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Abstract

Early childhood experiences have lasting effects on development, including the risk for psychiatric 

disorders. Research examining the biologic underpinnings of these associations has revealed the 

impact of childhood maltreatment on the physiologic stress response and activity of the 

hypothalamic pituitary adrenal (HPA) axis. A growing body of literature supports the hypothesis 

that environmental exposures mediate their biological effects via epigenetic mechanisms. 

Methylation, which is thought to be the most stable form of epigenetic change, is a likely 

mechanism by which early life exposures has lasting effects. In this review, we present recent 

evidence related to epigenetic regulation of genes involved in HPA axis regulation, namely the 

glucocorticoid receptor gene (NR3C1) and FK506 binding protein 51 (FKBP5), after childhood 

adversity and associations with risk for psychiatric disorders. Implications for the development of 

interventions and future research are discussed.

Introduction

Childhood adversity lays a fragile foundation for health across the lifespan. Adverse 

childhood experiences including child maltreatment, trauma, and exposure to other 

contextual stressors associated with poverty are major risk factors for the development of 

psychiatric disorders as well as other medical conditions in children and adults (Benjet, 

Borges & Medina-Mora, 2010; Cohen, Janicki-Deverts & Miller, 2007; Felitti et al., 1998; 

Green et al., 2010; Slopen, Koenen & Kubzansky, 2014). Indeed, one study found that adults 

with numerous adverse childhood experiences died nearly 20 years earlier than others 

(Brown et al., 2009). The mechanisms underlying the links between childhood adversity and 

poor health outcomes are not fully understood. It is clear that childhood adversity can alter 

the physiologic stress response and it has been posited that changes to the stress response 
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system may underlie the connection between early adversity and psychiatric and other health 

consequences (McEwen, 2013; Ridout, Carpenter & Tyrka, 2016; Ridout et al., 2015). There 

is growing appreciation that epigenetic modifications to genes that regulate the stress 

response are a likely mechanism by which the early environment has long-lasting impact on 

stress biology. In this selective review, we describe the role of glucocorticoid signaling and 

epigenetic modifications in the biological response to environmental exposures and review 

emerging findings from our laboratory and others that suggest this mechanism underlying 

risk for psychiatric and other health problems.

Alterations of HPA Axis Function and Glucocorticoid Signaling with 

Childhood Adversity

Research examining the biologic underpinnings of the associations between childhood 

maltreatment and psychopathology highlights the importance of the physiologic stress 

response system, and in particular, the hypothalamic pituitary adrenal (HPA) axis. In 

response to stressful stimuli, glucocorticoids are released and exert cellular responses by 

binding at the intracellular glucocorticoid receptor (GR). Glucocorticoid receptors are 

distributed throughout the body and brain where they regulate basal physiologic function 

and effect changes in various organ systems and tissues that promote adaptive responding to 

acute stressors (de Kloet, Joels & Holsboer, 2005; Kadmiel & Cidlowski, 2013). Activation 

of the GR through cortisol binding at the hypothalamus and pituitary engages a negative 

feedback loop that inhibits further release of cortisol and prevents damaging effects of 

extreme or chronic activation (Herman et al., 2012; Laryea et al., 2015).

Excessive stimulation by severe or prolonged stress may result in adaptive changes that alter 

function of the HPA axis (Doom, Cicchetti & Rogosch, 2014; Fries et al., 2005; Heim, 

Ehlert & Hellhammer, 2000; McEwen, 2007; Pryce et al., 2005; Tyrka et al., 2008). 

Frequent or excessive activation of the HPA axis in response to stress exposure can progress 

to a counter-regulatory state of chronic adrenal stress hyporeactivity (Fries et al., 2005; 

Heim et al., 2000; McEwen, 2007; Pryce et al., 2005). The timing of adversity exposure 

during development may impact HPA axis programming (Bosch et al., 2012), and chronic 

stress exposure may have the most profound effects, as repeated attempts at maintaining 

homeostasis alters set points and response characteristics of stress-responsive physiologic 

systems (Lee & Sawa, 2014; McEwen, Nasca & Gray, 2016).

Several studies from our group and others have revealed that early adversity is linked to 

abnormalities in HPA axis function in both children and adults (Gonzalez, 2013; Gunnar & 

Vazquez, 2001; McCrory, De Brito & Viding, 2010). Early work in our laboratory with a 

sample of 50 healthy adults demonstrated that those with a history of moderate-to-severe 

childhood maltreatment (n = 23) exhibited blunted cortisol reactivity to a standardized 

psychosocial stress paradigm (the Trier Social Stress Test, TSST) compared to adults with 

no maltreatment history (Carpenter et al., 2007). That these adults did not have any active 

psychiatric conditions, including Major Depressive Disorder (MDD) or Post Traumatic 

Stress Disorder (PTSD), suggests that early adversity poses a significant independent risk 

factor for altered HPA functioning even among individuals who are otherwise healthy. 
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Several studies have replicated these findings (Carpenter et al., 2011; Carpenter et al., 2009; 

Elzinga et al., 2008; Klaassens et al., 2010; Klaassens et al., 2009; Tyrka et al., 2008). In 

another study of 230 adults, our group demonstrated that a history of childhood emotional 

abuse was also associated with a blunted cortisol response to a pharmacological challenge 

