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Abstract

This paper presents a non-uniform object-space pixelation (NUOP) approach for image 

reconstruction using the penalized maximum likelihood methods. This method was developed for 

use with a single photon emission microscope (SPEM) system that offers an ultrahigh spatial 

resolution for a targeted local region inside mouse brain. In this approach, the object-space is 

divided with non-uniform pixel sizes, which are chosen adaptively based on object-dependent 

criteria. These include (a) some known characteristics of a target-region, (b) the associated Fisher 

Information that measures the weighted correlation between the responses of the system to gamma 

ray emissions occurred at different spatial locations, and (c) the linear distance from a given 

location to the target-region. In order to quantify the impact of this non-uniform pixelation 

approach on image quality, we used the Modified Uniform Cramer-Rao bound (MUCRB) to 

evaluate the local resolution-variance and bias-variance tradeoffs achievable with different 

pixelation strategies. As demonstrated in this paper, an efficient object-space pixelation could 

improve the speed of computation by 1–2 orders of magnitude, whilst maintaining an excellent 

reconstruction for the target-region. This improvement is crucial for making the SPEM system a 

practical imaging tool for mouse brain studies. The proposed method also allows rapid 

computation of the first and second order statistics of reconstructed images using analytical 

approximations, which is the key for the evaluation of several analytical system performance 

indices for system design and optimization.
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I. Introduction

SINGLE photon emission computed tomography (SPECT) is a widely used imaging 

modality for mapping the distribution of radiolabeled molecules [1]. One of the recent trends 

in SPECT instrumentations is to achieve an ultrahigh resolution for imaging small lab 
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animals. Several recent developments include the SemiSPECT reported by Kastis et al. [2], 

the SiliSPECT under development by Peterson et al.. [3], the MediSPECT proposed (and 

evaluated) by Accorsi et al.. [4] and the U-SPECT-III proposed by Beekman et al.. [5], a 

low-cost ultra-high resolution imager based on the second-generation image intensifier [6] 

and the use of a pre-existing SPECT camera, arranged in an extreme focusing geometry for 

ultra-high resolution small animal SPECT imaging applications [7]. We have recently 

developed a prototype single photon emission microscope (SPEM) system for mouse brain 

studies [8], [9]. This system was based on the intensified EMCCD cameras that offer an 

excellent intrinsic resolution for low energy gamma rays [10]. It was demonstrated that the 

current dual-headed SPEM system is capable of visualizing a very small number (< 1000) of 

radiolabeled T cells in mouse brain [11].

In the work presented in this paper, we have developed an adaptive and non-uniform object 

pixelation (NUOP) strategy for image reconstruction using SPEM data. For most of 

reconstruction problems, image functions are typically represented with equally sized square 

pixels or cubic voxels throughout the object space. Despite its simplicity, the uniform 

sampling provided by the square pixels could be less efficient for the SPEM application. 

First, to fully utilize its excellent resolution capability, the reconstruction of SPEM images 

requires the use of very small pixel sizes, say 50 μm or below. If such pixel sizes were used 

uniformly throughout the entire object-space, the reconstruction would involve a tremendous 

amount of computation. Despite the extensive effort in adapting the reconstruction task in 

parallel computing environment, a single SPEM reconstruction typically requires tens of 

hours to a few days to complete. Secondly, since the primary task of the SPEM system is to 

reveal the microscopic structure inside a target-region, one could tolerate lower spatial 

resolutions in areas outside the target-region. Therefore, larger pixels could be used outside 

the target-region for an improved computation efficiency. Thirdly, given the fixed amount of 

imaging information carried by projection data, reducing the overall number of unknowns 

may help to improve the condition of the inverse problem and (in certain cases) to reduce 

noise in reconstructed images of the target-region.

The development of the NUOP scheme carries a similar spirit as several previous or on-

going research efforts in the search for adaptive and sparse image representation schemes. 

These methods, in general, help to combat the ill-posed nature of reconstruction problems 

and to reduce the computational effort involved in medical image reconstruction. Several 

authors, such as Maltz et al. [12] and Zhang et al.. [13], have proposed and evaluated the use 

of nonuniform resolution grids in 3-D image reconstruction. Brankov et al.. have proposed 

the use of several content-adaptive mesh models that provide an efficient image 

representation based on adaptive sampling and linear interpolation [14], [15]. Similar to the 

previous approach, this method allows the density of sample points to vary according to the 

degrees of spatial details presented in different areas inside the object. Sitek et al.. have 

proposed the use of an adaptive tetrahedral mesh model defined by a point cloud [16]. In 

addition, the efforts by Reutter et al. of using spatial-segmentation and temporal B-spline 

basis functions for rapid kinetic parameter estimation from SPECT data could also fall into 

this category [17], [18].
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Unlike these previous approaches [12]–[18], the NUOP approach proposed in this paper 

does not require any a priori information of the object to be imaged. Instead, it is determined 

adaptively according to (a) the imaging information being acquired by the detection system, 

