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Abstract

Recordings of biological signals such as vibrocardiography often contain contaminating noise. 

Noise sources may include respiratory, gastrointestinal, and muscles movement, or environmental 

noise. Depending on individual physiology and sensor location, the vibrocardiographic (VCG) 

signals may be obscured by these noises in the time-frequency plane, which may interfere with 

automated characterization of VCG. In this study, polynomial chirplet transform (PCT) and 

smoothed pseudo Wigner-Ville distribution (SPWVD) were used to estimate the instantaneous 

frequency (IF) of two simulated VCG signals. One simulated signal contained a time-varying IF 

while the other had a fixed IF. The error in estimating IF was then calculated for signal-to-noise 

ratios (SNR) from −10 to 10 dB. Analysis was repeated 100 times at each level of noise using 

randomized sets of white noise. Error analysis showed that the range of errors in estimating IF was 

wider when SNR decreased. Results also showed that PCT tended to outperform SPWVD at high 

SNR. For example, PCT was more accurate at SNR > 3 dB for a simulated VCG signal with 

constant frequency components, at SNR>−10 dB for a simulated VCG signal with time-varying 

frequency, and at SNR > 0 for an actual VCG.
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Introduction

Vibrocardiographic signals (VCG) are the vibrations induced by cardiac activity and 

measured at the chest surface. While early attempts of measuring VCG were performed in 

the late 1800 [1], several later studies [2–10] investigated VCG characteristics and their 

correlation with cardiac events and pathology. Time-frequency analysis (TFA) has been used 
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to document temporal and spectral features of VCG [11,12] as well as other biomedical 

signals [13–19]. However, VCG signals are often contaminated with noise, which can be 

from physiological sources (e.g., respiration and muscle contraction), or external sources 

(e.g., building vibrations and instrument noise). Various methods have been utilized to 

remove noise from electrocardiographic and phonocardiography signals [20–24]. But, to the 

best of authors’ knowledge, there are no studies that focused on the analysis of VCG in the 

presence of noise. While a common objective of many signal analysis methods is to remove 

noise, addition of Gaussian noise assists data analysis in certain cases [25–30]. Noise 

removal is important as it may interfere with the operation of signal analysis methods. The 

current study aims at studying the effects of noise on the performance of two TFA methods 

that may be used for VCG analysis: polynomial chirplet transform (PCT) and smoothed 

pseudo Wigner-Ville distribution (SPWVD). A brief description of the calculated methods is 

given in the next section. Results are then presented and discussed, followed by conclusions 

in the last section.

Materials and Methods

This section describes the simulated signals used and the methods of VCG data acquisition. 

The TFA performance evaluation method is also described.

VCG signals and noise preparation

Two simulated VCGs were generated and added to background white noise with different 

SNR values. The general properties of the simulated signals are listed in Table 1.

Simulated VCG with constant frequencies: This signal consisted of two sinusoids with IF of 

20 and 40 Hz, which can be described by

(1)

where the signal amplitude varied according to,

(2)

Simulated VCG with varying frequency: This signal consisted of two sinusoids with 

constant and varying IFs, which can be described by

(3)

where y1 and y2 were defined as,
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(4)

(5)

where,

(6)

The signal amplitude also varied according to,

(7)

Data acquisition of VCG: After IRB approval, a light-weight (2gm) accelerometer (PCB 

piezotronics, Depew, NY) was placed at the left sternal border and the 4th intercostal space 

over the chest of healthy volunteers to measure the VCG signal. The signal was digitized at a 

rate of 3200 Hz and down-sampled to 320 Hz. Since respiratory noise have significant 

energy above 100 Hz [31], signals were filtered using a low-pass filter with a cut-off of 100 

Hz to remove that noise. Math lab (R2015b, The Math Works, Inc, Natick, MA) was used to 

both acquire and process all signals.

White noise: White noise with different levels of SNR ranging from −10 to 10 dB was 

generated and added to the simulated and actual VCG signals. The steps for generating the 

noise-added signals are shown in Figure 1.

TFA techniques

Time-frequency distribution of the signals was estimated using two different TFA 

techniques; PCT and SPWVD. The theoretical details of these methods can be found 

elsewhere [32,33].

Error analysis

The performance of each technique was assessed using the root-mean-square error (RMSE) 

between the signal actual and estimated IF values. The RMSE was calculated as:
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(8)

where IFact,i and IFest,i are the actual and estimated IF at time i, respectively. RMSE values 

were normalized as:

(9)

where  is the mean actual instantaneous frequency of each signal NRMSE was used in 

this study to measure the accuracy of TFA techniques in estimating IF, where lower NRMSE 

values would indicate higher accuracy.

For each SNR level, each signal was contaminated with 100 different white noise sets and 

analysis was performed for each case. Since the generated noise was different in each trial, 

analysis resulted in a range of errors (instead of one error value) at each SNR level. The 

results of the error analysis are presented in box-and-whisker plots in the Discussion section 

where the whisker ends represent the 1st and 99th percentiles. The error range was defined as 

the difference between these two percentiles. In addition, the Inter quartile range (IQR) was 

also calculated as the difference between the 75th and 25th percentiles.

