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Abstract

The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic 

phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 

and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-

positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are 

glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST 

were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence 

and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers 

within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. 

Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same 

axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA 

expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-

positive varicosities, providing new evidence that ascending axonal projections from the cNST are 

primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. 

Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon 

terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the 

hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express 

VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in 

synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and 

terminals in the hypothalamus and other brain regions.
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Introduction

Vesicular glutamate transporter (VGLUT) is a key membrane component for glutamatergic 

cellular signaling (Moriyama and Yamamoto 2004; Fremeau et al. 2001). VGLUT is 

responsible for the vesicular uptake of glutamate, which is essential for exocytosis (Liguz-

Lecznar and Skangiel-Kramska 2007). VGLUT belongs to the SLC17/type I phosphate 

transporter family, and comprises three isoforms, i.e., VGLUT1, VGLUT2, and VGLUT3 

(Reimer and Edwards 2004; Liguz-Lecznar and Skangiel-Kramska 2007; Johnson et al. 

2004; Varoqui et al. 2002; Schafer et al. 2002). VGLUT expression formally identifies 

neurons that are primarily glutamatergic, and also suffices to assign a glutamatergic 

phenotype to neurons and other secretory cells that express and release additional signaling 

molecules (Moriyama and Yamamoto 2004; El Mestikawy et al. 2011; Herzog et al. 2004; 

Noh et al. 2010).

A previous study demonstrated VGLUT2 expression by intestinal enteroendocrine L cells 

that secrete glucagon-like peptide 1 (GLP1) (Hayashi et al. 2003), a gut hormone that also is 

expressed by a discrete population of caudal brainstem neurons (Larsen et al. 1997a; Han et 

al. 1986). Results of in vitro studies indicate that clonal L cells store and co-release 

glutamate and GLP1 via vesicular exocytosis (Uehara et al. 2006), raising the possibility that 

brainstem GLP1 neurons also use glutamate as a signaling molecule. Somatic GLP1 

immunolabeling and expression of preproglucagon mRNA (the gene encoding the protein 

from which GLP1 is cleaved) are localized to neurons within the caudal (visceral) nucleus of 

the solitary tract (cNST) and adjacent medullary reticular formation in rodents and primates, 

including humans (Han et al. 1986; Larsen et al. 1997a, b; Vrang and Grove 2011; Zheng et 

al. 2014). In rats, hindbrain GLP1 neurons are recruited/activated by stimuli associated with 

real or perceived homeostatic threats [cf. (Maniscalco et al. 2012; Vrang et al. 2003; 

Rinaman 1999b)], and give rise to a diffuse network of fibers and terminals that innervate 

brainstem, hypothalamic, and limbic forebrain regions where GLP1 receptors (GLP1-Rs) are 

expressed (Maniscalco et al. 2012; Rinaman 1999b; Merchenthaler et al. 1999; Vrang et al. 

2007).

VGLUT2 mRNA is abundant in the rodent NST, whereas VGLUT3 mRNA expression is 

more limited (Schafer et al. 2002), and VGLUT1 mRNA expression is absent (Stornetta et 

al. 2002a). Ultrastructural evidence indicates that GLP1-positive terminals form asymmetric 

(i.e., excitatory-type) synaptic contacts with hypothalamic target neurons (Sarkar et al. 

2003), consistent with a glutamatergic phenotype. We hypothesized that GLP1 neurons in 

the rat cNST express VGLUT2 mRNA, similar to GLP1-expressing intestinal L cells 

(Hayashi et al. 2003). Research indicates that GLP1-R agonists increase glutamatergic 

signaling within brain regions that receive GLP1 synaptic input (Acuna-Goycolea and van 

den Pol 2004; Mietlicki-Baase et al. 2013), but the possibility that GLP1 neurons are 
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themselves glutamatergic has not been subjected to experimental scrutiny. This possibility 

has important implications for understanding the functional role of GLP1 neurons within 

central neural circuits that control behavioral, endocrine, and emotional responses to 

cognitive and interoceptive homeostatic threats (Maniscalco et al. 2012; Kinzig et al. 2003). 

The present study uses anterograde neural tracing, dual immunofluorescence, confocal and 

electron microscopy, and in situ hybridization to demonstrate the glutamatergic phenotype of 

hindbrain GLP1 neurons that innervate brainstem, hypothalamic, and limbic forebrain 

regions in rats.

