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Abstract

The past few decades have witnessed a rapid rise in nutrition-related disorders such as obesity in 

the United States and over the world. Traditional nutrition research has associated various foods 

and nutrients with obesity. Recent advances in genomics have led to identification of the genetic 

variants determining body weight and related dietary factors such as intakes of energy and 

macronutrients. In addition, compelling evidence has lent support to interactions between genetic 

variations and dietary factors in relation to obesity and weight change. Moreover, recently 

emerging data from other ‘omics’ studies such as epigenomics and metabolomics suggest that 

more complex interplays between the global features of human body and dietary factors may exist 

at multiple tiers in affecting individuals’ susceptibility to obesity; and a concept of ‘personalized 

nutrition’ has been proposed to integrate this novel knowledge with traditional nutrition research, 

with the hope ultimately to endorse person-centric diet intervention to mitigate obesity and related 

disorders.
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Introduction

Obesity is one of the major nutrition-related disorders, and its rapid rise in the United States 

and many other countries has been paralleled with a dramatic shift from traditional, more 

nutritionally dense dietary patterns toward more energy-rich, unhealthy patterns (1,2). The 

importance of nutrition in prevention and treatment of obesity has gained much attention 

from public health professionals (3,4).

The etiology of obesity is multifactorial and involves complex interplays between dietary 

factors and various ‘internal’ (e.g. genomic, epigenomic, and metabolic profiles) or 

‘external’ (e.g. lifestyle) exposures. The past 10 years have witnessed speedy advances in 

research of genomics, which has made great strides in detection of genetic variants 

associated with body weight regulation and obesity (5). In addition, emerging data have 

shown that the genetic variants may interact with dietary factors in relation to obesity and 
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weight change (6 – 9). Moreover, recent studies on other global characteristics of the human 

body, such as epigenomics and metabolomics, suggest more complex interplays may exist at 

multiple tiers in affecting individuals’ susceptibility to obesity, and a concept of 

‘personalized nutrition’ has been proposed to integrate these new advances with traditional 

nutrition research.

Key messages

• A group of dietary factors or eating habits have been related to obesity; 

however, the data for the majority of these factors are still inconsistent.

• Emerging evidence supports potential interaction between genetic factors and 

dietary factors in relation to obesity.

• Personalized nutrition holds great promise to understand interindividual 

variation in responses to specific foods and nutrients, and such knowledge 

would be translated into public health benefit.

This article summarizes recent advances in nutrition, genomics, gene – diet interaction, and 

other omics studies on obesity, and particularly addresses ‘personalized nutrition’ in 

integration of this knowledge and the potential application in person-centric diet intervention 

to mitigate obesity and related disorders. The article does not comprehensively review the 

publications in the related areas, but only presents sampled findings as examples.

Foods, nutrients, eating habits, and obesity

The root of obesity etiology is imbalance between dietary energy intake and energy 

expenditure. Human evolution has favored a preference for energy-dense and fatty foods, as 

a consequence of exposure to ancestral famine (10). This leaves humans susceptible to 

modern obesogenic environments regarding rise of energy intakes and subsequent elevation 

of obesity risk. Data from the National Health and Nutrition Examination Survey 

(NHANES) have shown a marked upward shift of energy intake, increasing by 7% in men 

and 22% in women from 1971 – 1974 to 1999 – 2000 (11), in parallel with a rapid increment 

of obesity in the same period of time.

Many foods may tip the balance of energy input and output. For example, fast foods or 

takeaway foods, typically high in fat and energy density, and low in fiber, have been related 

to escalation of total calories intake. Consumption of these foods increased from 20% of 

total calories in 1970 to 40% of total calories in 1995 in the United States (12). Positive 

associations between fast foods consumption and obesity risk have been reported in several 

epidemiology studies, though the data are not entirely consistent (13 – 15). It remains 

debatable whether the fast foods were driving the obesity, or vice versa. In the last half 

century, there has been a sudden upsurge in consumption of carbohydrates, especially those 

in a more refined form (16). Although population-based data directly linking carbohydrates 

and obesity are still sparse, several short-term intervention trials have shown that 

carbohydrate restriction might moderately promote weight loss (17,18). A group of studies 

have shown that diets rich in whole grains and fiber were inversely related to body mass 
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index (BMI) and weight gain (19,20), partly due to the incomplete digestion and absorption 

and increased satiety caused by delayed gastric emptying and subsequent gastric distention. 