Results

Figures 2 and 3 show the time series, time-frequency representation and power spectral 

density (PSD) of the noise-added simulated signals. The PSD was calculated from the time-

frequency representations, and normalized with respect to the signal energy. Since there is 

no significant energy seen above 70 Hz, the spectral information is only shown for 

frequencies up to this limit. The time-frequency representation and PSD of the actual VCG, 

which was polluted by white noise with different SNR values, were also estimated using the 

PCT and SPWVD, and shown in Figure 4. The figures show the data for only one noise set 

since the results for other noise sets were similar.

Discussion

Simulated VCG with constant frequencies

The first simulated VCG consisted of two constant frequency components. At each SNR, 

100 different white noise sets were added to the signal, and the performance of TFA 

techniques in estimating the signal IF was assessed. Figure 2 shows that for the noise-added 

simulated VCGs at SNR > 3 dB, the time-frequency representation and the power spectral 

density did not appear significantly different from the ones for the signal without noise. For 

−3 < SNR < 3 dB, some extra energy peaks were seen in the time-frequency plane in 

addition to the signal actual frequency components. However, the PSD plots still showed 

two dominant peaks (representing two dominant frequency components at 20 and 40 Hz). At 
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these SNRs, the signal frequency components appeared distorted. For example, at SNR = −3 

dB, the TFA demonstrated some varying frequency behavior rather than a pure tone, which 

may lead to a misleading interpretation of the results. At SNR = −6 dB, PCT correctly 

depicted the two dominant frequencies of the signal, while the SPWVD showed an extra 

third peak at 55 Hz. The time-frequency representations of the signal were completely 

contaminated with noise at SNR = −10 dB, which resulted in power spectrums with more 

than 2 frequency peaks.

Figures 5 and 6 show the NRMSE box-and-whisker plots for PCT and SPWVD, 

respectively. These plots suggested that PCT and SPWVD estimated the signal IF with 

higher NRMSE when the signal was polluted with noise. In general, the NRMSE medians 

and IQR increased as the SNR decreased for both PCT and SPWVD. The NRMSE median 

varied from 0.022 to 1.931 and from 0.032 to 0.979 for PCT and SPWVD, respectively, 

when SNR decreased from ∞ to −10 dB. At SNRs > 0 dB, PCT had lower NRMSE median 

and 75th percentile compared to SPWVD. At lower SNR values (e.g. SNR = −3 and −6 dB), 

SPWVD estimated the signal IF with lower NRMSE median value and IQR. Therefore, for 

the simulated VCG with constant frequencies, one can conclude that PCT is more 

appropriate for IF estimation at higher SNRs, while SPWVD outperforms the PCT at lower 

SNR values.

Simulated VCG with varying frequency

The second simulated VCG consisted of a constant and a varying frequency component. The 

TFA techniques were used to estimate the IF of the varying frequency component. At each 

SNR, the simulated signal was contaminated with 100 different white noise sets. Figure 3 

shows that the time-frequency representations of the contaminated simulated VCGs with 

SNR > 3 dB were very similar to that without noise. For SNR ≤ 0 dB, the signal frequency 

components started to become distorted and extra energy peaks emerged in the time-

frequency planes. These extra energy peaks were more clearly noticeable in the SPWVD 

than PCT. In addition, for SNR < −3 dB, a third power peak was shown up in the SPWVD 

PSD plot. Altogether, at lower SNR values, PCT provided time-frequency representations 

and PSD plots that are lesser affected by the presence of white noise than SPWVD.

The results of the IF error analysis of the simulated VCG with varying frequency were 

described as box-and-whisker plots in Figures 7 and 8. For SNR ≥ −6 dB, PCT had almost 

the same NRMSE median (~ 0.285) as that without noise, however, both NRMSE IQR and 

range increased as SNR decreased. At SNR = −10 dB, the NRMSE median drastically 

increased to ~ 0.668. SPWVD also estimated the IF with an almost unvaried median 

NRMSE value of 0.235 at SNR ≥ 0 dB, which was very close to NRMSE for the case 

without noise. But, for SNRs smaller than 0 dB, the IF estimation error of SPWVD rose to 

about 0.587. For both PCT and SPWVD, smaller SNR value leads to a higher NRMSE IQR. 

Altogether, SPWVD consistently had lower NRMSE median (~ 0.235 vs ~ 0.285) and 

higher NRMSE IQR and range for SNR ≥ −6 dB. Considering that a lower uncertainty in IF 

estimation may be desirable, one can conclude that PCT may be preferred over SPWVD for 

estimating IF of a noisy signal. In summary, the error analysis for the simulated signals 

suggests that:
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• For VCG signals with time-varying frequency components, PCT may provide 

more accurate estimation of IF in the presence of white noise.