(Carpenter et al., 2009). Similar to earlier work in our laboratory, none of the adult 

participants currently met criteria for mood or anxiety disorders including MDD and PTSD, 

and these links were observed even when controlling for sub-threshold symptoms of 

psychopathology and past psychiatric conditions. Furthermore, the association of emotional 

maltreatment and cortisol reactivity was stronger among older adults in the sample 

suggesting that the effects of early adversity contribute to “wear and tear” on this system 

across the lifespan. Exaggerated cortisol responses have also sometimes been seen in 

association with early stress. In a study of 88 healthy adults, we demonstrated that the nature 

of childhood experiences moderated the cortisol response to pharmacologic challenge (Tyrka 

et al., 2008). Childhood parental death or desertion (N=44) was linked with an exaggerated 

cortisol response to the dexamethasone corticotropin-releasing hormone (Dex/CRH) test, a 

pharmacological challenge designed to assess HPA function. This response was moderated 

by the type of loss and the level of parental care. Those who experienced parental desertion 

coupled with low parental care demonstrated a blunted cortisol response, supporting the 

hypothesis that severe or chronic forms of stress may be more likely to lead to cortisol 

hyporeactivity. Taken together, this work from our laboratory underscores the persistent 

effects of childhood maltreatment on neuroendocrine function into adulthood, and highlights 

the importance of adversity characteristics as determinants of the pattern of HPA axis 

dysfunction.

The long-lasting effects of early adversity on HPA axis function have also been observed in 

numerous studies of children (Gonzalez, 2013; van Andel et al., 2014; Doom & Gunnar, 

2013). Similar to work with adults, several studies have shown blunted diurnal cortisol 

concentrations with adversity, but others have shown no difference or elevated cortisol 

levels. A number of studies have examined the determinants of diurnal cortisol patterns in 

children who experience significant adversity such as maltreatment. A study of 187 

maltreated and 154 nonmaltreated 5–13 year-old children found that overall cortisol levels 

across 20 weeks did not differ between maltreated and nonmaltreated children, but the 

maltreated group showed elevated within-person variation in cortisol values, and those with 

higher initial cortisol levels had cortisol suppression over time (Doom et al., 2014). These 

findings are consistent with the hypothesis that glucocorticoid downregulation may occur 

over time in response to elevations in cortisol levels. In addition, maltreatment severity, 

timing, and the number of maltreatment subtypes predicted cortisol variability. Both 

maltreatment and greater cortisol variability were associated with more behavior problems 

(Doom et al., 2014). Attenuation of HPA function has been reported in children referred for 

child protective services; importantly, blunted cortisol was linked to more externalizing 

behaviors and mediated the relationship between child protective service involvement and 

externalizing symptoms (Bernard, Zwerling & Dozier, 2015), and an attachment based 

intervention normalized wake-up and diurnal cortisol levels in this study (Bernard, 2015). 

The role of HPA axis dysfunction in the pathogenesis of psychopathology and the response 

to interventions is discussed further below.
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Role of the HPA axis and Glucocorticoid Signaling in Risk for 

Psychopathology

Several lines of evidence support the hypothesis that excessive exposure to stress-induced 

glucocorticoid activity may be involved in the pathogenesis of stress-related psychiatric 

disorders, including depressive and anxiety disorders. In rodent models, prolonged stress or 

glucocorticoid exposure produces anxiety- and depressive-like behaviors (Maccari et al., 

2014; Skupio et al., 2015; van Donkelaar et al., 2014). In children and adolescents, altered 

cortisol responses are associated with internalizing behaviors, externalizing behaviors, 

suicidal ideation, and post-traumatic stress disorder (PTSD), and depression (Braquehais et 

al., 2012; Doom & Gunnar, 2013; Faravelli et al., 2012; Guerry & Hastings, 2011; Ruttle et 

al., 2011). In a racially-mixed community sample of 102 boys aged 8–11, we found that 

afternoon basal cortisol concentrations were positively associated with internalizing 

behavior problems, social problems, and emotionality. In addition, greater declines across a 

home-visit challenge task were significantly associated with internalizing behavior, as well 

as social, attention, and thought problems (Tyrka et al., 2010). In a two-year follow-up 

assessment of 78 of the boys, greater cortisol declines across the home visit task were 

predictive of internalizing and externalizing behaviors, as well as attention and social 

problems. Moreover, morning and afternoon cortisol concentrations at the initial assessment 

significantly predicted the later development of child depressive symptoms (Tyrka et al., 

2012a).

