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Abstract

Immune-mediated drug-induced hepatotoxicity is often unrecognized as a potential mode of action 

due to the lack of appropriate in vitro models. We have established an in vitro rat donor-matched 

hepatocyte and Kupffer cell co-culture (HKCC) model to study immune-related responses to drug 

exposure. Optimal cell culture conditions were identified for the maintenance of co-cultures based 

on cell longevity, monolayer integrity, and cytokine response after lipopolysaccharide (LPS) 

exposure. Hepatocyte monocultures and HKCCs were then used to test a subset of compounds 

associated with hepatotoxic effects with or without LPS. Cytokine levels and metabolic activity 

(cytochrome P450 3A [Cyp3A]) were measured after a 48-h exposure to monitor endotoxin-

induced changes in acute phase and functional end points. LPS-activated HKCCs, but not 

hepatocyte monocultures, treated with trovafloxacin or acetaminophen, compounds associated 

with immune-mediated hepatotoxicity, showed LPS-dependent decreases in interleukin-6 

production with concomitant increases in Cyp3A activity. Differential endotoxinand model-

dependent alterations were observed in cytokine profiles and Cyp3A activity levels that 

corresponded to specific compounds. These results indicate the utility of the HKCC model system 

to discern compound-specific effects that may lead to enhanced or mitigate hepatocellular injury 

due to innate or adaptive immune responses.
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Introduction

Unexpected and unexplained hepatotoxicity continues to be one of the main adverse 

outcomes observed in humans during clinical trials and after-market withdrawals.1-3 Drug-
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induced hepatotoxic modes of action are often complex, involving metabolic activation, 

multiple cell types, and perturbation of biochemical pathways involving both hepatocytes 

and resident macrophages (i.e., Kupffer cells [KCs]).1,4-6 Many complex, immune-mediated 

hepatocellular responses, such as reactive metabolite formation, infectious disease, 

circulating cytokines, and gut-derived endotoxin inflammation, require interactions among 

hepatocytes, endothelial cells, and KCs.1,4,6,7

KCs constitute the largest resident macrophage population in the body and are crucial for the 

regulation of immune-mediated hepatotoxicity and liver injury.8 In their primary scavenger 

role, KCs endocytose foreign particles and bacterial endotoxins, which causes their 

activation and production of a number of cell signaling and stress pathway modulators, such 

as reactive oxygen species and cytokines, including tumor necrosis factor (TNF)-α and 

interleukin (IL)-1.9 Cell damage and soluble stress signals during drug-induced 

hepatocellular injury cause a similar KC activation, which modulates hepatocyte and 

nonparenchymal cell death by apoptosis.8-10 In addition, cytokines and chemokines secreted 

by KCs during injury modulate the metabolic activity of hepatocytes and induce the 

expression of acute phase proteins, such as C-reactive protein and NOS2, whereas causing 

the suppression of genes involved in the metabolism and clearance of xenobiotics, including 

cytochrome P-450 enzymes, uridine 5′ -diphospho-glucuronosyl transferase systems, and 

uptake and efflux transporters.1,11-14

These complex and dynamic cellular interactions are not adequately captured in traditional 

hepatocyte monocultures. As such, indirect hepatocellular toxicity caused by immune cell 

activation and hepatic inflammation is often overlooked as a potential mode of action.6 

Development of an optimized co-culture system that incorporates KCs will be imperative to 

study these events. In addition, there is a growing body of evidence for the role of genetic 

variability and adaptive immune responses within the human population that accounts for 

some idiosyncratic drug-induced liver injury and its severity in some patients.2 This also 

becomes even more important when using inbred strains of rodents or animal models with 

rare or unique genetic backgrounds.15

Clearly, to better assess the potential of compounds to cause immune-mediated 

hepatotoxicity, more reliable and predictive culture models that incorporate donor-matched 

cell types are needed. Previously, we developed a rodent-based co-culture model using a 

commercial source of cryopreserved KCs and observed enhanced drug-induced 

hepatotoxicity under glucocorticoid-free medium conditions.16 In the present study, we 

present a more metabolically competent in vitro rat hepatic co-culture system that 

incorporates donor-matched primary hepatocytes and Kupffer cell co-cultures (HKCCs) to 

assess immune-mediated hepatotoxicity over an extended culture period. The effects of 

different medium formulations and glucocorticoid levels were investigated to define suitable 