(b) the known system response function and (c) the user-defined target-region. This 

approach offers a significant reduction of computation-effort without sacrificing the imaging 

quality in the target-region. This makes it particularly useful for the SPEM application. In 

addition, this development also allows rapid evaluation of the first and second order statistics 

of reconstruction images using analytical approximations. This provides crucial information 

for the derivation of several statistical system performance indices that could be used in 

system design and optimization [19]–[26].

In this study, we proposed and evaluated several systematic approaches for choosing NUOP 

for given objects. In order to study the effect of NUOP on reconstruction, we used the 

modified Uniform Cramer-Rao Bound (MUCRB) [25], [26] to evaluate the tradeoffs 

between spatial resolution and variance achieved in reconstructed images. Results from a 

Monte Carlo (MC) study of the NUOP methods are also presented in this paper.

II. Material and Methods

A. The SPEM System and Potential Challenges

We have previously reported the design and development of a single photon emission 

microscope system [8]–[11]. This system is based on the I-EMCCD detector that offers an 

intrinsic resolution of around 50 μm and a large imaging area of around 80 mm in diameter. 

These detectors are used with highly focusing multiple-pinhole collimators for imaging local 

target-regions, which are identified in scout images acquired with a separate low-resolution 

system or with the same detection system but using a low-resolution and high-sensitivity 

aperture.

Despite the feasibility demonstrated in previous studies, there exist several aspects of the 

SPEM system that require further improvements. First, image reconstruction with SPEM 

data is very time-consuming. Even with appropriate exploitation of the sparseness associated 

with multiple pinhole geometry, the total number of non-zero elements in a system response 

function (SRF) could reach the order of 1014. With the use of an eight-PC cluster that we 

assembled for this application, a single reconstruction typically takes a few days to 

complete. An improved reconstruction speed is crucial for practical applications of the 

SPEM system. Secondly, since the SPEM system is optimized for microscopic imaging of T-

Rs, an ideal imaging scenario should consist of multiple iterations of studies using adaptive 

hardware, as proposed by Barrett et al. [27], and Freed et al. [28]. The information acquired 

through previous iterations could be used to refine the system configurations in real time. 

This adaptive imaging process would allow for an improved efficiency for collecting 

information regarding the target-region. A rapid and accurate image reconstruction process 

is crucial for implementing this adaptive imaging scheme.
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B. Image Reconstruction

Let x = [x1, x2, … , xN]T denote the set of unknown deterministic parameters, e.g., the object 

intensities underlying the projection data y = [y1, y2, … , yM]T, the mapping from x to y is 

governed by a conditional probability density function, p(y∣x). For emission tomography, y 
can be approximated as a collection of independent random Poisson variables, whose 

expectations are given by

(1)

or by the following discrete transform:

(2)

where A is a M × N matrix that represents the discretized system-response function (SRF). 

Here we assumed that all systematic errors are corrected in the projection data. For linear 

Poisson variables y, the log-likelihood function is given by

(3)

and

(4)

where aij, gives the probability of a gamma-ray emitted from the j′th source voxel and being 

detected by the i′th detector pixel. The underlying image function may be reconstructed as

(5)

where R(x) is a scalar function that selectively penalizes certain undesired features in 

reconstructed images. F is an N × N matrix that represents the post-filtering operator. In this 

study, we used a quadratic roughness penalty function as defined by [29]

(6)

where wjk’s are the weighting factors that are non-zero for the pairs of immediate 

neighbours, and
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(7)

We have previously developed a parallel computation scheme for reconstructions using (5), 

which is implemented on a cluster of eight PCs with 24 processors. Images reconstructed 

with this setup were reported in [11].

C. Non-Uniform Object-Space Pixelation

If the final goal of a SPEM study is to obtain focused microscopic images of a local target-

region (T-R), it is possible to speed up the reconstruction with a non-uniform object-space 

pixelation approach as detailed below:

Step 1: Full system modeling. In this process, the object is divided into sufficiently 

small and uniform pixels. For example, one could use pixel-sizes smaller than or 

equal to 1/2 of the expected system resolution. This step results in a large and 

comprehensive system response function (SRF #1).