Materials and methods

Animals

Adult male Sprague Dawley rats (Harlan Laboratories, Indianapolis, IN; 250–300 g) were 

singly housed in hanging wire-bottom stainless steel cages in an AAALAC-accredited 

controlled environment (20–22 °C, 12 h light/dark, lights on at 0700 hours) with ad libitum 

access to pelleted chow (Purina #5001) and tap water. Rats were acclimated to this 

environment for at least 1 week before tracer injection surgery, described below 

(“Anterograde tracer delivery”), or before perfusion without tracer injection. Experimental 

protocols were approved by the University of Pittsburgh Institutional Animal Care and Use 

Committee, and are consistent with the U.S. Public Health Service’s Policy on Humane Care 

and Use of Laboratory Animals and the Guide for the Care and Use of Laboratory Animals.

Anterograde tracer delivery

Phaseolus vulgaris leucoagglutinin (PHAL; Vector Laboratories, 2.5 % in 0.1 M phosphate 

buffer) was delivered unilaterally into the dorsal vagal complex at the rostrocaudal level of 

the caudal area postrema (AP), approximately 14.2 mm caudal to bregma. Tracer solution 

was freshly prepared from frozen stocks within 2 h of injection. Rats (n = 3) were 

anesthetized by isoflurane inhalation (Halocarbon Laboratories, River Edge, NJ; 1–3 % in 

oxygen) and secured in a stereotaxic frame using blunt ear bars, with the head ventroflexed 

by ~11°. The skin over the dorsal neck surface was shaved, sterilized, incised along the 

midline, and the neck muscles retracted to expose the atlantooccipital membrane overlying 

the dorsal surface of the caudal medulla. With the aid of a surgical microscope, the 

membrane was opened with a sterile needle to reveal obex on the dorsomedial medullary 

surface, at the caudal tip of the AP. To target tracer delivery into the caudal medial NST, a 

glass iontophoretic micro-pipette (inner tip diameter ~20 μm) filled with tracer was 

positioned 0.4 mm lateral to obex, then the tip was advanced 0.4 mm below the medullary 

surface at a 10° angle from the vertical plane. PHAL was delivered using a 7 s on/off pulsed 

current of 5 μA for 10 min. The glass pipette was removed 2 min after tracer delivery, the 

skin incision sutured, and the animal allowed to recover from surgery on a warm pad before 

being returned to its home cage.

Perfusion fixation and tissue collection for light microscopy

Ten days after iontophoretic delivery of PHAL into the cNST, or after 1 week of laboratory 

acclimation (for non-tracer ISH and ICC studies), rats were deeply anesthetized with a lethal 

dose of pentobarbital sodium (Fatal Plus; 100 mg/kg BW, i.p., Butler Schein, Columbus, 
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OH) and transcardially perfused, first with 100 ml 0.15 M NaCl, then with 150 ml acrolein–

paraformaldehyde (PF) mixture [1.5 % acrolein (Polysciences, Inc., Warrington, PA, USA) 

and 2.0 % PF (Sigma-Aldrich, St. Louis, MO, USA) in 0.1 M phosphate buffer, pH 7.4], 

followed by 100 ml 2.0 % PF in 0.1 M phosphate buffer. Fixed brains were removed from 

the skull, blocked, postfixed in 2.0 % PF for 5–6 h at 4 °C, submerged in 20 % sucrose 

solution for 18–24 h at 4 °C, then sectioned in the coronal plane from the upper cervical 

spinal cord through the rostral corpus callosum using a freezing stage sliding microtome 

(Leica). Six series of floating sections (30 or 35 μm thickness) were collected into buffer. 

Tissue sections were either immediately processed for ICC alone or for ICC after in situ 

hybridization, or were stored at −20 °C in cryopreservant (1.0 M sucrose, 30.0 % ethylene 

glycol, and 1.0 % poly-vinylpyrrolidone-40 in 50.0 mM sodium phosphate buffer, pH 7.4) 

for later use. When obtaining tissues to be processed via ISH + ICC (described below), 

RNAse-free solutions were used for perfusion, tissue collection, storage, and subsequent 

processing.

Immunocytochemical (ICC) localization of PHAL, VGLUT2, and GLP1

Dual ICC labeling procedures were carried out at room temperature on a shaker table. 