Other foods and nutrients such as nuts, fruits and vegetables, and dairy products have also 

been associated with body weight; however, the data are similarly conflicting (21 – 25). The 

mid-1990s saw the surge in popularity of sugar-sweetened beverages (SSB), paralleled by 

the rise in obesity prevalence, in the United States (26). Compelling evidence supports a 

positive association of high SSB consumption with weight gain and obesity risk (27,28). 

Data from several recent randomized clinical trials added more solid evidence that the 

relation between SSB and body weight may be causal (29,30). Of note, there are very few 

with appropriate long follow-up which may give reliable data on the real health effects of 

long-term dietary and lifestyle changes on weight reduction. A recent study reported that 

after over 13 years of follow-up in the Finnish Diabetes Prevention Study (DPS), 

participants assigned to reduced intakes of total fat and saturated fat and increased intake of 

fiber, and moderate exercise for at least 30 minutes per day sustained lower absolute levels 

of body weight (31). Similarly, in The Look AHEAD, intervention combining increased 

physical activity and diet modification (total calorie of 1200 – 1800 kcal/day, with < 30% 

from fat and < 10% from saturated fat) resulted in long-term (4 years) weight loss (32).

In addition, there is growing interest in the relations between eating behaviors and obesity, 

because they may reflect the joint effect of several foods and nutrients. For example, Kaisari 

et al. found that higher eating frequency was associated with lower body weight in children 

and adolescents, mainly in boys (33). Similarly, in adults, it was found that participants who 

reported eating breakfast daily gained 1.9 kg less weight over 18 years, compared with those 

with infrequent breakfast consumption (0 – 3 days/week) (34).

Genomic determinants of obesity-related eating behaviors and dietary 

factors

Eating habits are thought to be a voluntary, conscious behavior, and a large body of evidence 

has shown that habitual diet intake is largely controlled by a powerful, unconscious 

biological system especially through balancing energy intake and expenditure (35,36). In 

addition, a variety of factors such as socio-economic environment, learned eating behaviors, 

physiological conditions such as stress, and depression can also influence appetite and food 

selection (37). In the meantime, compelling evidence has indicated that genetic factors may 

also play a role in eating habits (38 – 40).

Several studies have assessed heritability of eating behaviors or dietary intakes. Steinle et al. 

examined eating behaviors in 624 adults from 28 families participating in the Amish Family 

Diabetes Study (41). Heritability estimates were 28% for restraint, 40% for disinhibition, 

and 23% for hunger. In 575 Danish and 2009 Finnish adult twin pairs, Hasselbalch et al. 

found moderate heritability for bread intake frequency (23% – 40%). The genetic influence 

on intake of white bread was 24% – 31%, while the genetic influence on intake of rye bread 

was higher in men (41% – 45%) than in women (24% – 33%) (42). In family and twin 

studies, the range of heritability estimates for intake of the macronutrients carbohydrate, 

protein, and fat was 11% – 65% (38). However, population-based analyses showed relatively 
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a lower proportion of variance for these nutrients (6% – 8%) explained by genetic 

components (39).

The efforts to map genetic variants determining dietary intake have been focused on 

biologically relevant candidate genes. For example, MC4R is a key factor in the leptin-

melanocortin signaling pathway, controlling food intake via both anorexigenic and 

orexigenic signals (43). There is a group of studies that have assessed the relation of variants 

in the MC4R gene with binge eating disorder, snacking, psychological factors, satiety 

responsiveness, and intake of energy and macro/micronutrients. Although several small-

sized studies reported that the MC4R mutations might impair eating behaviors or motivation, 

the data are highly mixed (44,45). In 5724 women from the Nurses’ Health Study (NHS), Qi 

et al. found that the MC4R variant rs17782313 was related to high intakes of total energy 

and macronutrients such as fat and protein (46). In the European Prospective Study into 

Cancer and Nutrition study ( n = 17,357), it was found that common allelic variations in the 

leptin or leptin receptor gene ( LEP or LEPR ) associated with an increased risk to display 

extreme snacking behavior, while common allelic variations in the CCK gene associated 

with an increased risk of eating increased meal sizes (47).

