropic anti-inflammatory agents may 

be required to not only reduce pro-inflammatory, but also increase anti-inflammatory 

cytokines. Examples of this pharmacological class include immunomodulators of the 

thalidomide family which are very potent TNF-α inhibitors, and which were proposed as 

therapeutic agents for neurodegenerative disorders [31, 170]. Their mechanism of action is 

via destabilization of TNF-α mRNA, which reduces protein synthesis [114] , but they also 

modulate other cytokines [171]. In a separate paper in this special edition of CAR, we report 

the testing of thalidomide in mild-to-moderate AD patients (see Thalidomide paper in this 

special edition). Our main conclusion is that the toxicity of thalidomide unfortunately 

induced too many adverse events (including somnolence, constipation, and peripheral 

neuropathy), which resulted in participants prematurely withdrawing from the study. In 

addition, and as indicated above, inflammation exacerbates AD neuropathological features 

and is detected at early stages of AD [172]. Since our sample population consisted of mild to 

moderate AD patients, our study design was likely not optimal to detect the preventive 

effects of thalidomide.

Interestingly, several novel thalidomide analogs generated recently have been shown to be 

potent TNF-α synthesis inhibitors in vitro [173, 174]. For example, the thio-modified 

compound 3,6’-dithiothalidomide lowered the synthesis of inflammatory markers in the 

mouse macrophagic cell line RAW 264.7, and in rat blood after LPS stimulation [117]. Of 

interest for AD research, the drug was also shown to improve cognitive measures and 

reduced Aβ loads in 3xTg-AD mice [117]. Thus, we suggest that future trials testing the 

potential of less toxic thalidomide analogs should focus on MCI to early AD cohorts in the 

hope of preventing further accumulation of neuropathological features and cognitive decline, 

rather than testing such compounds as disease-modifying therapies in mild- to late-AD 

patients who suffer advanced cognitive deficits.

5.9. Immunosuppressants

In this section we refer to immunosuppressive drugs known as anti-rejection medications, 

which inhibit B and T cells activation. The major compounds of this class are the cyclic 

undecapeptide cyclosporine, the macrolide antibiotic tacrolimus, and the antifungal 

rapamycin [175]. They are used mostly to 1- prevent the rejection of transplanted organs and 

tissues; 2- treat autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, 

myasthenia gravis, systemic lupus erythematosus); and 3- treat some non-autoimmune 

inflammatory diseases (e.g. long-term allergic asthma).

Cyclosporine and tacrolimus (also named FK-506) are both inhibitors of the calcium/

calmodulin dependent serine/threonine protein phosphatase calcineurin. Cyclosporine A 

binds to proteins located in the cytoplasm of immunocompetent lymphocytes called 

cyclophilins. Tacrolimus binds to FK-506 binding proteins (FKBP) [176]. The drug-protein 

complexes then bind calcineurin to inhibit the dephosphorylation (activation) of the 
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transcription factor, nuclear factor of activated T cell, cytoplasmic (NFATc). This results in 

the blockage of T cell activation, and altered expression of the pro-inflammatory cytokine 

IL-2, which prevents further activation of cell-activated immunity that is characterized by 

the release of TNF-α [177]. Both cyclosporine (50 µM) and tacrolimus (50 µM) were shown 

to downregulate the expression of APP mRNA and protein in primary cultures of neonatal 

rat astrocytes [178]. However, we did not find any report on clinical trials for AD. To note, 

while cyclosporine and tacrolimus are very potent anti-inflammatory drugs, cyclosporin does 

not cross the BBB because it is endocytosed and then trapped in the cerebral endothelial 

cells [179], and long term treatment with high doses often results in nephrotoxicity, and 

occasionally in neurotoxicity [180, 181].

Rapamycin (also named sirolimus) binds to FKBP, and then inhibits the serine/threonine 

kinase mTOR Complex 1. Contrary to cyclosporine A and tacrolimus which affects the first 

phase of T lymphocyte activation, rapamycin affects the second phase, i.e. signal 

transduction and lymphocyte clonal proliferation, preventing their transition from G1 to S 

phase of the cell cycle [182]. In addition, rapamycin prevents B cell differentiation to plasma 

cells, reducing the production of IgM, IgG, and IgA antibodies [183]. Oddo and 

collaborators showed that rapamycin reduces both Aβ and tau pathologies while improving 

cognitive measures in 3xTg-AD mice [109]. Whether rapamycin could be effective on AD 

patients remains to be tested in clinical trials, though chronic administration may generate 

adverse events such as diabetes, thrombocytopenia, anemia and leucopenia [184].

5.10. Stimulation of Repressors of Transcription

Recently, novel endogenous proteins have been identified which inhibit the transcription of 

TNF-α. One of these molecules is the Leucine-rich repeat in Flightless-1 interaction protein 

1 (GCF2/LRRFIP1). Initial investigations have shown that GCF2/LRRFIP1 occupies the 

region −308 of the TNF-α gene promoter [185]. Very interestingly, GCF2/LRRFIP1 seems 

to act as a transcription inhibitor that completely represses TNF-α transcription in cells that 

do not express this cytokine physiologically [185]. A very recent report showed that GCF2/

LRRFIP1 regulates pro-survival proteins and pathways in rat astrocytes, including β-catenin, 

Akt, and mTOR [186]. While still at early stages of investigation, if the effects of GCF2/

LRRFIP1 are confirmed, it could become a new therapeutic target to modulate TNF-α 
expression, although its negative effects must also be studied as another report suggests it 

may stimulate metastasis in some forms of cancers [187].