Antibodies were diluted in phosphate buffer (PB) containing 0.3 % Triton, 1.0 % goat 

serum, and 1.0 % donkey serum, and all rinses were in PB (3 × 10 min each). Tissue 

sections were rinsed, pretreated for 15 min in 1.0 % sodium borohydride, rinsed, incubated 

for 15 min in 0.2 % hydrogen peroxide, rinsed, then incubated for 22–24 h in a primary 

antibody cocktail containing either rabbit anti-GLP1 (1:10K, T-4363, Peninsula 

Laboratories, San Carlos, CA, USA) and mouse anti-VGLUT2 (1:1,000, MAB5504, 

Millipore, Temecula, CA, USA), or rabbit anti-PHAL (1:1,000, AS-2300, Vector 

Laboratories, Burlingame, CA, USA) and mouse anti-VGLUT2. To reveal PHAL and 

VGLUT2, sections were rinsed and incubated 2 h at room temperature followed by 18 h at 

4 °C in a secondary antibody cocktail containing Cy3-conjugated donkey anti-rabbit IgG and 

Alexa488-conjugated donkey anti-mouse IgG (1:300 each, Jackson ImmunoResearch). For 

GLP1 and VGLUT2, sections were rinsed and incubated 2 h in a secondary antibody 

cocktail containing HRP-conjugated goat anti-rabbit IgG (1:300, PerkinElmer) and 

Alexa488-conjugated donkey anti-mouse IgG (1:300, Jackson ImmunoResearch). After PBS 

rinses, sections were reacted for 10 min with tyramide conjugated to Cy3 (1:300 in 

amplification diluent, PerkinElmer, Waltham, MA, USA) to reveal GLP1 labeling, then 

rinsed and mounted onto Superfrost Plus Microscope Slides, allowed to dry, dehydrated and 

defatted in a series of graded ethanols followed by xylene, and finally coverslipped with 

Cytoseal 60 mounting medium. Dual immunofluorescent labeling was examined and 

photographed using a confocal microscope, as described below (see “Confocal imaging”).

As previously reported (Zheng et al. 2014), the specificity of GLP1 immunolabeling was 

verified by omitting the anti-GLP1 antibody from primary incubation solution, and also 

using anti-GLP1 antibody that was pre-incubated with a tenfold higher concentration of 

synthetic GLP1 (7-37) acetate salt (H-9560, Bachem) overnight at room temperature. Both 

procedures eliminated GLP1 immunolabeling in rat brain tissue sections. The specificity of 

mouse anti-VGLUT2 has been characterized and reported (Griffin et al. 2010).
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Animal perfusion and tissue collection for electron microscopy

Rats to be used for ultrastructural analysis of GLP1 and VGLUT2 immunolabeling (n = 4) 

were anesthetized with an overdose of pentobarbital sodium (i.p.) and then perfused 

transcardially with phosphate buffered saline (PBS) followed by 100 ml of PBS containing 

3.75 % acrolein and 2 % PF, followed by 200 ml of 2 % PF alone. Fixed brains were 

removed from the skull, postfixed in 2 % PF for 6 h at 4 °C, rinsed for 18–24 h in several 

changes of PBS, and then sectioned serially in the coronal plane (50 μm) using a vibratome 

(Technical Products International, Inc., St. Louis, MO, USA). Floating vibratome sections 

were collected into PBS.

Electron microscopy: pre- and post-embedding immunolabeling of GLP1 and VGLUT2

Coronal vibratome sections through the paraventricular (PVN) and dorsomedial 

hypothalamic nuclei (DMH) were processed for pre-embedding immunoperoxidase 

localization of GLP1 using a rabbit polyclonal antibody (T-4363, Lot # 960721-1; Peninsula 

Laboratories Inc.). Sections were treated with 1 % sodium borohydride in 0.1 M phosphate 

buffer (PB), rinsed in PB, incubated in 1 % hydrogen peroxide, rinsed again in PB, 

transferred to cryoprotectant solution, transferred to a −80 °C freezer for 1 h, brought back 

to room temperature, and then rinsed in 0.1 M Tris-buffered saline (TBS). After 30-min 

pretreatment in blocking solution (TBS containing 1 % bovine serum albumin, 3 % normal 

donkey serum, and 0.4 % triton X-100), sections were incubated overnight at room 

temperature in blocking solution containing rabbit anti-GLP1 (1:7,000). Sections were then 

rinsed in TBS, incubated in affinity purified biotinylated donkey anti-rabbit IgG (1:250; 

Jackson ImmunoReseach Laboratories, Inc., West Grove, PA, USA), rinsed, and then 

processed using Vectastain Elite avidin–biotin reagents (Vector Laboratories; Burlingame, 

CA). The immunoperoxidase reaction was generated by incubating sections for 10 min in 

TBS containing 0.05 % diaminobenzidine and 0.01 % hydrogen peroxide.

Immunoperoxidase-reacted vibratome sections were postfixed in 1 % osmium tetroxide for 

30 min, washed in repeated changes of 0.1 M PB, and dehydrated in a graded ethanol series. 