Step 2: Define the pixelation density function (PDF). In the proposed NUOP 

approach, the pixelation density is represented by a vector D of N elements. Each 

element is an integer number ranging from 0 to (ND – 1) that indicates the pixelation 

density designated for a corresponding source pixel. ND is the maximum number of 

density levels chosen by the user. Several systematic approaches for defining PDFs 

will be discussed later in Section II-D. Here, we describe a simple algorithm for the 

actual rebinning process with a given PDF. For a given source pixel j, the 

corresponding D-value (Dj) equal to 0 indicates that the pixel does not need 

rebinning. Dj = 1 indicates that one would put 2 × 2 × 2 adjacent pixels into a larger 

pixel, Dj = 2 indicates binning 4 × 4 × 4 pixels together and so on. The rebinning 

process is started by looping through pixels having the maximum D-value (ND – 1 

according to the current definition). For a given pixel k, the nearby pixels to be 

combined are determined by a pre-defined look-up table. Within these pixels, only 

those with the same D-value and have not been grouped with any other pixel will be 

combined with pixel k and the rest pixels are ignored. Once the rebinning process for 

the current pixel (k) is completed, the algorithm goes on to find the next pixel with 

the same D-value and then combines it with its neighbors in the same way. After all 

pixels with the same D-value have been processed, the algorithm will then move on 

to those pixels with a smaller D-value and keep doing so until all pixels with D-

values greater than 0 have been processed. The pixel numbers after rebinning are 

given based on the order, by which they are formed in the rebinning process. In 

practice, the user has complete freedom in defining the rebinning parameters, such as 

ND and the subset of pixels to be combined with each target pixel, in response to the 

specific imaging task.

Step 3: Rebin the SRF. Given SRF #1 and a PDF (D), a new SRF is derived by 

binning the entries of SRF #1 accordingly. For pixels to be combined into a larger 

pixel, the corresponding SRF elements are extracted from SRF #1. This process is 
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equivalent to forward projecting from these pixels using SRF #1 and then combining 

the projections of individual pixels into a single projection. This gives the probability 

of a gamma ray emitted from the combined source pixel to be detected by each 

detector pixel in the system. For each target pixel, the subset of pixels to be combined 

are determined with the procedure described in Step 2. The SRF derived with this 

rebinning process is referred to as SRF #2, which is typically much smaller than SRF 

#1. Another operation in this step is to determine and record the neighboring pixels 

for each pixel-of-interest in the rebinned object-space. This information will be used 

later in reconstruction for defining the regularization (or penalty) function. This 

rebinning process, in effect, transforms the original mapping (2) into a new form

(8)

where matrix ARB denotes the rebinned SRF (SRF #2). Source function, xRB, 

represents the concentrations of radioactivity contained in each pixel in the rebinned 

object-space. In the following text, we will refer to the object spaces, before and after 

the rebinning, as S1 and S2.

Step 4: Reconstruction based on the original projection data y and SRF #2.

(9)

In this study, the penalty function RRB(xRB) is defined similarly as in (7) and (8) and 

all non-zero weighting factors, wij’s, were set to 1 for simplicity. Neighboring pixels 

were previously determined in Step 3.

Step 5: Restore the resultant image, , to produce an image representation in 

S1. Based on the PDF defined in Step 2, the value of a given pixel j in S2 is uniformly 

assigned back to those pixels in S1 that was originally combined according to the 

rebinning process described in Steps 2 and 3. Similar processes are repeated until all 

pixels in S2 are restored. The resultant image is referred to as  in the following text.

Step 6: Post-filtering  with desired filter functions.

D. Fisher Information Matrix and Non-Uniform Object-Space Pixelation

The key to this proposed pixelation scheme is to find meaningful PDFs. In order to reduce 

the amount of computation involved, one would use as less source pixels as possible. 

However, a discrete image representation with a sufficiently fine sampling is necessary to 

ensure that the subtle details in the target-region are retained in reconstruction. This is 

particularly important for SPEM studies. In this section, we propose an adaptive procedure 

for defining the spatially variant PDFs. This approach is based on the corresponding Fisher 

Information matrix (FIM) [19]. For the imaging problem as outlined in (1)–(5), the 

associated FIM is given as,
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(10)

When the measured projection is characterized by a set of independent Poisson variables, 

FIM is given by

(11)

In practice, the source vector x is generally unknown. One may replace x with an estimated 

source distribution  from a scout measurement and ignore the expectation operator in (11). 

This leads to the so-called observed Fisher Information matrix [30]

(12)

It is easily seen that each column of J measures the weighted correlation between the 

responses of the system to gamma ray emission at a given pixel of interest and at all other 

pixels in object-space. As previously demonstrated by Qi et al. [21], [22], for spatially-

invariant imaging systems, the reconstructed image property (such as impulse response 

function and local covariance structure) at or around a given pixel is affected mostly by 

those pixels that have relatively large (weighted) correlation with the pixel-of-interest. 