experimental conditions before compound testing.17 Validation studies were conducted 

under predefined culture conditions using a set of hepatotoxic compounds, including 

trovafloxacin (TVX), an antibiotic associated with immune-related hepatotoxicity, and 

acetaminophen (APAP), an analgesic and antipyretic agent associated with reactive 

metabolite formation and oxidative stress. As part of these studies, we determined the 

concentration-dependent responses of a set of test compounds on functional end points 
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(cytochrome P450 3A [Cyp3A] activity) and cytokine profiles (IL-6 and TNF-α) in the 

presence and absence of lipopolysaccharide (LPS). Our results indicate that this enhanced 

co-culture model system provides a more stable and physiologically relevant platform by 

which to investigate drug-induced, immune-mediated reactions that can lead to acute 

hepatotoxic effects.

Materials and Methods

Reagents

Trovafloxacin, levofloxacin, allyl alcohol (AA), and APAP were purchased from Sigma-

Aldrich (St. Louis, MO). Triclosan (Irgacare MP) was obtained from Ciba-Geigy AG (Basel, 

Switzerland). Propiconazole and acetochlor were purchased from Chem Service (West 

Chester, PA). All other compounds were purchased from Sigma-Aldrich and were of the 

highest grade available. Compound stocks were prepared in dimethyl sulfoxide (Sigma-

Aldrich) so that the final concentration did not exceed 0.1%. LPS from Escherichia coli 
strain 0127:B8 (Sigma-Aldrich, Cat # L4516) was dissolved in sterile phosphate-buffered 

saline (PBS).

Isolation of Primary Hepatocytes and KCs

Donor-matched hepatocytes and KCs were co-isolated from individual adult (200-300 g) 

male Sprague-Dawley rats (Charles River Laboratories, Raleigh, NC) using differential, 

density-gradient, and counterflow elutriation centrifugation methods.18,19 Briefly, in situ 
perfusions were performed following a modified 2-step digestion method using a 

collagenase/protease enzyme blend according to the manufacturer's recommendations 

(Vitacyte, Indianapolis, IN). After digestion, the liver tissue was dissected, placed in a sterile 

150-mm petri dish containing Hank's balanced salt solution (HBSS) supplemented with 1% 

bovine serum albumin (BSA), 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 

and 1 g/L glucose (ThermoFisher Life Technologies, Grand Island, NY), and transferred to a 

sterile biosafety cabinet. After removing the outer membrane (Glisson's capsule) with sterile 

forceps, the digested liver tissue was gently shaken to remove the parenchymal cells from 

the vascular tree without direct mechanical manipulation. The crude cell slurry was poured 

through a mesh filter (105 μm) into 50-mL tubes and centrifuged at 70 g for 3 min, which 

enriched for the mature hepatocytes in the pellet and nonparenchymal cells (NPCs) in the 

supernatant. Supernatants were collected for KC isolation, and the hepatocyte pellets were 

further subjected to Percoll density-gradient centrifugation (GE Healthcare, Marlborough, 

MA) which yielded >99% pure population of hepatocytes.18 Final hepatocyte yields and 

viabilities were determined using a Vision CBA Image Cytometry System (Nexcelom 

Bioscience, Lawrence, MA) and seeded as described subsequently.

For the isolation of KCs, the liver remnant with residual parenchymal and NPCs was placed 

in a 250-mL specimen cup containing 100 mL of supplemented HBSS with 1% BSA and 

100 μg/mL DNase and further dissociated by gentle stirring for 5 min. Afterward, the cell 

slurry was filtered through a 297-micron mesh and centrifuged, along with the supernatants 

from the initial hepatocyte low-speed spin, at 500 × g for 6 min at 4°C.20 Crude NPC pellets 

were resuspended in supplemented HBSS, filtered using a 70-micron snap-cap filter, and 
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loaded into a sterile 10-mL syringe. KCs were then further separated from other NPCs by a 

combination of Optiprep (Sigma-Aldrich) density-gradient and counterflow elutriation 

centrifugation using an Avanti J-26XP centrifuge (Beckman-Coulter, Brea, CA) and a JE-5.0 

rotor equipped with a 5-mL standard chamber following a modified version of the methods 

described by Valatas et al.19 Adjustments were made to the elutriation protocol as necessary 

until KC purity was determined to be >90% based on flow cytometry results (see Flow 

Cytometry section).