Sections were then passed through multiple changes of acetone followed by sequential 

changes of increasing concentrations of epon–araldite plastic resin diluted in acetone. After 

the final change into 100 % resin, sections were flat-embedded between two acrylic sheets 

and polymerized overnight at 60 °C. GLP1 immunoperoxidase labeling within hypothalamic 

regions of interest (i.e., the PVN and DMH) was visualized in transilluminated flat-

embedded sections. These regions were trimmed from their surrounding section, glued flat 

onto blank plastic stubs, and then razor-trimmed into a trapezoidal shape containing either 

the PVN or DMH. Ultrathin floating sections (~600 angstroms) were cut using a Leica 

Ultracut R ultramicrotome, moved onto formvar-coated thin slot nickel grids, and stored in 

serial order in grid boxes.

For post-embedding immunogold detection of VGLUT2, ultrathin sections on slot grids 

were rinsed in TBS, incubated in 5 % bovine serum albumin, and placed into mouse anti-

VGLUT2 antibody (1:150) in TBS overnight at 4 °C. Grids were washed in TBS and placed 

into a 1:10 dilution of colloidal gold donkey anti-mouse IgG (15 nm, EM grade; Aurion) for 

1.5 h, rinsed with TBS and then with ddH2O.
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Dual-labeled ultrathin sections were examined and photographed using a transmission 

electron microscope (Morgagni, FEI, Hillsboro, OR, USA) equipped with a CCD camera 

(Advanced Microscopy Techniques, Danvers, MA, USA). To facilitate identification of 

electron-dense GLP1 immunoperoxidase reaction product, sections were not counterstained 

with heavy metal salts that absorb electrons.

Combined in situ hybridization (ISH) and immunocytochemistry (ICC)

In situ hybridization to localize VGLUT2 mRNA was performed as previously described 

(Stornetta et al. 2002a, b), with a few modifications. VGLUT2 DNA was amplified from rat 

brainstem poly-A+ RNA using a one-step RT-PCR (Titan One Tube RT-PCR System; Roche 

Molecular Biochemicals, Mannheim, Germany). The DNA for VGLUT2 was amplified by 

using the primers: forward 5′cggggaaagaggggataaag3′ and reverse 5′acacaaagcaga 

gagggac3′ (Weston et al. 2003), yielding a 3,373 base pair product that was subcloned into 

the plasmid vector, pCR-TOPO (Invitrogen, Carlsbad, CA, USA). After verifying the 

identity of the inserted DNA by sequencing, single-stranded RNA was synthesized in an in 

vitro polymerization reaction using either SP6 or T7 RNA polymerases in the presence of 

digoxigenin-11-UTP (Roche Molecular Biochemicals). The efficiency of digoxigenin-11-

UTP incorporation was estimated by direct immunological detection on dot blots using a 

sheep polyclonal anti-digoxigenin antibody (Roche Molecular Biochemicals).

VGLUT2 ISH was performed on free-floating coronal tissue sections through the caudal 

medulla (~14 mm caudal to bregma), where GLP1 neurons are most prevalent. ISH was 

completed before ICC localization of GLP1 was performed in the same tissue sections. Five 

to six consecutive coronal tissue sections from each rat (n = 8) were rinsed in 0.1 M PBS, 

pretreated for 15 min with 1.0 % sodium borohydride in PBS, rinsed 30 min with PBS, and 

then incubated for 15 min in 0.20 % hydrogen peroxide in PBS. Pretreated sections were 

then placed into prehybridization solution at room temperature for 45 min, then moved to 

37 °C for 1 h. The prehybridization mixture contained 0.3 M NaCl, 10.0 mM Tris–Cl (pH 

8.0), 1.0 mM ethylenediamine tetraacetic acid (EDTA), 0.5 mg/ml yeast tRNA (AM7119, 

Life Technologies, Grand Island, NY), 1.0× Denhardt’s solution, 50.0 % deionized 

formamide, 10.0 % dextran sulfate, and 0.5 mg/ml herring sperm (Sigma-Aldrich). At the 

end of the 1 h prehybridization period, digoxigenin-labeled VGLUT2 riboprobe (Stornetta et 

al. 2002a, b) (50–100 pg/μl) was added and sections were hybridized at 55 °C for 22–24 h. 

Hybridized sections were rinsed sequentially with 4× saline sodium citrate (SSC) containing 

10.0 mM sodium thiosulfate, treated with RNase A (20.0 μg/ml, DIAGEN Inc., Valencia, 

CA, USA), rinsed with RNAse buffer (10.0 mM Tris pH 8.0, 500.0 mM NaCl, 10.0 mM 

EDTA), and then rinsed in decreasing concentrations of SSC solution. All incubations and 

rinses were conducted at 37 °C for 30 min, except the final SSC (0.1×) rinse which was 

conducted at 55 °C for 1 h.