Therefore, one could use a finer pixelation for the target region and other correlated regions 

and use a coarser pixelation for regions less correlated to the target-region. This should not 

lead to significant degradation in reconstructed images of the target-region.

Based on this concept, the pixelation density function (PDF) could be chosen using the 

following procedures. First, one reconstructs the source distribution with a relatively coarse 

pixelation. For example, the pixel size could be chosen to be the smallest one that still 

provides an acceptably fast reconstruction. In practice, we found that representing a 3-D 

object with 32 × 32 × 32 pixels is usually adequate. The image obtained is used to identify a 

target-region and to provide a rough estimate of the underlying source function. For a given 

target-region ( ), the columns of J corresponding to the pixels inside the region are derived 

using (12) and then combined into a single vector

(13)

where ek is the k′th unit vector. Note that column vectors of J derived with (13) will be 

evaluated based on SRF #1.
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As previously discussed, vector Q reveals the “relative importance” of each source pixel for 

the reconstruction of the target-region. The corresponding PDF (D) is therefore defined as a 

function of Q,

(14)

where f(·) is a pre-defined function that converts Qj into the corresponding D-value that is an 

integer number ranging from 0 to (ND – 1).

In this study, we evaluated three different functions for defining D. In the first approach, Dj 

is defined as

(15)

where int[u] returns the maximum integer that is smaller or equal to u. Constant s in (15) 

controls the rate, by which Dj changes with Qj. In this work, we used an identical value s = 2 

for all studies. This procedure assigns the ranking of each source pixel according its 

correlations to pixels inside the target-region.

We have also evaluated a more aggressive way of reducing the number of pixels in object-

space, in which the PDF is defined as

(16)

where rj is the distance between the j′th pixel to the center of the target-region. The PDF 

given by (16) depends on both the FIM and how far a given location is from the center of the 

target-region. Factor t controls the degree of the distance-dependency. For comparison, the 

results obtained with (15) and (16) were evaluated against the results derived using the 

following simple PDF

(17)
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which depends only on the linear distance rj. The above definitions of PDFs are summarized 

in Table I.

E. Modified UCRB

The impact of the proposed NUOP scheme on image quality was evaluated based on the 

Modified Uniform Cramer-Rao bound (MUCRB) that we previously developed for 

comparing different imaging system designs [25], [26]. Using this method, one can derive 

and compare the local resolution-variance tradeoffs in reconstructed images achievable with 

different PDFs. The spatial resolution property of an estimator can be quantified using the 

linearized local-impulse response (LIR) function [29]. Suppose is an estimator of the 

underlying image function derived based on a given measurement y, the mean of the 

estimator is defined as

(18)

where E[·] denotes the expectation operator. The linearized LIR for the j′th pixel is given by 

[22]

(19)

The mean gradient vector corresponding to the j′th pixel is given by

(20)

It is easily seen that lj and gj defined in (19) and (20) are closely related. To use the MUCRB 

approach, we first define a class of estimators that produce similar resolution properties by 

satisfying the following constraint

(21)

where fj is the desired point-spread function (or the mean gradient vector) at the j′th voxel. 

γ is a threshold that governs the degree of similarity between fj and gj. C is a symmetric and 

positive definite weighting matrix defined by the user. ∥·∥ is the Euclidean norm of a vector, 

so that
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(22)

Since gj is closely related to the local impulse response function, all estimators that satisfy 

constraint (21) with a small γ should produce very similar spatial resolution properties, 

regardless the physical system configuration and the estimation method used. With this 

constraint in place, the minimum attainable image variance at the j′th pixel is given by the 

so-called MUCRB,

(23)

where λ is a scalar constant. The optimum mean-gradient vector that achieves this bound is 

given by

(24)

where J is the Fisher information matrix as defined in (11) and (12). Note that an efficient 

estimator that achieves the bound (23) is the post-filtered penalized maximum-likelihood 

(PF-PML) estimator, in which the post-filtering is performed using the desired point-spread 

function fj as the filter [25], [26]. Using (23) and (24), one can derive the optimum tradeoffs 

between resolution and variance by varying the width of the filter function fj.