Plating of Primary Cell Co-cultures

HKCCs were plated at a 2:1 (H:K) ratio onto 48-well type I collagen-coated plates. The ratio 

of KC and hepatocytes was initially optimized as part of the development of the co-culture 

system with the goal to achieve maximum cytokine production in the presence of LPS.16 

Whereas normal KC-to-hepatocyte ratios are on average closer to 1:4 across the liver acinar 

structure, the 1:2 ratio that was used for the co-culture model does represent a near 

physiological condition when considering their enrichment in the periportal region under 

inflammatory conditions in vivo.21

For initial studies exploring effects of dexamethasone (Dex), co-cultures were plated in 

advanced Dulbecco's modified Eagle's medium (DMEM) supplemented with penicillin–

streptomycin, GlutaMax, and 10% fetal bovine serum (Life Technologies). For later studies 

investigating effects of hydrocortisone (HC) and screening compounds, co-cultures were 

plated in DMEM-high glucose supplemented with MEM nonessential amino acids, 

penicillin–streptomycin, 10% fetal bovine serum (Life Technologies), and insulin (10 

mg/mL; Sigma-Aldrich). Hepatocytes were plated at 375,000 cells per well and allowed to 

attach for approximately 1 h at 37°C/5% CO2 with manual gentle shaking every 15 minutes. 

After hepatocyte attachment, medium with unattached cells was removed and donor-

matched KCs in supplemented plating medium were added at 187,500 cells per well. KCs 

were allowed to attach for approximately 1 h in the incubator with gentle shaking every 15 

min and transferred into maintenance medium before use.

Flow Cytometry

Cell sample preparation and flow cytometry measurements were performed using a 

modification of methods described previously.22 Small aliquots of NPC fractions were 

collected from the final cell pellets after elutriation and density-gradient separation as 

described earlier. Cells were then washed with PBS containing 2.5 mM EDTA and pelleted 

by centrifugation at 300 × g for 5 minutes. Cells were then resuspended at 1 × 106 per 100 

μL staining buffer (BD Biosciences, San Jose, CA) containing 2.5 mM EDTA. To measure 

viability, cells were stained with a fixable LIVE/DEAD stain (Thermo Fisher, Waltham, 

MA) according to the manufacturer's recommendations. Cells were then blocked with Fcγ 
receptor (BD Biosciences) for 15 minutes and stained with AlexaFluor 488-conjugated 

CD163 (AbD Serotec, Raleigh, NC) for 30 min at 4°C. For intracellular staining of CD68, 

cells were fixed and permeabilized using BD IntraSure Kit (BD Biosciences). AlexaFluor 

647-conjugated CD68 antibody (AbD Serotec) was added in 100 μL of staining buffer and 

incubated for 30 min at 4°C.
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Flow cytometry and cell fluorescence measurements were performed using a BD Cantos II 

flow cytometer (BD Biosciences) and analyzed with FlowJo software (version 10.0.6, Tree 

Star, Ashland, OR). Samples were analyzed using 100,000 events based on NPC population. 

Parameters for forward- and side-scatter (FSC/SSC) measurements were set to include all 

cell types potentially present in liver cell isolation and elutriation fractions (i.e., endothelial 

cells, stellate cells, KCs, and hepatocytes). Populations were first interpreted using relative 

cell size and complexity in FSC/SSC, viability, and the presence or absence of cellular 

markers. Calculations for the percentage of each cell type were based on live cell 

populations as determined by viability analysis. KCs were identified as CD68+, with CD163 

determining maturation. Mature KCs were defined as CD68+/CD163+. Liver sinusoidal 

endothelial cells were identified by exclusion.

Immunocytochemistry

To visually confirm KC enrichment in elutriated fractions and KC localization within 

HKCCs, KC monocultures and HKCCs were stained with antibodies against CD68 and 

CD163. Cultures were activated with LPS (1 (μg/mL) for 48 h after 24 h acclimation. Cells 

were fixed and permeabilized with ice-cold methanol. Cultures were washed 2 times with 

Dulbecco's PBS and blocked using BSA Stain Buffer (BD Pharminogen) containing diluted 

Hoechst 33342 nuclear dye (Thermo Fisher). Individual wells were probed for CD68 or 

CD163 using mouse anti-rat primary antibodies (AbD Serotec) incubated for 6 h at 4°C. 