Recently, Chu et al. (39) conducted the first genome-wide association study (GWAS) on 

dietary intakes of macronutrients (carbohydrate, protein, and fat) in 33,533 men and women 

from three large cohorts: the NHS, Health Professionals Follow-up Study (HPFS), and 

Women Genome Health Study (WGHS). A common variant rs838133 in the FGF21 gene, 

which encodes fibroblast growth factor 21, was found to be related to protein intake at 

genome-wide significant level. FGF21 is a circulating hepatokine and adipokine involved in 

regulation of energy homeostasis (48). In another similarly-sized GWAS ( n = 38,360) (49), 

it was found that a variant in the same gene (rs838145) was associated with higher 

carbohydrate intake. The variants in this locus were associated with circulating FGF21 

protein concentrations. Interestingly, it was also found that variant rs142108 in the obesity-

associated FTO gene was associated with higher protein intake.

Gene – diet interaction and obesity

A principal assumption underlying the traditional nutrition research is that disease risk 

conferred by dietary intakes is uniform for each individual. Such assumption, however, 

appears not to be accurate. Large-scale nutrition surveys have shown that a shift from 

principally more nutritionally dense diet to more energy-dense diet is among the driving 

forces responsible for the rapid increase in obesity (2,50,51), while several lines of evidence 

suggest that inherent variation may also play a role in shaping the epidemic of obesity. For 

example, the prevalence of obesity in the United States had been rising since 1970s but 

leveled off around year 2000. Afterward, the prevalence kept at a relatively stable level with 

approximately 60% of the population remaining non-obese or lean, regardless of continuing 

exposure to the same obesogenic environment (51). Such temporal pattern indicates that 

considerable diversity exists within the population in response to the obesogenic 

environment, as well as the changes in other factors such as socio-economic status and 

ethnic compositions. In line with these observations, a wide range of interindividual 
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heterogeneity has been noted in responses to diet interventions in clinical trials, at least 

partly due to genetic variations (8,9,18,52 – 54).

In population studies, to detect gene – diet interactions seems intricate. Statistical models 

employed in testing interactions usually attempt to simplify complex biological phenomena. 

However, gene – diet interactions underlie the flexibility in affecting disease risk through 

miscellaneous ways, and may be not adequately captured by simplified statistical models 

(6,55,56). Statistical interaction is defined as departure from an additive effect of individual 

factors in a linear model on a chosen scale of the outcome measure (57). As compared with 

genetic discovery studies, analyses on gene – diet interactions are subject to much more 

potential bias, such as confounding and reverse causation. Therefore, prospective design and 

careful adjustment for confounding are essential in analyses of gene – diet interaction. In 

addition, large sample size and replication are also important to minimize false positive and 

false negative results. Moreover, the significance of data coming from different study 

designs may further help validation. For example, the most significant results from 

observational studies should be replicated in well controlled dietary intervention studies with 

an appropriate study designs, i.e. validated intervention and adequate follow-up.

In our recent analysis (7), we assessed interactions between habitual SSB intake and genetic 

obesity susceptibility, evaluated by a genetic risk score derived from 32 obesity-associated 

loci, in relation to BMI and obesity risk (Table I). We employed a two-stage design 

consisting of three prospective cohorts—the NHS and HPFS in the discovery stage, and the 

WGHS in the replication stage. We observed directionally consistent interaction between 

genetic susceptibility and SSB consumption in NHS and HPFS. In the combined samples of 

these cohorts, the increases in BMI (kg/m2) per 10 risk alleles were 1.00 for participants 

with SSB intake of < 1 serving/month, 1.03 for 1–4 servings/month, 1.39 for 2 – 6 servings/

week, and 1.77 for ≥ 1 servings/day ( P for interaction < 0.001). The findings were 

successfully replicated in the WGHS ( P for interaction = 0.001). As compared with the 

lowest intake group, the size of the genetic effect increased approximately 80%, and such 

difference is clinically relevant regarding risk of chronic diseases such as diabetes and 