Fluorescence labeling of the digoxigenin-tagged hybridized riboprobe was combined with 

dual GLP1 immunofluorescence. All rinses (3 × 10 min each in 0.1 M TBS, pH 7.4) and 

incubations were conducted at room temperature on a rotating platform, unless otherwise 

noted. Antibodies were diluted in immersion buffer (TBS containing 5 % goat serum, 5 % 

donkey serum, 2 % bovine serum albumin, and 0.5 % Triton-X 100). Sections were 
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incubated sequentially for 30 min in immersion buffer, 22–24 h in rabbit anti-GLP1 (1:15K), 

rinsed, and then incubated in a cocktail containing horseradish peroxidase (HRP)-conjugated 

goat anti-rabbit IgG (1:300, PerkinElmer, Waltham, MA, USA) and sheep anti-digoxigenin 

antibody conjugated to alkaline phosphatase (1:1,000, Roche Diagnostics, Indianapolis, IN, 

USA) for 2 h at room temperature, followed by 18–20 h at 4 °C. GLP1 cell body 

immunolabeling was revealed by a 10-min reaction in Cy5-conjugated tyramide plus (1:300 

in amplification diluent, PerkinElmer, Waltham, MA, USA). For subsequent visualization of 

VGLUT2 mRNA labeling, sections were incubated for 10 min in detection buffer (0.1 M 

Tris, 0.1 M NaCl, 0.01 M MgCl; pH 8.0) followed by 2–3 h in HNPP/Fast Red reaction 

solution (0.1 mg/ml HNPP, 0.1 mg/ml Fast Red in detection buffer, Roche Diagnostics, 

Indianapolis, IN). The reaction was stopped by three 5 min rinses in PBS–EDTA (0.1 M 

PBS, 1.0 mM EDTA). To prevent the loss of HNPP/Fast Red reaction precipitation by 

subsequent mounting media, labeled sections were fixed for 10 min in 4.0 % PF followed by 

PBS rinses. After a final brief rinse in dH2O (1–2 min), sections were mounted onto 

adhesion Superfrost Plus Microscope Slides (Brain Research Laboratories, Waltham, MA, 

USA), allowed to dry, and quickly defatted with xylene (2 × 5 min). Slides were 

coverslipped with Cytoseal 60 mounting medium (Fisher Scientific, Pittsburgh, PA, USA) 

and viewed using a confocal microscope, described below (“Confocal imaging”).

Confocal imaging

Images were obtained using an Olympus BX61/Fluo-view1000 confocal laser scanning 

microscope in multi-channel mode, and 60× or 100× oil-immersion objectives. Cy3 or Fast 

Red (in different samples) was excited using the yellow line (559 nm) of the krypton/argon 

laser, while the green line (488 nm) was used to collect images of Alexa 488-labeled 

profiles. Cy5 was visualized with the 635 nm laser. For each final 5.0- to 6.0-μm-thick 

projection image, stacks of ten–fifteen 0.40–0.50-μm-thick optical planes were collapsed. In 

addition, three-dimensional (3D) rotated images were generated using maximal intensity 

projections from areas of interest, or from the entire image. Low magnification images (10× 

or 20×) were acquired using an Olympus BX51 epifluorescence (X-Cite 120) microscope 

equipped with a Hamamatsu camera. All photographs were imported to Adobe Photoshop 

(CS 5.1), adjusted for output and threshold to include all information-containing pixels, and 

adjusted for brightness and contrast to best demonstrate visible fluorescence labeling. No 

additional photographic alterations were performed.

Results

PHAL anterograde tracing

The anterograde neural tracer PHAL was successfully delivered via iontophoresis in three 

rats. Tracer delivery resulted in many PHAL-positive neuronal cell bodies located within the 

cNST at the level of the AP (Fig. 1a), and just caudal to the AP. Tracer delivery included the 

cNST region where GLP1 neurons are intermingled with dopamine beta hydroxylase 

(DBH)-positive neurons comprising the caudal A2 noradrenergic (NA) cell group (Fig. 1b). 

Tracer-labeled cNST neurons gave rise to labeled fibers that occupied brainstem and 

forebrain regions known to receive input from the cNST, including the parabrachial nucleus, 

periaqueductal gray, thalamic paraventricular nucleus, hypothalamic paraventricular (PVN), 
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supraoptic, dorsomedial, and arcuate nuclei, central nucleus of the amygdala, and anterior 

lateral bed nucleus of the stria terminalis (BNST). The distribution and relative density of 

anterogradely labeled fibers across brain regions were consistent with previous reports, as 

recently reviewed (Rinaman 2010, 2011). Confocal images of PHAL-labeled fibers within 

the PVN and BNST are shown in Figs. 2b and 3b, respectively.