Cultures were washed and incubated with a goat anti-mouse AlexaFluor 488 secondary 

antibody (Thermo Fisher) for 1 h at room temperature. After washing, cells were visualized 

with the EVOS FL Cell Imaging System (Thermo Fisher).

Comparison of Maintenance Media

To extend HKCC longevity, 4 different maintenance medium formulations were evaluated: 

Advanced DMEM (A-DMEM) (Life Technologies), modified Chee's medium (MCM) (Life 

Technologies), Williams' E Medium (WEM) (Life Technologies), or hepatocyte maintenance 

media (HMM) (Lonza, Walkersville, MD). HKCCs were plated as previously described 

earlier and transitioned to 1 of 4 maintenance medium formulations supplemented with ITS+ 

and penicillin-streptomycin (Thermo Fisher) 30 min after KC attachment. After a 24-h 

acclimation period, cultures were exposed to LPS (1 (μg/mL) for 48 h. Cell viability after 48 

h LPS exposure was assessed by measuring cellular ATP levels as described subsequently.

Glucocorticoid Effects on LPS-Mediated Responses

To identify a plating and treatment regimen that would provide HKCCs with sufficient 

glucocorticoids to sustain hepatocytes over a 3- to 4-day culture period with minimal 

suppression of LPS-induced cytokine production, pretreatment of hepatocytes and/or KCs 

with normal and reduced levels of Dex and HC were evaluated. Pretreatment with Dex was 

initially evaluated by exposing both hepatocytes and KCs during the respective attachment 

stages to supplemented advanced DMEM containing 1 μM Dex. After attachment, the cells 

were washed, medium replaced with Dex-free MCM, and HKCCs were treated with LPS (1 

(μg/mL) for a 48-h period followed by assessment of cytokine production levels and 

morphologic integrity. Additional experiments in which only the hepatocyte fraction was 

initially plated in advanced DMEM containing Dex (20 nM) were conducted. Before adding 
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KCs in Dex-free medium, hepatocyte monolayers were washed with Dex-free medium. 

HKCCs were then treated with LPS in Dex-free MCM as described in the previous section 

followed by evaluation of cytokine production levels and morphologic integrity.

To ensure appropriate KC-mediated events were recapitulated in HKCCs exposed to HC, 

effects of TVX and levofloxacin (LVX), a toxic and nontoxic fluoroquinolone antibiotic, 

respectively, on cytokine release and HKCC viability were determined. Hepatocytes were 

allowed to attach (approximately 1 h) in plating medium containing 1 μM HC before 

addition of KC. HKCCs were maintained in MCM as described earlier and co-exposed to 

TVX or LVX (0-200 μM) in the presence or absence of LPS on culture day 1 for 48 h.

In a separate set of experiments, the concentration- and time-dependent effects of HC on 

LPS-mediated cytokine production in HKCCs were examined by exposing hepatocytes and 

KCs to plating medium containing 1 or 10 μM HC for a 2 or 24 h duration, before changing 

cells into Dex-free maintenance medium (MCM). HKCCs were then treated with LPS (1 μg/

mL), and samples were collected for determination of cytokine production, Cyp3A activity, 

and gene expression as described subsequently.

Measurement of Cytokine Production

Cytokine levels were measured as described previously.16 Briefly, cell culture supernatant 

samples were collected at indicated time points after treatment with compounds in the 

presence or absence of 1 (μg/mL LPS and stored at −80°C until analysis. Individual cytokine 

levels were measured using rat IL-6 and TNF-α ELISA kits according to the manufacturer's 

recommendations (Life Technologies/Thermo Fisher) and quantified using a SpectroMax 

M5 plate reader and using SoftMax Pro software (Molecular Devices, Sunnyvale, CA). 

Additional multiplex measurements were performed on selected medium samples using the 

Cytokine Rat 10-Plex Panel (Thermo Fisher) for the Luminex® platform. Data were 

collected and analyzed using the Bio-Plex System (Bio-Rad, Hercules, CA).

Measurement of Cyp3A Activity

Cyp3A metabolic activity was measured in intact cultures as described previously.16 Briefly, 

HKCCs were cultured and treated with compounds in the presence or absence of LPS for 48 

h as indicated earlier. Cyp3A activity was measured directly in wells using the P450-Glo™ 

CYP3A4 assay with Luciferin-IPA (Cat # V9001; Promega, Madison, WI) according to the 

manufacturer's instructions for cultured cells and using a Luciferin standard curve (Beetle 

Luciferin, Cat # E1601; Promega). Plates were analyzed using a SpectroMax M5 plate 

reader and using SoftMax Pro software. Values are reported as units of Luciferin (nM).