As discussed above, adversity and trauma can be associated with both exaggerated and 

attenuated profiles of neuroendocrine function (Doom & Gunnar, 2013; Miller, Chen & 

Zhou, 2007; Morris, Compas & Garber, 2012). A meta-analysis of 6,000 trauma-exposed 

participants with and without PTSD (Morris et al., 2012) showed that relative to non-

exposed participants, those with PTSD as well as those with both PTSD and MDD had 

lower morning cortisol, lower daily output of cortisol, and lower cortisol response to 

dexamethasone. Trauma-exposed participants (including those with childhood neglect and 

abuse) without PTSD or MDD also showed blunted post-dexamethasone cortisol and 

afternoon/evening cortisol (Morris et al., 2012). The only group to show elevated cortisol 

had comorbid PTSD/MDD, and only evening cortisol was elevated. Interestingly, this was 

also the only group to also show an effect of developmental timing: after controlling for the 

time elapsed since the focal trauma, exposure during adulthood was associated with large 

negative effects on morning cortisol and post-dexamethasone cortisol, whereas exposure in 

childhood had negligible effects in this group. However, it is important to note that overall, 

in both PTSD groups, time elapsed since exposure to the focal trauma was significantly 

associated with lower daily and post-dexamethasone cortisol levels, and with lower 

afternoon/evening cortisol at trend level. Other work has identified additional characteristics 

that influence patterns of adrenocortical dysregulation, including the nature of the trauma 

and other contextual factors, timing of the exposure, comorbid psychiatric and other 

conditions, and genetic background (De Bellis & Zisk, 2014; Doom & Gunnar, 2013; 

Struber, Struber & Roth, 2014).
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Given the critical negative feedback role of the GR, alterations of the number and sensitivity 

of the GR may explain abnormalities of HPA function associated with adversity and 

psychopathology. Depressed patients who have non-suppression to the dexamethasone-

suppression test have impaired leukocyte GR responses to GR agonists (Gormley et al., 

1985; Lowy et al., 1988). Patients with PTSD, who often have blunted cortisol responses to 

stress, show “super-suppression” to dexamethasone and associated negative feedback 

sensitivity of lymphocyte GRs (Rohleder et al., 2004; Yehuda, 2001; Yehuda et al., 2010b; 

Yehuda et al., 2002; Yehuda et al., 2004; Yehuda et al., 2003). High premorbid GR 

expression is a risk factor for PTSD (van Zuiden et al., 2011). Taken together, these findings 

indicate that abnormalities in leukocyte GR number and function may be risk factors for the 

development of stress-related psychiatric disorders, and may reflect effects due to early-life 

stress exposure (Anacker et al., 2011).

The GR is distributed throughout limbic brain regions and numerous other organ systems, so 

that excessive glucocorticoid activation at these receptors, or changes to the sensitivity of 

this system may underlie psychiatric and other stress-related conditions. Findings from 

animal models and human neuroimaging studies indicate that the hippocampus and 

amygdala are highly vulnerable to the effects of early-life stress and trauma (Lupien et al., 

2009; Rifkin-Graboi et al., 2015; Tottenham & Sheridan, 2009). The hippocampus, 

amygdala, and prefrontal cortex have a high density of GRs, and animal models show that 

exposure to stress or glucocorticoids, along with effects on other stress mediators, alters 

neural structure in these regions (McEwen et al., 2016). Chronic stress and glucocorticoids 

impair neuronal growth and survival in these brain regions; this may explain neuroimaging 

findings of reduced brain region volumes in association with early stress (McEwen et al., 

2015). In the hippocampus, chronic stress and glucocorticoid treatment inhibit neurogenesis, 

cell proliferation and dendritic branching, and induce cell loss and atrophy (Duman, 2009; 

McEwen et al., 2016; van der Kooij et al., 2015). In contrast, in the amygdala, which 

mediates fear responses, chronic stress may induce a proliferative effect on neuronal 

dendritic branching and spine density (Vyas, Jadhav & Chattarji, 2006). These changes in 

dendritic length are accompanied by elevations in glucocorticoids (Lakshminarasimhan & 

Chattarji, 2012) and administration of glucocorticoids can elicit similar dendritic 

lengthening while increasing anxiety behaviors (Mitra & Sapolsky, 2008). Interestingly, 

administration of low to moderate doses of glucocorticoids at the time of acute or chronic 

stress exposure prevents dendritic changes in the amygdala and the development of anxiety 

(Rao et al., 2012; Zohar et al., 2011), suggesting that glucocorticoids may impart protection 

under conditions of moderate stress but risk with more extreme exposures. Recent evidence 

shows that glucocorticoid signaling in the prefrontal cortex modifies fear conditioning and 

responses in animal models (Reis et al., 2015; Wislowska-Stanek et al., 2013). Similar to the 

hippocampus, chronic stress also causes structural remodeling of the prefrontal cortex that is 

reversible after the termination of stress; this is not as readily reversible in aged animals 

(Bloss et al., 2010). Thus, animal models show that stress and glucocorticoid exposure have 

the potential to cause structural changes to the brain circuitry critical to affective and 

behavioral adaptation, and thus likely underlie associations between early adversity and risk 

for psychopathology.
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Epigenetic Mechanisms of Risk

Epigenetic changes to DNA are a mechanism by which the environment can impact gene 

activity and expression (Hernando-Herraez et al., 2015). Methylation, thought to be the most 

stable form of epigenetic change, is a likely mechanism by which stress exposure has long-

lived effects. In mammals, methylation mainly occurs at CpG dinucleotides, which are sites 

in the DNA where a cytosine nucleotide occurs next to a guanine nucleotide. Regions of 

densely clustered CpGs, known as CpG islands (CGIs), occur where gene transcription is 

initiated (Deaton & Bird, 2011). Methylation at CGIs can lead to alterations in chromatin 

architecture and inhibit transcription factor binding to gene promoter regions, resulting in 

reduced gene expression. Consistent with this, genes such as the glucocorticoid receptor 

gene (NR3C1) that are highly expressed typically have low levels of promoter methylation 