Colocalization of VGLUT2 with PHAL and GLP1

Confocal microscopy revealed that VGLUT2 immunofluorescence was colocalized with 

anterogradely transported PHAL or with GLP1 immunolabeling in axon varicosities located 

in every brain region examined, i.e., regions that contained PHAL and/or GLP1 

immunolabeling. Although PHAL- or GLP1-positive fiber segments often were VGLUT2-

negative (e.g., see Figs. 2b, 3b), individual PHAL- or GLP1-positive fibers could usually be 

followed through the section to locations where double-labeled, VGLUT2-positive varicose 

swellings emerged (e.g., see boxed regions in Figs. 2b, 3b, 4a). Three-dimensional, 6-μm-

thick Z-stack images from the PVN (Fig. 2), BNST (Fig. 3), cNST (Fig. 4), and other brain 

regions (not shown, but including the pontine parabrachial nucleus, arcuate and dorsomedial 

hypothalamic nuclei, and ventral tegmental area) were created using Olympus imaging 

software included in the FV1000D Laser Confocal Scanning Microscope system software 

package. 3D images from each region were digitally rotated to confirm extensive 

colocalization of VGLUT2 with either PHAL or GLP1 immunofluorescence in the same 

varicose profiles, rather than within distinct profiles that simply overlapped within the tissue 

section.

Electron microscopy

Many axonal fibers, varicosities, and axon terminals within the hypothalamic PVN and 

DMH contained floccular, electron-dense GLP1 immunoperoxidase labeling (Fig. 5). As 

expected, given the absence of GLP1-expressing neurons within the hypothalamus, 

immunoperoxidase-positive cell bodies or dendrites were not observed. The pre-embedding 

GLP1 immunoperoxidase reaction product densely filled labeled profiles located near the 

surface of the vibratome section (e.g., Fig. 5a). GLP1-positive profiles located farther from 

the surface displayed less dense immunoperoxidase labeling, but typically displayed better 

preservation of ultrastructure. Particulate VGLUT2 immunogold labeling was similarly 

prevalent regardless of distance from the surface of the vibratome section, as would be 

expected for post-embedding labeling. GLP1-positive varicosities often were observed in 

close apposition to unlabeled dendrites and axon varicosities, with no clear synaptic 

specializations (Fig. 5a, b). However, despite the lack of heavy metal counterstaining, there 

was no difficulty identifying many GLP1-positive axon terminals forming asymmetric (i.e., 

excitatory-type) synaptic contacts with unlabeled dendrites in both the PVN and DMH (Fig. 

5c–f). Of approximately 100 GLP1-positive varicosities and synaptic terminals that were 

photographed within the PVN and DMH, the majority (67) also displayed three or more 

VGLUT2 immunogold particles (Fig. 5a–f).

In situ hybridization

Consistent with previous reports, VGLUT2 mRNA was expressed by many neurons within 

the cNST (Stornetta et al. 2002a, b). The present study used the same digoxigenin-labeled 
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mRNA probe for fluorescent in situ hybridization localization of VGLUT2 mRNA, 

combined with dual immunofluorescence labeling for GLP1. Confocal microscopy 

confirmed that all (100 %) GLP1-positive neurons observed within the cNST were double-

labeled for VGLUT2 mRNA, as evident in digitally flattened Z-stack and 3D rotated images 

(Fig. 4b). As expected, many VGLUT2 mRNA-positive neurons within the cNST were 

GLP1 negative (Fig. 4b).

Discussion

Glucagon-like peptide 1 neurons within the cNST in rats are recruited/activated by stressors 

that present real or perceived challenges to homeostasis (Maniscalco et al. 2012; Rinaman 

1999b; Vrang et al. 2003). Consistent with this, behavioral and physiological responses to 

centrally administered GLP1 include pituitary stress hormone release, autonomic responses, 

hypophagia, and anxiety-like behavior (Maniscalco et al. 2012; Kinzig et al. 2003; Donahey 

et al. 1998; Gulpinar et al. 2000; Larsen et al. 1997b; Mietlicki-Baase et al. 2013; Moller et 

al. 2002; Nakade et al. 2006, 2007; Rinaman 1999a; Schick et al. 2003; Seeley et al. 2000; 

Thiele et al. 1998; Turton et al. 1996). A suggested role for central GLP1-R signaling 

pathways in body energy balance (Tang-Christensen et al. 2001; Hayes 2012; Meeran et al. 