Gene Expression Profiling

At the end of the 48-h treatment period, RNA was extracted from HKCCs using the RNeasy 

Miniprep Kit (Qiagen, Valencia, CA) according to the manufacturer's protocol. RNA 

samples were reverse transcribed with the High Capacity RNA-to-cDNA Kit following the 

manufacturer's instructions (Applied Biosystems, ThermoFisher, Grand Island, NY). 

Quantitative PCR reactions (technical duplicates) were performed with 10 ng of cDNA per 

well using TaqMan® Universal PCR Master Mix (Applied Biosystems) and manufacturer-
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recommended “best coverage” TaqMan® Gene Expression Assays for Crp, Nos2, Tat, and 

Alb (Applied Biosystems). Reactions were carried out using an ABI 7900HT Fast Real-

Time PCR System with sample analysis performed using Sequence Detection Systems 

software (version 2.4; Life Technologies). Relative quantities were calculated for each gene 

of interest by normalizing to Hprt1 and are presented as a percent of the respective HC 

vehicle control group for each set of treatments.

ATP Content

For measurement of ATP levels as a representation of overall cell viability, the CellTiter-

Glo® Luminescent Cell Viability Assay was performed on cell cultures maintained with 

different medium conditions according to manufacturer's instructions and using an ATP 

standard curve (Promega). Plates were analyzed using a SpectroMax M5 plate reader and 

using SoftMax Pro software. Values are reported as micromolar ATP concentrations.

Screening With Test Compounds

After a 24-h post-plating acclimation period in MCM with 1 μM HC, HKCC or 

corresponding monocultures of hepatocytes were treated with several compounds associated 

with liver injury over a range of concentrations in the presence or absence of LPS (1 μg/mL) 

for an additional 48 h. Effects on cytokine production (IL-6 and TNF-α) and Cyp3A activity 

were determined as described in previous sections. Compounds tested were TVX, APAP, 

triclosan (TCS), acetochlor, propiconazole, and AA.

Data Analysis

Each treatment condition was performed in a minimum of 2 replicate culture wells. The 

average or mean ± SD was calculated from the data for each treatment group unless 

otherwise specified. Statistical tests and significance levels used are described in individual 

figure legends where applicable.

Results

Establishment of HKCC Model With Donor-Matched Hepatocytes and KCs

The main goal of this project was to extend and expand on our previous efforts to develop a 

robust co-culture model of primary rat hepatocytes and liver-derived macrophages (KCs) 

that would ultimately lead to a corresponding human cell-based system for drug and 

chemical screening purposes.16 In this work, we developed novel methods to produce donor-

matched primary hepatocyte and KC fractions from the same liver tissue that, under 

optimized culture conditions, allow an extended compound exposure period compared with 

our previous culture system.18-20 The inherent sequence of events during the isolation 

process allowed for the rapid preparation of hepatocyte fractions first, which were preplated 

at the appropriate density and allowed to attach while the NPC fractions were processed 

using modified density-gradient and elutriation centrifugation methods.

Confirmation of the identity and purity of the KC fractions was performed using a 

combination of flow cytometry and immunofluorescence microscopy. The isolated cells 

were stained for CD68 and CD163, which indicate monocyte lineage and mature 
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macrophage phenotype, respectively, and purity was assessed using flow cytometry (Fig. 1). 

Flow analysis confirmed the enrichment of KCs (>90%) with very small amounts of 

contaminating cell types (Fig. 1d). The ratio of KCs and hepatocytes was previously 

optimized as part of the development of a rodent-based co-culture system with the goal to 

achieve maximum cytokine production after treatment with LPS.16 Phase-contrast and 

fluorescent images of HKCCs illustrated the localization of KCs relative to hepatocytes in 

these co-cultures (Supplementary Fig. 1).16 KCs were well distributed around and among 

the hepatocyte chords that formed as a result of the seeding conditions described in the 

Materials and Methods section. LPS treatment did not appear to have an impact on the 

localization or distribution of the KCs among the hepatocytes (Supplementary Figs. 1b,1d).