(Brenet et al., 2011; Moore, Le & Fan, 2013). Low levels of methylation typically 

characterize regions of the genome that are open to transcriptional regulation by 

methylation, such as CGIs (Deaton & Bird, 2011; Liyanage et al., 2014). In contrast, high 

methylation is often seen at CpG sites outside of CGIs and may have roles in genome 

regulation outside of genetic transcription (Hernando-Herraez et al., 2015).

Epigenetic Processes Related to HPA Functioning

In response to stressful stimuli, the HPA axis is triggered and cortisol is released from the 

adrenal cortex. Cortisol exerts cellular responses by binding at the intracellular 

glucocorticoid receptor (GR) (Kadmiel & Cidlowski, 2013). GRs are distributed throughout 

the body and brain where they regulate basal physiologic function and effect changes that 

promote adaptive responses to acute stressors (de Kloet et al., 2005; Kadmiel & Cidlowski, 

2013). Cortisol binding to the GR in the cytosol induces translocation of the GR into the 

nucleus (Figure 1), where it can activate and repress expression of a wide range of genes 

(Galon et al., 2002), thereby regulating systems necessary to cope with stressors. 

Interestingly, glucocorticoids induce the expression of different genes depending on the 

stress history of the organism (McEwen et al., 2015). In addition to impacting gene 

expression, cortisol binding at GRs affects cellular signaling pathways and mitochondrial 

function (McEwen, 2015).

As discussed above, activation of the GR through cortisol binding at the hypothalamus and 

pituitary also triggers a negative feedback mechanism that inhibits further cortisol release, 

preventing the damaging effects of chronic HPA axis activation (Herman et al., 2012; Laryea 

et al., 2015). Changes in GR number and function in the brain and in peripheral cells such as 

leukocytes have been shown with PTSD, MDD, and early stress exposure (Barden, 2004; 

Klengel et al., 2013; Provencal et al., 2012; van Zuiden et al., 2011; Yehuda et al., 2015b; 

Yehuda et al., 2010a; Yehuda & Seckl, 2011). GR-mediated negative feedback is critical to 

regulate the activity of the HPA axis. Alterations in GR number or function in the cell can 

influence the activity of this system and biological adaptation to stressful and traumatic 

experiences. Below, we describe how epigenetic modifications to two HPA regulatory genes, 

NR3C1 and FKBP5, affect GR transcription and activity, and may alter responses to stress 

and impart risk for psychopathology.
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Childhood Adversity and Methylation of NR3C1

The human GR is encoded by the NR3C1 gene, which is located on chromosome 5q31-32, 

contains 8 translated exons (numbered 2 through 9) and 9 untranslated alternative first exons 

(Daskalakis & Yehuda, 2014). Methylation of CGIs in the GR alternative first exons controls 

tissue-specific expression of the GR (Turner et al., 2008) and have a role in the translational 

control of the GR, influencing total GR levels, as well as trafficking to the cell surface 

(Turner et al., 2014). There is now substantial evidence that methylation of NR3C1 is 

responsive to environmental exposures in both the prenatal period and during early 

childhood. Animal models have been highly informative for understanding mechanisms 

underlying links between environmental exposures, NR3C1 methylation, and subsequent 

gene expression. In rodents, low levels of maternal care (low frequency of licking and 

grooming behaviors and arched-back nursing) have been linked to greater methylation of the 

rodent GR gene nr3c1 in the hippocampus and cerebellum (Kosten & Nielsen, 2014; Weaver 

et al., 2004), specifically of the region homologous to the human alternative exon 1F. 

Methylation of nr3c1 in turn contributes to reduced nr3c1 gene expression. When 

methylation occurs at the binding site for the transcription factor nerve growth factor 

inducible protein A (NGFI-A), it interferes with gene transcription; methylation at other 

CpG sites may interfere with transcription through other mechanisms (Armstrong et al., 

2014; Turner et al., 2010). Methylation of this region of nr3c1, and associated reductions in 

GR number and GR-mediated negative feedback, has been linked to increased 

glucocorticoid secretion and behavioral distress (see Zhang et al., 2013 for a review). This 

groundbreaking mechanistic work, coupled with evidence that both pre- and post-natal 

stressors contribute to methylation of nr3c1 in rodents (Kundakovic et al., 2013; Lillycrop et 

al., 2007; Szyf, 2013; Witzmann et al., 2012), complements research in humans reviewed 

below.