1999; vanDijk and Thiele 1999) also is supported by evidence in rats and mice implicating 

central GLP1 in temperature regulation (Rinaman and Comer 2000; O’Shea et al. 1996) and 

glucose homeostasis (Sandoval et al. 2008). GLP1-R agonists enhance both excitatory and 

inhibitory synaptic inputs to identified neurons through presynaptic stimulation of 

transmitter release from axon terminals (Wan et al. 2007; Acuna-Goycolea and van den Pol 

2004), and postsynaptic effects of GLP1 on neuronal activity also are reported (Acuna-

Goycolea and van den Pol 2004; Riediger et al. 2010; Hayes 2012). Neuroanatomical results 

from the present study significantly expand current knowledge regarding the signaling 

capacity of GLP1 neurons by demonstrating that these neurons are glutamatergic, at least in 

rats, similar to other neuronal populations that use glutamate as a co-transmitter and/or as a 

synergistic enhancer of vesicular packaging and release (El Mestikawy et al. 2011).

The extrinsic sources of glutamatergic input to the hypothalamus and limbic forebrain, 

including the DMH, PVN and anterior lateral BNST, are not completely established 

(Crestani et al. 2013; Myers et al. 2013; Ulrich-Lai et al. 2011; Ziegler et al. 2012). In the 

present study, most anterograde tracer-labeled fibers originating from the cNST displayed 

varicosities that were VGLUT2-positive. These results provide new evidence that ascending 

neural projections from the cNST to the DMH, PVN, BNST, and other brainstem and 

forebrain targets are primarily glutamatergic. Since noradrenergic A2 neurons and GLP1 

neurons together provide the bulk of ascending projections from the cNST to higher brain 

regions (Rinaman 2010; Sawchenko and Swanson 1982), the presence of VGLUT2 

immunolabeling in nerve terminals arising from the cNST confirms and extends previous 

findings that A2 neurons express VGLUT2 mRNA in rats (Stornetta et al. 2002a). Further, 

virtually all GLP1-positive axon varicosities were VGLUT2-positive. Although triple-

immunolabeling was not performed, the convergent evidence from this study supports the 

conclusion that axonal projections arising from GLP1 neurons within the cNST are 

glutamatergic. Electron microscopic analysis of tissue samples from the hypothalamic PVN 

and DMH confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon 
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terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites. 

Finally, fluorescent in situ hybridization confirmed that GLP1-positive neurons within the 

cNST express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store 

glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from their 

axon varicosities and terminals within the hypothalamus and other brain regions.

Ample evidence suggests that presynaptic signaling codes that promote the release of small 

molecule (i.e., glutamate) vs. neuropeptide transmitters (i.e., GLP1) may be different [cf. 

(Schone and Burdakov 2012)]. Speculatively, co-release of GLP1 and glutamate may expand 

the dynamic range of neuronal signaling by allowing glutamate to be released without GLP1 

during brief or low levels of neural activity, whereas GLP1 release may serve to maintain 

transmission or exert other signaling cascade effects (Hayes 2012) when prolonged 

stimulation depletes the supply of releasable glutamate [cf. (Schone and Burdakov 2012)]. 

This could facilitate the ability of GLP1 neurons to participate in ongoing central control of 

ingestive behavior, stress responses, and emotional responses to internal and external stimuli 

that require prolonged neural activity.

VGLUT2 is expressed primarily in phylogenetically older CNS regions (i.e., spinal cord, 

brainstem and hypothalamus), including genetically “hard wired” sensory and visceral-

related pathways that display high-fidelity neuro-transmission (Varoqui et al. 2002; Todd et 

al. 2003). A previous study failed to demonstrate significant colocalization of VGLUT2 

mRNA expression by PVN-projecting hindbrain neurons (Ziegler et al. 2012). However, as 

the study’s authors pointed out, surprisingly few cNST were retrogradely labeled after 

iontophoretic delivery of FluoroGold neural tracer into the PVN, which precluded 

meaningful assessment of potential VGLUT2 mRNA expression by PVN-projecting cNST 

neurons. The hypothalamic PVN and DMH are major axonal targets of hindbrain GLP1 

neurons (Maniscalco et al. 2012; Rinaman 1999b; Larsen et al. 1997a; Vrang et al. 2007), 

and glutamatergic inputs to both hypothalamic nuclei predominantly express VGLUT2 

rather than VGLUT1 (Kaneko et al. 2002; Ziegler et al. 2002, 2005). VGLUT2 induction by 

excitation–transcription coupling leads to increased glutamatergic transmission as part of a 

coordinated program of Ca2+-mediated signal transcription, potentially contributing to 

homeostatic synaptic plasticity subsequent to prolonged neuronal activity (Doyle et al. 