• For VCG signals with time-independent frequency components, PCT may give 

more accurate IF estimations when SNR > 3 dB.

Actual VCG in noise

The actual VCG was also contaminated by white noise with different SNRs. Figure 4 shows 

the time series, time-frequency representations and PSD plots of the actual VCG at different 

SNR values. For higher SNR values (e.g. SNR ≥ 6 dB), the time-frequency representation 

and PSD of the signal were not significantly affected by the white noise presence. For SNR 

< 6 dB, the time-frequency representation started to become distorted. For instance, at SNR 

= −3 dB, the VCG1 higher frequency component started to disappear from the time-

frequency representation. At lower SNRs, more extra energy peaks were shown up in the 

time-frequency plane. For example, the PSD of the actual VCG without noise had 2 peaks, 

however, the PSD graph had more than 2 peaks for small SNRs (e.g. SNR = −6 dB).

Since the actual IF of the VCG signal was not known, it was not possible to perform a same 

exact error analysis that had been done for the simulated VCGs. Instead, the performance of 

TFA techniques in estimating the VCG IF was evaluated using the following measure:

(10)

Where IF∞,i and IFnoisy,i were the estimated IF of the VCG without noise and the noise-

added VCG at time i, respectively; and  was mean of the estimated IF of the signal 

without noise. The actual VCG was polluted by 100 different white Gaussian noise sets at 

each SNR value. Then, Eq. 10 was used to find the error in estimating IF. The error analysis 

results are presented in Figures 9 and 10. It can be seen that PCT estimated the signal IF 

with lower NRMSE median and IQR at SNR ≥ 0 dB. The median, IQR and range of 

NRMSE values are listed in Table 2 for the simulated and actual VCGs at signal-to-noise 

ratios from −10 to 10 dB.

Conclusion

The goal of this study was to compare the ability of the polynomial chirplet transform and 

smoothed pseudo Wigner-Ville distribution in providing accurate time-frequency estimates 

for VCG signals contaminated by white noise. The accuracy of the different methods in 

determining the IF was tested using two simulated VCG signals. The estimated and actual 

signal IF were compared. Results suggest that at high SNRs, PCT was more accurate than 

SPWVD in estimating the frequency components of a signal with time-independent IF. For a 

signal with varying frequency components, SPWVD resulted in a smaller median error but 

larger error range than PCT. Since lower error range (i.e. lower uncertainty) may be 

desirable, PCT may be chosen over SPWVD in estimating the IF of a VCG with time-
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varying frequency components. More studies may be warranted to document the time-

frequency characteristics of VCG signals in health and disease.
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Figure 1. 
Block diagram describing the steps for generating the VCG signals contaminated with noise.
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Figure 2. 
Simulated VCG with constant frequencies, x1, contaminated by white noise sets for −10 < 

SNR < 10 dB: (a) Time series. Time-frequency representation using (b) PCT, and (c) 

SPWVD, respectively.
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Figure 3. 
Simulated VCG with varying frequency, x2, contaminated by white noise sets for −10 < 

SNR < 10 dB: (a) Time series. Time-frequency representation using (b) PCT, and (c) 

SPWVD, respectively.
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Figure 4. 
Actual VCG contaminated by white noise sets for −10 < SNR < 10 dB: (a) Time series. 

Time-frequency representation using (b) PCT, and (c) SPWVD, respectively.
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Figure 5. 
NRMSE in estimating IF of the simulated VCG with constant frequencies (x1) using PCT 

for different SNR. In this box-and-Whisker plot, the whisker ends represent the 1st and 99th 

percentiles.
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Figure 6. 
NRMSE in estimating IF of the simulated VCG with constant frequencies (x1) using 

SPWVD for different SNR. In this box-and-Whisker plot, the whisker ends represent the 1st 

and 99th percentiles.
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Figure 7. 
NRMSE in estimating IF of the synthetic VCG with varying frequency (x2) using PCT for 

different SNR. In this box-and-Whisker plot, the whisker ends represent the 1st and 99th 

percentiles.
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Figure 8. 
NRMSE in estimating IF of the synthetic VCG with varying frequency (x2) using SPWVD 

for different SNR. In this box-and-Whisker plot, the whisker ends represent the 1st and 99th 

percentiles.
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Figure 9. 
NRMSE in estimating IF of the actual VCG using PCT for different SNR. In this box-and-

Whisker plot, the whisker ends represent the 1st and 99th percentiles.
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Figure 10. 
NRMSE in estimating IF of the actual VCG using SPWVD for different SNR. In this box-

and-Whisker plot, the whisker ends represent the 1st and 99th percentiles.
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Table 1

General properties of the simulated signals used in the current study.

Signal description Peak
to peak

amplitude

Signal length above
5% of peak to peak

amplitude (ms)

Frequency or
Frequency
range (Hz)

Simulated VCG with constant
freq., x1

2.8 112 20 and 40

Simulated VCG with varying
freq., x2

2.4 112 7 to 20, and 40
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