In humans, there is now compelling evidence that NR3C1 methylation is responsive to stress 

in both the pre- and post-natal periods. The majority of this work has focused on promoter 

methylation at exon 1F. Prenatal exposure to adverse conditions including maternal 

depression and anxiety, intimate partner violence, and war-related stressors (such as rape and 

refugee status) has been linked to increased methylation of NR3C1 at exon 1F in several 

studies (Braithwaite et al., 2015; Conradt et al., 2013; Hompes et al., 2013; Kertes et al., 

2016; Mulligan et al., 2012; Oberlander et al., 2008; Radtke et al., 2011). Links with 

prenatal exposures have been demonstrated in DNA from a variety of cell types and tissues 

including umbilical cord blood (Hompes et al., 2013; Kertes et al., 2016; Mulligan et al., 

2012; Oberlander et al., 2008), placenta (Conradt et al., 2013; Kertes et al., 2016), buccal 

cells in infancy (Braithwaite et al., 2015), and whole blood in adolescents (Radtke et al., 

2011).

Work from our laboratory and others has also demonstrated that stress exposure in childhood 

is linked with methylation of NR3C1. In a sample of 99 healthy adults with no history of 

psychiatric disorders, our group found that early adversity including childhood 

maltreatment, parental loss, and low levels of parental care was associated with increased 

methylation of NR3C1 at exon 1F (Tyrka et al., 2012b). That these links were observed in 

adults with no history of psychopathology is consistent with work in our laboratory linking 
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early adversity to cortisol production in healthy adults as described above (Carpenter et al., 

2007; Carpenter et al., 2009), and suggests that early adversity exerts a lasting effect on the 

biological stress response system that is independent of effects of stress-related disorders or 

medications.

More recently, this work has been applied in children. In a study of 184 impoverished 

maltreated and non-maltreated preschool-aged children, we found that exposure to early 

adversity was linked with increased methylation of saliva DNA NR3C1 at exon 1F among 

preschoolers (Tyrka et al., 2015). Both past month and lifetime contextual stress assessed 

during an interview in the home, as well as a composite measure of adversity exposure, were 

positively associated with mean methylation across the region. These links were also 

observed at several individual CpG sites in this region, including CpG sites that are known 

to exert a functional effect on the HPA axis given their role as a transcription factor binding 

site. These findings are consistent with a recent study of older children between 11 and 14 

years of age demonstrating that physical maltreatment was associated with increased 

methylation of NR3C1 at exon 1F in whole blood (Romens et al., 2015). Associations of 

childhood adversity and increased methylation of NR3C1 in blood at exon 1F have also been 

recently observed in a population-based sample of adolescents (van der Knaap et al., 2014). 

Collectively, this emerging work demonstrates compelling evidence that methylation of 

NR3C1 at exon 1F, is sensitive to childhood stress exposure.

A few studies have also examined methylation of alternate first exons of NR3C1 in relation 

to stress exposure. In our study of preschoolers with early adversity described above, we 

demonstrated that maltreated children had greater methylation at exon 1D in saliva DNA 

than preschoolers with no maltreatment history (Tyrka et al., 2015). This effect was 

consistent with the links observed between early adversity and methylation at exon 1F 

described above. Methylation at exon 1D assessed in cord blood is also sensitive to maternal 

pregnancy related anxiety symptoms, and is associated with maternal diurnal cortisol levels 

in the first trimester (Hompes et al., 2013). Exons 1B, 1C, and 1H have also been 

demonstrated to be sensitive to child maltreatment in postmortem hippocampal tissue of 

adult suicide victims (Labonte et al., 2012). Taken together, these studies suggest that 

although most prior work has focused on methylation of NR3C1 at exon 1F, alternate first 

exons in the promoter of NR3C1 also respond to stress exposure. Important questions 

remain regarding the functional role of each of these alternate first exons in the stress 

response in various tissues, and precisely how this relates to risk for psychiatric disorders.

Emerging work supports the hypothesis that methylation of NR3C1 may be a mechanism of 

risk for psychopathology or maladaptive behavioral outcomes among children and adults 

(For a review, see Palma-Gudiel et al., 2015). For example, elevations of NR3C1 
methylation in DNA from whole blood have been observed in adults with borderline 

personality disorder (Dammann et al., 2011), and adults with both bulimia and borderline 

personality disorder demonstrate greater NR3C1 methylation at exon 1C, and lower 

methylation at exon 1H (Steiger et al., 2013). Among adults with borderline personality 

disorder, methylation of NR3C1 in blood is positively associated with clinical severity 

(Martin-Blanco et al., 2014). In contrast, lower methylation of NR3C1 in blood has also 
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been observed in adults with MDD, PTSD, and externalizing disorders (Heinrich et al., 

2015; Labonte et al., 2014; Na et al., 2014; Yehuda et al., 2015b).

These links to behavioral outcomes have also been seen in childhood and adolescence. In 

newborns, NR3C1 methylation is associated with decreased quality of movement and self-

regulation, increased arousal and excitability, and increased non-optimal reflexes and stress 

abstinence scores (Paquette et al., 2015). In our own work with preschoolers we recently 

demonstrated that methylation of NR3C1 in saliva DNA is associated with the development 

of internalizing behavior problems, and methylation of NR3C1 mediates links between early 

adversity and internalizing behavior problems (Parade et al., 2016). Likewise, NR3C1 
methylation is positively associated with internalizing problems in adolescence (van der 

Knaap et al., 2015) and both internalizing problems and morning cortisol levels in childhood 

and adolescence (Dadds et al., 2015). This work is complemented by animal models 

demonstrating that methylation of NR3C1 is linked with increased anxiety-like behaviors in 

rodents (Kosten, Huang & Nielsen, 2014; Lutz & Turecki, 2014; Pan et al., 2014). Taken 

together, this emerging body of literature supports the hypothesis that methylation of NR3C1 
is linked with the development of behavioral difficulties in childhood. Furthermore, this 

work suggests that NR3C1 methylation is potential mechanism underlying the development 

of psychopathology among children and adults exposed to early adversity.