cardiovascular disease (CVD). We also observed consistent gene – SSB interactions on 

obesity risk in all the three cohorts. Our study for the first time provides reproducible 

evidence for the interactions between genetic factors and dietary factors in relation to obesity 

risk. Several other studies have also examined the gene – diet interactions in obesity in 

multiple cohorts. For example, Corella et al. investigated whether fat and carbohydrate 

intake modified the association of FTO gene variation with BMI in two populations with 

different ethnicities, and found that the effects of saturated fatty acid intake significantly 

interacted with that of FTO genotype on BMI in both populations (58). However, most of the 

previous analyses on gene – diet interactions were conducted in a single cohort, and the 

results are highly inconsistent. In another study in the NHS and HPFS (59), we found that 

lifestyle factors closely related to energy expenditure, such as physical activity and 

television watching, also interacted with the genetic obesity risk score in relation to BMI, 

and stronger genetic effects were observed in those with low physical activity or more hours 

of television watching. Similar gene – physical activity interactions were also observed in 

other studies (Table I) (60). These data together emphasize the essentiality to consider 

genomic make-up in nutrition research. Of note, associations observed in the observational 
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studies cannot be translated into causality. Therefore, it is essential to validate further the 

findings in randomized clinical trials and functional experiments before application in 

practice.

Genetic modification on weight loss and maintenance by diet interventions

Evidence-based prevention and treatment rely mainly on evidence from randomized clinical 

trials, which are more relevant regarding future development of diet interventions to prevent 

obesity. We have investigated gene – diet interactions in the POUNDS LOST trial, a 2-year 

diet intervention study comparing four weight-loss diets varying in macronutrient contents 

among 811 overweight or obese adults (18). In one study, we found that a single-nucleotide 

polymorphism (SNP) rs2943641 near the insulin- and diabetes-related IRS1 gene 

significantly interacted with carbohydrate intake in relation to weight loss (P for interaction 

< 0.03) (61). The participants with the risk-conferring CC genotype had greater weight loss 

when carbohydrate intake was high. In another study, we found that a variant rs1558902 in 

the obesity-associated FTO gene interacted with dietary protein on 2-year changes in 

measures of body composition and abdominal fat distribution, including fat-free mass, total 

percentage of fat mass, and total, visceral, and superficial adipose tissue mass (9). A high-

protein diet appeared beneficial for weight loss and improvement of body composition and 

fat distribution in individuals carrying the risk allele A.

The Tübingen Lifestyle Intervention Program (TULIP) tested diet intervention with 

decreased intake of fat and increased intake of fibers ( > 15 g fiber per 1,000 kcal). Heni et 

al. recently found that the CC genotype of the diabetes-associated TCF7L2 SNP rs7903146 

was associated with greater weight loss in participants with high fiber intake, but not in 

those with low fiber intake (Table I) (62). In another 2-year diet intervention trial, it was 

found that genetic variants in the leptin gene ( LEP; SNPs rs4731426 and rs2071045) were 

significantly associated with weight regain after weight loss at 6 months. In addition, it was 

found that addition of the genotype significantly improved the predictive value of weight 

regain by 34% (Table I) (63).

Other omics – diet interactions and obesity

In addition to genomics, other global features of the human body may also affect response to 

nutrition factors and risk of obesity, evidenced by emerging data in ‘omics’ studies such as 

epigenomics and metabolomics. Literally, epigenomics means ‘on top of genetics’, and is 

defined as the heritable changes that affect gene expression through mechanisms not 

associated with concomitant alterations in the DNA sequence, such as DNA methylation, 

histone modifications, and micro-RNA (miRNA) (64,65). Prenatal nutrition is believed to 

play pivotal roles in shaping persistent changes of epigenome, which links early 

developmental and adult disease risk. Prenatal exposures to nutritional challenge during 

famine have been related to later-life risk of obesity, hypertension, and diabetes (66 – 68). 

Several recent studies (69,70) found that exposure to famine in utero might affect 

methylation status in certain genes. In a recent study, Ortega et al. (71) reported that obesity 

was related to a marked increase in miR-140-5p, miR-142-3p, and miR-222 and a decrease 

in miR-532-5p, miR-125b, miR-130b, miR-221, miR-15a, miR-423-5p, and miR-520c-3p. 
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In addition, it was found that surgery-induced weight loss led to changes in miRNA profile; 

however, diet-induced weight loss did not significantly change miRNA levels.