2010). Indeed, a chronic variable stress paradigm that increases central excitability of the 

neuroendocrine hypothalamic–pituitary–adrenal (HPA) stress axis has been shown to 

increase the density of VGLUT2-immunopositive axon terminals within parvocellular (i.e., 

hypophysiotropic) PVN subregions (Flak et al. 2009). Increased VGLUT2-positive inputs 

could reflect stress-induced plasticity of glutamatergic signaling by GLP1 neurons, which 

are known to synapse directly onto corticotropin-releasing hormone-positive PVN neurons 

at the apex of the HPA axis (Sarkar et al. 2003). Similar effects might be observed within the 

DMH, anterior ventral BNST, and other central targets of GLP1 axonal input.

To summarize, evidence gathered in this study provides strong neuroanatomical support for 

the conclusion that GLP1 neurons within the cNST provide glutamatergic input to the PVN 

and other hypothalamic, brainstem, and limbic forebrain regions. Although the functional 

significance of GLP1 peptidergic/glutamatergic cotransmission is not yet clear, the results 
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suggest potential flexibility in neural signaling from the cNST to brain regions involved in 

behavioral and physiological responses to stressful and emotionally evocative events.
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Fig. 1. 
PHAL tracer delivery site within the cNST. The inset at upper left shows the approximate 

rostrocaudal level targeted (~14.2 mm caudal to bregma), and the boxed region corresponds 

to the photographic images shown in a, b. a A PHAL tracer delivery site (red) centered in 

the cNST, just dorsal to the DMX. b An adjacent tissue section immunolabeled for GLP1 

(red neurons) and DBH (green neurons) to illustrate the locations of intermingling but 

separate populations of GLP1 and A2 noradrenergic neurons. AP area postrema, c central 

canal, DBH dopamine beta hydroxylase, DMX dorsal motor nucleus of the vagus, GR 
gracile nucleus, PHAL phaseolus vulgaris leucoagglutinin, ts tractus solitarius
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Fig. 2. 
Representative confocal images of dual immunofluorescent labeling of a VGLUT2 and 

GLP1 in the PVN, or b VGLUT2 and PHAL in the PVN. In a, the 5-μm-thick projection 

image demonstrates that virtually all GLP1-positive varicose fibers and terminals are 

VGLUT2 positive. The lower right boxed insert contains a ×10 epifluorescence image 

showing intense GLP1-positive axon terminals within the PVN. The asterisk in that image 

illustrates the region where the confocal images were obtained. In b, the 5-μm-thick 

projection image demonstrates colocalization of VGLUT2 within PHAL tracer-labeled 

fibers originating from the caudal NST. The upper left boxes in both panels show 3D rotated 

views of maximum intensity projections from the smaller boxed regions. Scale bars are 5 or 

300 μm, as indicated
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Fig. 3. 
Representative confocal images of ICC labeling for VGLUT2, GLP1, and PHAL in the 

vlBST. a 5-μm-thick projection image demonstrates virtually all GLP1-ir varicose axons/

buttons are VGLUT2-ir; inserted ×10 epifluorescence image shows the distribution of 

GLP1-ir axon terminals in the vlBST and the area (hash) where confocal image was taken. b 
5-μm-thick projection image demonstrates the localization of VGLUT2-ir in NST-origin 

PHAL-ir varicose axon terminals. 3D rotated inserts (a, b) are maximum intensity projection 

from the regions of interest
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Fig. 4. 
Representative confocal images of GLP1 and VGLUT2 in the NST. a 5-μm-thick projection 

image demonstrates the colocalization of GLP1-ir and VGLUT2-ir; 3D rotated insert shows 

the maximum intensity projection from region of interest. Inserted low magnification (×10) 

epifluorescence image indicates the distribution of GLP1-ir cell bodies and terminals in the 

NST and the region (hash) where the confocal image was taken. b 6-μm-thick projection 

image from combined ISH and IHC labeling demonstrates the localization of GLP1-ir in 

VLGUT2 mRNA expressing neurons. Hash, 3D rotated insert shows GLP1-ir in all four 

VGLUT2 mRNA expressing neurons from the area of interest. White arrow provides a detail 

3D view from one double-labeled neuron
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Fig. 5. 
Ultrastructural localization of GLP1 immunoperoxidase (floccular electron-dense label) and 

VGLUT2 immunogold (small particulate label) within the PVN (a–c) and DMH (d–f). D 
dendrite, dLT double-labeled terminal, dLV double-labeled varicosity. Arrows point out 

postsynaptic specializations of asymmetric (i.e., excitatory-type) synapses formed by 

double-labeled axon terminals onto unlabeled dendrites. All scale bars 500 nm
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