5.11. Potential Health Hazards

Finally, as reported in the etanercept clinical trial [188], inhibiting TNF-α in a chronic 

manner might reduce the potential of AD patients to fight infections and cancers. 

Furthermore, the complete deletion of TNF-α receptors (TNF-RI and II) in 3xTg-AD mice 

resulted in exacerbated AD-like neuropathology, suggesting that pan-TNF-α suppressive 

therapeutic strategies might be detrimental rather than beneficial for AD treatment [189]. 

Moreover, a few neurological adverse events associated with anti-TNF-α agents were 

reported, which include central and peripheral demyelination, CNS lupus, encephalitis, and 

polyneuropathies [181, 190–192]. Therefore, we advocate that all clinical trials using TNF-α 
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inhibitors on AD patients include a pharmacovigilance section to monitor possible 

neurological adverse events.

CONCLUSION

Chronic central inflammation plays a major role in the development of AD neuropathology 

and associated dementia. Therefore, developing therapeutic interventions to modulate 

inflammation represents a valid option to treat AD. Because of its pivotal role in 

inflammation, TNF-α is a very attractive pharmacological target. In addition, pre-clinical 

data indicate that increased TNF-α levels exacerbates amyloidogenesis, and diverse 

paradigms used to reduce TNF-α signaling in rodent models of AD showed significant 

reduction in AD-like brain pathology accompanied by an amelioration of cognitive function. 

Therefore, TNF-α inhibition to prevent or slow AD should be explored in more depth in 

clinical trials. However, we recommend that the inhibition of TNF-α be kept to mild to 

moderate levels in order not to induce adverse events resulting from blocking the 

physiological roles of TNF-α in the CNS (Table 1).
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Table 1

Physiological and deleterious effect of TNF-α signaling in the CNS.

TNF-α Function References

Neurophysiology (basal expression and acute disease state)

- Development: act as a neurotrophic factor (neuronal apoptosis) [32]

- Development: facilitate cell migration and proliferation [58]

- Cognition [59, 60]

- Synaptic plasticity [58, 61]

- Astrocytic gliotransmission [58]

- Ionic homeostasis [62]

- Protects from excitotoxicity [63]

- Facilitator of remyelination by promoting oligodendrocyte survival [64]

- Sleep [65]

- Food and water intake [66]

- Anti-neurogenic effect during adult neurogenesis (cultured ippocampal progenitor cells and SVZ progenitor cells) [67, 68]

- Host defense [69]

- Restore brain homeostasis and functions during acute inflammation [34, 45]

Neuropathology (chronic expression in moderate to high amounts)

- Promote excitotoxicity (in association with glutamate) [63]

- Cause synaptic loss [58, 61,63]

- Stimulate astrogliosis and microgliosis [57]

- Exacerbate amyloidogenesis in Alzheimer’s disease [70–72]

- Participate in multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease, ischemia, and other neurological 
disorders

[32, 34, 73–75]

- Drive HIV-associated dementia [76]
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Table 2

Possible therapeutic interventions to decrease TNF-α signaling in AD, their targeted mechanism of action, and 

potential health hazards. See text in Section 5. for details and references.

Possible Therapeutic Intervention Mechanism of action Potential Limitations

Physical exercise Muscle contraction induces the release of IL-6
that seems to act as TNF-α inhibitor

None

IL-6 supplementation Acute IL-6 supplement alone seems to reduce
peripheral TNF-αlevels, and increase IL-1ra, 

IL-10
and cortisol

IL-6 is an ambivalent cytokine that could 
induce

other severe conditions upon chronic 
administration

Acetylcholinesterase inhibitors and 
nicotine

Activation of α7 nicotinic acetyl choline 
receptors

which regulate cytokine transcription via
NF-κB modulation

AChE inhibitors used currently to treat AD 
have

limited time effects, showing this option alone 
is

not viable for long term treatment

Etanercept Capture of soluble TNF-α blocking it from
binding cellular receptors

Do not cross the BBB; central administration 
is

high risk

Anti-TNF-α antibodies (e.g. Infliximab) Capture of soluble TNF-α blocking it from
binding cellular receptors

Do not cross the BBB; central administration 
is

high risk

Anti-TNF-RI antibodies Competes against TNF-α to bind TNF-RI, but
does not activate signal transduction

Do not cross the BBB; central administration 
is

high risk

Corticoids (e.g. dexamethasone) General inhibitors of inflammation via 
regulation

of NF-κB by glucocorticoid receptors; may also
destabilize mRNAs

Chronic administration may induce
endocrine-related pathologies via 

disregulation of the
hypothalamic-pituitary-adrenal axis

Thalidomide and analogs Destabilize TNF-α mRNA; modulate cytokines,
chemokines, and NF-κB

Commercially available thalidomide analogs
induce neutropenia, thrombocytopenia, and 

various
adverse events

Immunosuppressants (e.g. cyclosporine, 
rapamycin)

General inhibitors of the immune response by
inhibiting T and B cells activation

Chronic immunosuppression increases the 
risk of

infection, neutropenia, and thrombocytopenia

Stimulation of repressors of transcription 
(e.g.

GCF2/LRRFIP1)

Binding of TNF-α promoter region to repress
transcription

May repress other genes than TNF-α leading 
to

adverse events and/or other pathologies
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