Metabolomics characterizes the metabolic profile (metabotype), through the simultaneous 

measurement of a broad range of low-molecular-weight compounds (72,73). In a recent 

study (74), Wang et al. profiled plasma metabolites using an LC-MS platform in the 

Framingham Offspring Study, and identified three branched-chain amino acids (BCAAs), 

leucine, isoleucine, and valine, and two aromatic amino acids (AAAs), phenylalanine and 

tyrosine, predicting diabetes risk. Interestingly, these amino acids have been found to change 

in response to diet interventions, and related to obesity in a group of studies (75,76).

Personalized nutrition and obesity

One of the main objectives of nutrition research is to study the roles of foods and nutrients in 

causes and prevention of disease to ensure the highest quality of health recommendations. 

Currently, a one-size-fits-all strategy is adopted in nutrition recommendation; and such an 

approach requires substantial simplification and a strong assumption that there is no 

interindividual variance. However, accumulating evidences from genomics and other omics 

studies have suggested such simplification and assumption are likely misleading. Recently, a 

concept of ‘personalized medicine’, in which patients are treated based on their individual 

characteristics, has been proposed (77). Personalized medicine is expected to benefit from 

combining genomics information with monitoring of physiological states by multiple high-

throughput omics methods. In line with this concept, ‘personalized nutrition’ specifically 

addresses nutrition-related health problems by connecting traditional nutrition research with 

various omics methods, with the hope to understand thoroughly the complex interactions 

between nutrition factors and various global features of the human body and help define 

nutrition recommendations that can be tailored to an individual with improved efficacy.

Currently, no study has investigated the relation between integrated omics profile and 

obesity in humans. However, recently emerging studies from multiple omics areas may help 

shape a picture of such systems efforts on personalized nutrition. A recent GWAS (78) found 

a SNP rs1440581 near the PPM1K gene (PP2C domain-containing protein phosphatase 1K) 

to be associated with serum BCAAs and AAAs, which have been related to obesity and 

diabetes risk (74,76). Interestingly, PPM1K was also identified as a susceptibility gene for 

type 2 diabetes by a systems genetic approach (79). We genotyped PPM1K SNP rs1440581 

in participants from the POUNDS LOST trial (80), and found that dietary fat significantly 

modified genetic effects on changes in body weight, fasting insulin, and insulin resistance 

i.e. HOMA-IR. Individuals carrying the C allele of PPM1K SNP rs1440581 may benefit less 

in weight loss and improvement of insulin sensitivity than those without this allele when 

undertaking an energy-restricted high-fat diet. In addition, in the POUNDS LOST trial, we 

have assessed genetic-determined heterogeneity in response to weight loss diet interventions 

on various obesity-related metabolic changes including lipids, blood pressure, and metabolic 

syndrome (Table I) (9,52,53,61). These studies lend support to the potential application of 

personalized diet planning in prevention and treatment of obesity and related disorders.

Qi Page 7

Ann Med. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Summary

Personalized nutrition has arisen from the marriage of traditional nutrition science with 

omics research, and simultaneously studies vast amounts of variations in genome, 

epigenome, metabolome, and their interactions with dietary factors at different tiers. In this 

instance, personalized nutrition aims to integrate multilevel information to characterize, 

comprehensively and precisely, the relation between nutrition and health disorders, such as 

obesity.

Personalized nutrition holds great promise to understand interindividual variation in 

responses to specific foods and nutrients, and such knowledge would be translated into 

public health benefit. There are examples reflecting some of the triumphs of the systems 

approach in deciphering the relation between nutrition and obesity. Yet many challenges 

exist, and the map of the nutrition – omics interface is far from complete. While whole 

population-based nutrition recommendations may continue to be effective in improvement of 

health, personalized intervention would be more efficient to reduce obesity-related disorders 

especially among high-risk populations determined by genetic makeup. Solid evidence 

should be achieved before the application of personalized diet intervention in practice.
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