To further evaluate the impact of different PDFs on image quality, we also compared the 

bias-variance tradeoff curves for region-of-interest (ROI) quantitation. The total activity 

uptake inside a ROI is given by

(25)

where w is an indicator vector defined as

(26)

For PF-PML estimators, the mean bias for ROI quantitation is given approximately by [26]

(27)
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where F is a shift-invariant filtering matrix with each of its rows a spatially shifted version 

of fj. With the same estimators, the variance associated with the activity in the ROI is given 

by

(28)

Again, by varying the width of the desired PSF (fj), one achieves different tradeoffs between 

the mean bias and the corresponding variance for ROI quantitation. Detailed derivation of 

the MUCRB methods and the computation approach for evaluating the MUCRB can be 

found in [25], [26]. In the following text, resolution-variance tradeoffs will be referred to as 

R-V tradeoffs and bias-variance tradeoffs will be referred to as B-V tradeoffs.

F. Monte Carlo Simulations

To evaluate the proposed NUOP approach, a series of Monte Carlo simulations were 

performed. The simulated SPECT system consists of six pixelated detectors of 4.4 cm × 4.4 

cm in size. The detectors are arranged in a stationary hexagonal ring. Each detector has 128 

× 128 square pixels of 350 μm × 350 μm. It is coupled to a collimation aperture with 25 (5 × 

5) pinholes of 200 μm diameter. The axes of all pinholes are perpendicular to the aperture 

surface. The pinhole-spacing was roughly 4.2 mm. All pinholes have sharp knife-edges and 

an acceptance angle of 45 degrees on both sides. The detector-to-aperture and aperture-to-

center distances are 2.2 cm and 2 cm. The object-space was divided into 128 × 128 × 128 

cubic voxels of 64 μm × 64 μm × 64 μm in size. This simulation study was carried out using 

a Monte Carlo package that we developed for the various SPECT applications [9], [11], [31], 

[32]. With this package, pinhole response is modeled with the analytical formula given in 

[33]. The depth-of-interaction effect in detectors is accounted for by treating the detector as 

multiple independent layers. In this study, both the photon attenuation in the object and the 

effect of Compton scattering were ignored.

Two simulated phantoms were used in this study. The first one (resolution phantom) has a 

spherical volume of 8 mm in diameter placed at the center of the ring-shaped SPECT 

system. It has a uniform background activity concentration of AB1. The central spherical 

volume of 3 mm diameter has a background activity concentration of AB2. This volume is 

divided into three sections, of 1.2 mm, 0.6 mm and 1.2 mm in height, along the x-axis (the 

axis of the ring-SPECT system). The top section contains seven hot rods of 250 μm 

diameter, superimposed on the continuous background (AB2). These hot rods are parallel to 

the x-axis and are separated by 500 μm between adjacent rods. The bottom section has a 

similar configuration, except that the hot rods are replaced by cold rods of 400 μm diameter, 

which are separated by 800 μm spacing. The middle section has the uniform background 

(AB2) only. The hot rods and cold-rods have activity concentrations of AHR and ACR 

respectively. The ratios of the activity concentrations within different regions in the 

simulated phantom are AB1 : AB2 : ACR = 1:6:60:0. The entire 8 mm diameter sphere 

contains a total activity of 250μCi.
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The second phantom (brain phantom) also has a spherical volume of 8 mm diameter. It 

consists of two hot spheres of 1 mm in diameter and two hot ellipsoidal volumes that have 

half-axes of 0.8 mm, 0.4 mm and 1.0 mm respectively. These features are superimposed on a 

uniform background and the feature-to-background ratio is 6:1. In addition, several small hot 

and cold spheres were inserted into the ellipsoidal volumes. The relative tracer 

concentrations in these small spheres are 12:1 or 1:1 in respect to the continuous 

background. The phantom contains a total activity of 100 μCi. The cross-sections of the 

phantom will be shown later along with reconstructed images.

III. Results

A. Image Reconstruction With Non-Uniform Object-Space Pixelation

In this study, we used the resolution phantom and defined the central spherical region of 4 

mm in diameter as the target-region. Five different PDFs, derived using (15)–(17), were 

implemented and compared. Since FIM plays an important role in determining image 

property, we first compared the FIMs resultant from the use of these PDFs. For each FIM, 

we computed a single column (J · ej) corresponding to the central pixel. As previously 

discussed, each element of this vector represents the weighted correlation between the 

system responses to gamma ray emissions in the given pixel and in other pixels inside the 

object-space. The elements of J · ej were then rearranged into 3-D format with the same 

order as for positioning corresponding source pixels in spatial domain. This procedure 

produces a 3-D “image” of the column vector, J · ej, which is referred to as a FIM image.

In Fig. 1, we compared 1-D cross-sections of several FIM images derived using different 

PDFs. Since the resultant FIMs have different overall dimensions, this comparison was 

limited to the FIM elements that are corresponding to those source pixels inside the 

spherical target-region only. The rebinning processes resulted in virtually unchanged FIM 

values for these pixels. The comparison between the cross-sections along different directions 

also highlighted the effect of the non-isotropic sampling due to the specific system 

geometry. Despite this similarity, the rebinning process reduces the overall number of 

unknowns in reconstruction and helps to improve the condition of the inverse problem. 