Childhood Adversity and Methylation of FKBP5

In addition to NR3C1, an important regulator of the GR is the FK506 binding protein 51 

(FKBP5), which mediates an additional negative feedback loop on glucocorticoids. GR 

activation results in rapid induction of FKBP5, which binds to the GR and decreases its 

ability to bind cortisol and to translocate to the nucleus (Figure 1). Thus, FKBP5 decreases 

systemic sensitivity to cortisol and may also impair GR-mediated negative feedback 

modulation of the HPA axis (Binder, 2009; Cioffi, Hubler & Scammell, 2011; Schmidt et al., 

2015; Tatro et al., 2009), and methylation of the FKBP5 gene, with associated reductions in 

transcription, might limit these effects. Genetic variation in FKBP5 confers altered GR 

function and a poorly regulated neuroendocrine response to stress (Zannas & Binder, 2014). 

A single nucleotide polymorphism (SNP) in FKBP5 (C to T SNP in intron 2, rs1360780) 

enhances the ability of the GR to bind to the glucocorticoid response elements and induce 

FKBP5 expression (Zannas & Binder, 2014). This “risk” T allele is associated with GR 

resistance (Hohne et al., 2015; Ising et al., 2008; Menke et al., 2013) and has been linked 

with PTSD, depressive and anxiety symptoms and disorders, and suicide (Leszczynska-

Rodziewicz et al., 2014; Suzuki et al., 2014; Szczepankiewicz et al., 2014; VanZomeren-

Dohm et al., 2015; Zannas & Binder, 2014).

Recent work by Klengel and colleagues (Klengel et al., 2013) examined the rs1360780 SNP 

and methylation of FKBP5 in relation to childhood maltreatment. Compared to adults with 

no childhood abuse, those with a history of childhood maltreatmend had lower levels of 

methylation in the regulatory regions of intron 7 of FKBP5 in those with the rs1360780 risk 

allele, and this was associated with decreased GR sensitivity. Moreover, treatment of human 

hippocampal progenitor cells with glucocorticoids induced long-lasting demethylation of 

this regulatory region and increased FKBP5 gene expression, suggesting that prolonged 
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cortisol exposure may be a mechanism by which this region is demethylated (Klengel et al., 

2013). In our study of preschoolers with early adversity, we also found that child 

maltreatment was associated with lower levels of FKBP5 intron 7 methylation in saliva 

DNA, however rs1360780 was not a significant moderator of this association (Tyrka et al., 

2015). These findings of FKBP5 demethyation in association with childhood maltreatment 

are in contrast to recent work suggesting that low childhood socioeconomic status is 

associated with increased FKBP5 methylation (Needham et al., 2015). It is possible that low 

socioeconomic status in the absence of other adversities activates the HPA system to initially 

increase methylation but does not contribute to demethylation over time. A recent study 

found methylation of FKBP5 was correlated in Holocaust survivors and their offspring; 

survivors also showed greater methylation of FKBP5 in comparison with participants who 

were not Holocaust survivors, whereas the children of these survivors exhibited low levels of 

methylation (Yehuda et al., 2015a). This study suggested the possibility of intergenerational 

effects of trauma exposure. Weder and colleagues (Weder et al., 2014) found links between 

child maltreatment and methylation of a different region of FKBP5 in saliva DNA among 

children 5–14 years of age using a 450K methylation array. Although more work is needed 

to understand the conditions under which adversity is linked with hyper- or hypo-

methylation of FKBP5 and which regions and variants of this gene are critically involved, 

this emerging literature suggests that stress-induced changes in methylation of FKBP5 may 

play a key role in long-term alterations of glucocorticoid activity.

Methylation of FKBP5 at intron 7 has also been linked to behavioral outcomes. Among 

neonates, placental methylation of FKBP5 at intron 7 was associated with higher levels of 

arousal during a physical examination (Paquette et al., 2014). Patients with bipolar disorder, 

particularly those with a late stage of illness, had increased post-dexamethasone cortisol 

levels compared to those without bipolar disorder, as well as higher levels of the FKBP5 

protein and higher levels of FKBP5 methylation (Fries et al., 2015). These studies suggest 

the possibility that methylation of FKBP5 could be a mechanism underlying links between 

adversity and behavioral health outcomes. However, more work is needed to replicate these 

findings and clarify patterns of methylation and demethylation in relation to stress 

exposures, glucocorticoid activation, and risk for various forms of psychopathology.