Given the same amount of imaging information carried in projection data, this process could 

offer an improved image quality, as for the examples shown later in Figs. 6 and 7.

Several PDFs derived using (15)–(17) are shown in Fig. 2. Images reconstructed with the 

NUOP approach and noise-free projection data are also shown in Fig. 2. All images were 

reconstructed with 500 iterations to ensure convergence. The use of different PDFs produced 

virtually identical images. A similar comparison using noisy projection data is shown in Fig. 

3, in which the different pixilation strategies resulted in comparable reconstructions. Note 

that due to the regularization used in the PF-PML reconstruction, the resultant images had 

appreciable overshot around the sharp features.

We further evaluated the NUOP scheme with the brain phantom and randomly generated 

noisy projections. A rapid reconstruction, with the object divided into 32 × 32 × 32 pixels, 

was performed to provide an overview of the object. Based on the resultant image, we 

defined two different target-regions (T-Rs) around the elliptical feature on the right-hand 
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side (as shown in Fig. 4). Both T-Rs are elliptical and had the same orientations as the 

corresponding elliptical source features themselves. Their half-axes were 1.2 mm, 0.8 mm, 

1.5 mm (1.5, 2 and 1.5 times the corresponding half-axes of the elliptical source feature) for 

the first one and 1.6 mm, 1.6 mm and 1.5 mm for the second one. Several PDFs derived for 

this series of studies are shown in Fig. 4 and the reconstructed images are shown in Fig. 5.

B. MUCRB Studies

To further evaluate the impact of the NUOP process on image quality, we derived the 

optimum resolution-variance (R-V) and bias-variance (B-V) tradeoffs achievable with the 

use of different pixelation strategies. This study was based on the use of the resolution 

phantom detailed in Section II-F. In order to derive the bias-variance curves, a ROI was 

defined as a spherical volume, of roughly 1 mm diameter, located at the center of the object. 

It contains an activity concentration two times that of the surrounding region. The R-V and 

B-V tradeoffs attainable with different pixelation schemes are compared in Fig. 6. In this 

comparison, the NUOP approach not only offered a much faster reconstruction (see Table 

II), but also produced lower variances at similar resolutions. As detailed in Section II-F, the 

simulated SPECT system uses detectors with 350 μm pixels and pinholes of 200 μm in 

diameter. We expect that the practical spatial resolution of the system is 200 μm −350 μm 

FWHM. Within this region, the NUOP schemes also offered a clear advantage over the 

uniform pixleation schemes (with identical pixel size for the target-region) in terms of B-V 

tradeoffs. In this study, we derived several B–V and R–V curves using different pixel sizes 

(such as 64 μm, 128 μm and 256 μm) inside the target-region.

For implementing the NUOP approach, it is natural to question about “how large a target-

region should be for a given local feature?” In this study, this question is briefly explored 

with a few examples as shown below. We used the resolution phantom and assumed that the 

ROI is a small local region at the center. The size of a spherical target-region (T-R) was 

varied from 1.6 mm, 2.4 mm, 4 mm, to 8 mm in diameter (covering the entire object). To 

make the results more representative, we used two different PDFs in this comparison. Since 

the definition of PDF enforces the highest pixelation density within the T-R, its dimension 

would have a significant influence on image reconstruction. This was confirmed by the 

results shown in Fig. 7. For the spherical object of 8 mm in diameter, a target-region of 4 

mm diameter appeared to be the favorable choice for optimized R-V tradeoffs. Smaller (1.6 

mm and 2.4 mm diameter) T-Rs produced greater variances at similar resolutions. The use of 

differently sized target-regions did not have appreciable effect on B-V tradeoffs, and all 

results with NUOP are significantly better than those achieved with uniform object-

pixelation.

The sizes of SRFs for all the imaging scenarios studied are summarized in Table II, along 

with the corresponding reconstruction times. It is demonstrated that the use of the NUOP 

offers a greatly improved computation speed, whilst providing an excellent reconstruction 

for the T-R. Note that the computation times (for NUOP case) are corresponding to 

reconstructions with a single CPU only. With the rapid advances in parallel computing, 

images of the T-R could be updated in real time during an imaging study. This feature helps 
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to maximize the efficiency for collecting imaging information on given features, which is 

crucial for SPEM studies.

Based on the results presented in this section, several observations and discussions are given 

below:

• If the target-region and the desired pixel-size (for the region) are fixed, the use of 

NUOP could offer a much-reduced computation-effort. Furthermore, with the 

same amount of imaging information carried in projection data, the use of NUOP 

reduces the overall number of unknowns in the inverse (reconstruction) problem. 

This could lead to a lowered imaging noise in reconstructions. The degree of the 

noise reduction with NUOP is task- or application-specific, which deserves some 

future studies.

• As demonstrated in Fig. 6, the use of pixel sizes smaller than the “common” 

choice (½ of the desired system resolution) could provide improved resolution-

variance tradeoffs. A pixel size of 64 μm (around 1/4 of the system resolution of 

200–300 μm) appears to be an appropriate choice for the specific example.

• The pixel size that delivers the best R-V curves is not necessarily optimal for 

ROI quantitation or other imaging tasks. To derive the tracer uptake in a ROI of 4 

mm diameter, the use of 256 μm pixel size (32 × 32 × 32 pixels) produced the 

lowest variance at the same bias. Clearly, the choice of pixel size should depend 

on the specific imaging task. Although the study of the “optimum” pixel size is 

beyond the scope of this paper, the NUOP formulation developed in this work 

provides a computationally efficient approach for future explorations on this 

topic.

• All three NUOP strategies led to similar resolution-variance and bias-variance 

tradeoffs. This result can be explained by a closer examination of the 

corresponding FIMs. Given a target pixel, the corresponding FIM column reveals 

the weighted correlations between the system responses to the target pixel and to 

other pixels in object space. For the SPECT systems simulated, their geometries 

are so designed that most of source pixels strongly correlated to the target pixel 

are physically located close to the target. Therefore, both FIM- and distance-

based criteria allow most of these “important” pixels to be retained without 

rebinning. This leads to the similarity in selected FIM elements shown in Fig. 1 

and also the comparable R-V and B-V performances shown in Figs. 6 and 7. The 

key advantage of the FIM-based approach over the distance-based one is that the 

former can be adapted to any object geometry with target-regions of any shape 

and size, whilst the latter does not offer the same degree of flexibility.

• In the comparison between the bias-variance (B–V) curves for the uniform and 

non-uniform pixelation cases (both having the same pixel-size of 64 μm for the 

target-region), the uniform pixelation scheme provided lower variances at 

relatively small biases (for example, when the absolute value of the relative bias 

is < 0.2 in Figs. 6 and 7). However, within this operating region, the resultant 

imaging resolutions are close to the physically permitable limit for the given 
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system design. Therefore the corresponding reconstructions suffer from 

excessive noise amplification as indicated in the resolution-variance (R-V) 

curves shown in Figs. 6 and 7. For the simulated SPECT systems that are based 

on detectors with 350 μm pixels and pinholes of 200 μm diameter, we would 

expect the system resolution to be above 200 μm. If one considers only the data 

points that are associated with “practical” spatial resolutions (> 200 μm), the use 

of NUOP schemes offered superior B-V tradeoffs.

IV. Conclusions and Discussions

We proposed and evaluated a non-uniform object-space pixelation (NUOP) method for 

image reconstructions using SPEM data. Several approaches for defining the pixelation-

density function were discussed and evaluated using Monte Carlo simulations. The impact of 

using the NUOP method was also studied based on the optimum resolution-variance and 

bias-variance tradeoffs achievable with different pixelation strategies. If the imaging task is 

to achieve an excellent reconstruction of a local target-region, the use of NUOP provides a 

greatly improved reconstruction speed. When combined with efficient parallel computers 

equipped having adequate memory space, practical SPEM images could be reconstructed 

within several minutes, rather than a few days as in our current practice.

This development also benefits the SPEM work in a different way. We are currently 

developing a four-head SPEM system that offers a variable system configuration. Depending 

on the specific imaging tasks, apertures with different pinhole configurations may be 

interchanged during an imaging study. In this system, the object is supported by a precise 

translation table that allows different sub-regions in the object to be brought into the focal 

region. These variable hardware components offer a large number of degrees of freedom that 

could be fine-tuned to offer an optimum imaging performance. In practice, since the object 

is generally unknown, choosing the optimum configuration in advance could be problematic 

even for experienced users. Instead, an imaging study could be started by using a “generic” 

aperture that offers a modest resolution and a wide angular coverage. Imaging information 

collected with this aperture can be used to refine the imaging task and help to optimize the 

system configuration in the real time based on several statistical approaches that predict the 

performance of the system for the specific imaging task. To ensure a meaningful decision on 

the “optimum” system configuration, many performance measures developed so far require 

the mean and covariance of reconstructed images. The evaluation of these quantities 

typically involves the inversion of Fisher Information matrix (FIM). With the regular 

uniform object pixelation scheme, this procedure is normally too computation-intensive to 

use in the adaptive imaging method. The non-uniform and adaptive pixelation schemes 

developed in this paper allow for rapid evaluations of the mean and covariance of 

reconstructed images, which could be an important step towards a fully adaptive SPEM 

system.
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Fig. 1. 
Cross-sections of several FIM images derived with different PDFs. Note that these FIMs 

were evaluated using the system-response functions after rebinning. The profiles shown are 

corresponding to the source pixels inside a 4 mm diameter target-region. The NUOP process 

has virtually no effect on the values of the FIM elements compared. x-axis is the axis of the 