Summary: Childhood Adversity and Methylation of Glucocorticoid Signaling Genes

Taken together, this emerging literature indicates that childhood adversity is associated with 

altered methylation patterns in regulatory regions of both NR3C1 and FKBP5. Activity of 

these genes plays a vital role in the regulation and function of the HPA axis, and could 

account for some of the findings of adversity-related abnormalities in basal and provoked 

cortisol levels and risk for psychopathology. Regulation of these systems is complex and 

adaptive, and more work is needed to understand the conditions under which methylation is 

promoted or inhibited. It is also critical to recognize that epigenetic modulation of other 

genes involved in glucocorticoid signaling and other pathways are likely involved in these 

processes (e.g., (Weder et al., 2014).
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Relevance of Epigenetics for Inventions to Address Childhood Adversity

Recent calls have been made to integrate biological measures of program efficacy into 

evaluations of preventative interventions for children at risk (Bruce et al., 2013; Cicchetti & 

Gunnar, 2008; Moffitt & Klaus-Grawe 2012 Think Tank, 2013). Several studies have shown 

normalizing effects of psychosocial interventions on diurnal or provoked cortisol levels in 

children exposed to significant adversity (e.g., Cicchetti et al., 2011; Dozier et al., 2008; 

Fisher et al., 2007; Fisher, Van Ryzin & Gunnar, 2011; Laurent et al., 2014; Nelson & 

Spieker, 2013; Slopen, McLaughlin & Shonkoff, 2014; van Andel et al., 2014). Altered 

methylation of glucocorticoid signaling genes including NR3C1 and FKBP5 may underlie 

adversity-induced HPA axis dysfunction and interventions might stably alter these 

methylation patterns. Given the complexity in the genetic regulation of HPA axis function, 

different methylation patterns may explain inconsistencies in the literature on cortisol, early 

stress, and psychiatric illness. Consideration of alterations in gene methylation would 

complement examination of behavioral and endocrine outcomes in intervention trials. 

Furthermore, understanding whether effective behavioral interventions reverse effects of 

adversity on gene methylation will inform the basic science of biological pathways 

contributing to risk and resilience.

Although methylation is thought to be the most stable form of epigenetic modification, there 

is evidence that gene methylation may be plastic during childhood and into adulthood. 

Therapeutic interventions may alter methylation patterns and could reduce the biologic risk 

engendered by early life adversity (Szyf, 2015). There is preliminary evidence that 

methylation of genes involved in the stress response system might serve as biomarkers of 

treatment response for psychiatric disorders. In children, FKBP5 DNA methylation was 

significantly associated with treatment response to a cognitive behavioral therapy-based 

intervention for anxiety disorders (Roberts et al., 2015). Specifically, children with a smaller 

reduction in symptoms showed an increase in DNA methylation while children with a larger 

symptom reduction showed a decrease in DNA methylation. When corrected for multiple 

testing, the association between DNA methylation and treatment response remained 

significant in participants with the “risk” T FKPB5 genotype. Likewise, in a pilot study, pre-

treatment methylation of the NR3C1 exon 1F promoter predicted treatment response to 

prolonged exposure therapy for PTSD in combat veterans; in addition, FKBP5 promoter 

methylation decreased and FKBP5 expression increased in association with recovery 

(Yehuda et al., 2013). Future studies are warranted to understand how methylation changes 

in response to psychosocial interventions, and if methylation is potential marker for the 

efficacy of intervention.

Several drugs can alter methylation patterns across the lifespan. Trichostatin A is a 

compound that inhibits enzymes involved in epigenetic processes that decrease gene 

expression. In rats, treatment with trichostatin A reversed the decreased gene expression that 

was imparted by neglect in early life; this reversal was associated with decreased behavioral 

phenotypes of depression and anxiety (Weaver, Meaney & Szyf, 2006). Conversely, 

treatment with methionine, a compound that is known to increase gene methylation, 

suppressed gene expression in rats with high levels of early life maternal care and was 

associated with increased depressive and anxious behaviors (Weaver et al., 2006). A number 
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of medications commonly used in psychiatry, including clozapine, sulpiride, and valproic 

acid, have been shown to actively promote demethylation in cell culture (Detich, Bovenzi & 

Szyf, 2003a; Milutinovic et al., 2007) and in mouse brain (Dong et al., 2010; Dong et al., 

2008). Antidepressants have been associated with changes in DNA methylation (Menke & 

Binder, 2014). The DNA methylation inhibitors zebularine and 5-aza-2-deoxycytidine 

reverse DNA methylation and block synaptic long-term potentiation in mouse hippocampal 

slices (Levenson et al., 2006) as well as fear memory formation (Miller & Sweatt, 2007). 

Another potential therapeutic approach is to modify the intracellular environment such that it 

promotes demethylation. The methyl donor, S-adenosine methionine (SAM) inhibits 

demethylase activity (Detich et al., 2003b). Levels of SAM are controlled in part by dietary 

intake of folic acid and vitamin B12 (Bottiglieri, 2013). Both the presence of Ca2+ as well as 

the redox state of the cell can influence demethylase activity (Szyf, 2015). Finally, exercise 

modulates changes in DNA methylation associated with stress exposure (Kashimoto et al., 

2016; Rodrigues et al., 2015), suggesting that physical activity interventions may have a role 

in modifying the effects of early adversity on gene methylation. Together, these findings 

suggest that interventions or treatments that interfere with or reverse DNA methylation could 

potentially modify the risk for psychopathology imparted by early life adversity.

Directions for Future Research

Despite accumulating knowledge of the role of epigenetics and glucocorticoid signaling in 

the biological response to environmental risk and protection, many questions remain 

regarding the biological processes underlying these links. First, a basic understanding of 

how methylation of glucocorticoid signaling genes longitudinally changes over time has yet 

to be achieved, with little understanding of the role of risk and protective factors that impact 

these developmental trajectories. Understanding how methylation patterns change across 

developmental stages, and whether there are sensitive periods of development for changes in 

methylation as a consequence of environmental exposures, is a critical next step. Knowledge 

of how quickly methylation occurs in response to adversity and which genes and gene 

networks have the largest effects is lacking. Elucidation of these influences and determinants 

would serve to identify the most critical developmental periods for intervention, as well as 

the length of time and intensity of services needed to reverse effects of adversity on 

methylation. Thus, many questions remain to be answered before knowledge of the basic 

science of epigenetic processes can be translated into the most effective clinical 

interventions for children exposed to adversity.

In addition to the longitudinal examination of change in methylation over time, examining 

links between methylation and environmental exposures from a transactional perspective is 

an important next step. It is well established that development is best characterized by 

transactional relationships between the child and their environment, such that the 

environment exerts influence on the child and the child in turn exerts influence on the 

environment over time (Cicchetti & Lynch, 1993; Combs-Ronto et al., 2009). Although 

historically focused on child behavior such as temperament, emerging work considering 

transactive effects suggests that child biological stress responding has the potential to exert 

influence on the environment, in this case parental behavior, through transactional 

relationships as well (e.g.(Perry et al., 2014). Examining the longitudinal course of 
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methylation through a transactional lens would allow us to understand how the environment 

influences methylation and methylation in turn potentially exerts influence on the 

environment. As an example, compromised parental behavior may contribute to methylation 

of glucocorticoid signaling genes in the child, resulting in child behavior problems that 

evoke parental stress and further undermine sensitive parenting. Parenting stress related to 

child behavior problems might contribute to change in gene methylation patterns among 

parents as well.

Future work should also aim to understand the role of epigenetics in resilience processes. It 

is possible that alterations in methylation associated with adversity have the potential to be 

adaptive. For example, in male Rwandan genocide survivors, increased NR3C1 promoter 

DNA methylation was associated with reduced risk for PTSD, and less intrusive memories 

of trauma (Vukojevic et al., 2014). This work in conjunction with emerging literature 

suggesting that MDD, PTSD, and externalizing disorders can be linked with reduced NR3C1 
methylation (Heinrich et al., 2015; Labonte et al., 2014; Na et al., 2014; Yehuda et al., 

2015b) suggests that increases in NR3C1 methylation are not always markers of risk. Future 

work should also begin to examine potential moderators of the links between early adversity 

and methylation, and methylation and behavioral outcomes. For example, parental 

sensitivity and responsiveness may buffer children from effects of early adversity on 

methylation, and may promote adaptive behavioral outcomes even when adversity alters 

methylation (Conradt et al., 2016).

Finally, the consideration of epigenetic processes in response to environmental exposures 

has typically either focused on environment in the prenatal period or environment following 

birth with few studies concurrently examining both prenatal and postnatal factors to 

contribute to methylation of glucocorticoid signaling genes. Consideration of environmental 

risk from the pre-conception period through the postnatal period and childhood is critical for 

understanding potential sensitive periods during which adversity is biologically encoded, as 

well as to uncover the most opportune times to intervene with children and families at risk.

Conclusion

Accumulating knowledge supports the perspective that childhood adversity undermines 

children’s health across the lifespan. As reviewed above, methylation of glucocorticoid 

signaling genes including NR3C1 and FKBP5 are increasingly recognized as potential 

mechanisms by which childhood adversity is biologically encoded. Although exponential 

progress has been made over the past decade to understand these epigenetic processes, 

critical gaps in knowledge remain in our understanding of methylation across typical 

development and in the face of early adversity. Advancing understanding of these processes 

will inform prevention and intervention efforts aimed at enhancing the lives of the most 

vulnerable children and families.
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Figure 1. FKBP5 and glucocorticoid signaling
Note. Cortisol circulating through the blood stream enters the intracellular space and binds 

to the glucocorticoid receptor (GR) to exert its effects on gene expression. Methylation of 

the GR gene NR3C1 reduces GR gene expression so there are fewer GRs available to bind to 

cortisol. FK506 binding protein 51 (FKBP5) decreases sensitivity of the GR to cortisol. GR 

activation by cortisol binding results in rapid induction of FKBP5 gene expression, and 

FKBP5 then binds to the GR and decreases its ability to bind cortisol and to translocate to 

the nucleus. Thus, FKBP5 exerts a negative feedback loop on cortisol activity. Methylation 

interferes with gene expression and demethylation at intron 7 of FKBP5 is associated with 

increased FKBP5 gene expression and decreased GR sensitivity. Childhood maltreatment 

and chronic glucocorticoid administration have been linked with demethylation of FKBP5 
intron 7.
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