SPECt system as defined in Section II-F.
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Fig. 2. 
Comparing reconstructed images with different object-space pixelation schemes and noise-

free projection data. The pixelation-density functions used are indicated in the top row and 

the parameters used for each PDF are indicated. U-P: Uniform-pixelation. The 2-D slices 

shown are perpendicular to the common axis and 1 mm from the center. The reconstructions 

were performed with 500 iterations a β was set to 0 for all cases.
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Fig. 3. 
Comparing reconstructed images with different object-space pixelation schemes and noisy 

projection data. The entire phantom contains 250 μCi activity. All images were reconstructed 

using PML algorithm with 500 iterations. The penalization factor β was 10−14 for all 

reconstructions.
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Fig. 4. 
PDFs derived for differently sized target-regions.
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Fig. 5. 
Reconstructed images of the brain phantom with different PDFs as shown in Fig. 4 and with 

uniform pixelation (U-P).

Meng and Li Page 22

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Comparison between resolution-variance (R-V) and bias-variance (B–V) curves achieved 

with different PDFs. The target-region was defined as the central spherical volume of 4 mm 

diameter. The pixel of interest, for which the R–V curves were evaluated, is located at the 

center of the object. Parameters used in PDFs are shown in the figure. Several R–V and B–V 
curves achieved with uniform-pixelation (U-P) with 323 × 256 μm pixels, 643 × 128 μm 

pixels and 1283 × 64 μm pixels are also compared.
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Fig. 7. 
Comparison between resolution-variance and bias-variance curves achieved with differently 

sized target-region. The simulated brain phantom was used in this study.
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TABLE I

Summary of the Pixelation Density Functions Compared

PDF Formulations Note

D 1 D1 ∣ j = int logs
max Q j, j = 1, …, N

Q j
, when j ∉ ℜ

0, otherwise

• PDF depends on the weighted 
correlation between the 
responses of the system to 
gamma ray emissions in the 
target-region and in other 
regions.

• Defined based on FIM.

D 2 D2 ∣ j = int logs
max Q j ⋅ 1 r j

t , j = 1, …, N

Qij ⋅ 1 r j
t , when j ∉ ℜ

0, otherwise

• PDF depends on both FIM and 
how far a pixel is from the center 
of a target-region.

• More aggressive in reducing the 
number of pixels in object space.

D 3 D3 ∣ j = int logs
max 1 r j

t , j = 1, …, N

1 r j
t , when j ∉ ℜ

0, otherwise

• PDF depends on the linear 
distance r only.

• Emphasize the importance of the 
target-region only, without 
considering the correlation with 
other regions in the object-space.
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TABLE II

The Sizes of SRFs and Reconstruction Times With Different Pixelation Schemes

Pixelation Schemes No. of source
pixels

Size of SRF
(MB)

Recon. time1
(100 iteration)

Resolution Phantom
Studies

U-P, 1283 pixels, 2097152 3950 632 mins

T-R: Ø4mm

D1 228961 509 26 mins

D2, t=0.5 132333 283 13 mins

D2, t=1.0 130297 274 14 mins

D3, t=0.5 142072 322 15 mins

D3, t=1.0 130304 275 15 mins

T-R: Ø2.4mm
D1 46681 117 6 mins

D2, t=0.5 30525 74.8 4 mins

T-R: Ø1.6mm
D1 15589 48.5 3 mins

D2, t=0.5 10853 35 2 mins

Brain Phantom
Studies

T-R, half-axes:
1.6mm, 0.8mm and 1.5mm

D1 85846 202 13 mins

D2, t=1.0 46488 98.9 5 mins

T-R, half-axes:
1.6mm, 1.6mm and 1.5mm

D1 194985 435 24 mins

D2, t=1.0 123073 253 13 mins

Uniform pixelation, 323 pixels 32768 63.3 4 mins

1
The reconstruction times with NUOP are corresponding to the use of a single CPU only. The reconstruction with uniform pixelation was 

performed in parallel on a single PC equipped with 4 CPUs.
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