Effect of Medium Formulation on HKCC Integrity and Viability

As part of our model development strategy, we further explored the effects of 4 

commercially available cell maintenance media (ADMEM, MCM, WEM, or Williams' E-

based HMM) on HKCC viability and morphologic integrity over a 72-h period in the 

presence and absence of LPS. In keeping with previous study conditions, no glucocorticoids 

were used during these media comparison experiments.16 The results showed that MCM 

maintained the greatest overall ATP levels in HKCCs on culture day 3, representing 

contributions from both hepatocytes and KCs, followed by A-DMEM, regardless of LPS 

stimulation (Figs. 2a and 2b). Corresponding photomicrographs depicting the unstimulated 

HKCCs at 72 hours confirmed that the overall health and integrity of the co-cultures were 

best supported using MCM (Supplementary Fig. 2). As a result of these experiments, all 

subsequent experiments were performed using glucocorticoid-free MCM as the basal 

maintenance medium formulation.

Effects of Glucocorticoids on LPS-Induced Responses

To develop a more physiologically relevant medium formulation that included 

glucocorticoids to support native hepatocyte metabolic function, the impact of Dex or HC 

exposure on cell morphology and LPS-induced inflammatory cytokine responses in HKCCs 

was explored. Initial experiments were performed using Dex on account of its prevalent use 

and acceptance as a potent synthetic glucocorticoid for hepatocyte cell culture 

experimentation in the pharmaceutical and chemical industries. The impact of Dex on 

HKCC monolayer integrity and cytokine response was investigated after brief exposure (2 h) 

to medium containing 1 μM Dex during the post-isolation hepatocyte and KC attachment 

phase. As has previously been shown, the presence of 1 μM Dex enhanced the overall 

appearance of the monolayers and the cuboidal architecture of the hepatocytes (data not 

shown).18,23 However, the LPS-induced production of TNF-α was reduced by 

approximately 80% from no LPS levels, and IL-6 was completely eradicated in Dex-treated 

HKCCs (Figs. 3a and 3c).

We further explored the tenacity of the Dex-mediated effects on LPS-induced cytokine 

response by exposing only the hepatocytes during the attachment step to an even reduced 

amount of Dex (20 nM). Upon hepatocyte attachment, the Dex-containing medium was 

removed and cultures were washed with fresh Dex-free medium before addition of KCs to 

the hepatocyte monolayers. Photomicrographs of HKCCs with and without 20 nM Dex in 
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the plating medium during hepatocyte and KC attachment showed minor effects on cell 

morphology after day 1(Supplementary Figs.3a and 3c). However, there were marked 

differences in the overall monolayer integrity and cuboidal structure of the hepatocytes by 

day 3 in the absence of Dex (Supplementary Fig. 3b). LPS-induced TNF-α levels were 

reduced approximately 33% of those without Dex, whereas IL-6 production was reduced 

approximately 70% (Figs. 3b and 3d). The results from an expanded list of cytokines as 

represented in Table 1 confirmed that the major pro-inflammatory cytokines, for example, 

IL-6, IL-1α, IL-12, granulocyte-macrophage colony-stimulating factor, and IFN-γ, were 

drastically reduced, whereas the anti-inflammatory cytokines, for example, IL-10 and IL-4, 

were minimally affected. The combined results from these experiments indicated that Dex 

would not be a suitable glucocorticoid supplement for subsequent use in experiments to 

investigate compound-induced effects on adaptive immune responses, even if only used at 

low levels during the cell attachment stage.

Hydrocortisone as a Substitute Glucocorticoid in HKCCs for Immune-Based Toxicity 
Testing

Given the tenacity of Dex pretreatment on cytokine response to LPS exposure in HKCCs, 

we explored whether brief exposure to low concentrations of HC, a glucocorticoid with 

lower in vitro stability and potency, would serve as a suitable substitute. For these 

experiments, hepatocytes and KCs were seeded in attachment medium containing 1 μM HC, 

which was subsequently replaced with HC-free maintenance medium. Cultures were then 

treated with TVX over a range of concentrations (0-200 μM) known to cause differential 

effects on cytokine profiles and cytotoxicity in the presence of LPS after a 48-h exposure 

period.24,25 As a negative control, the experiments were run in parallel using HKCCs treated 

with the nontoxic analog LVX with or without LPS. As anticipated, the results showed 

statistically significant increases in both TNF-α and IL-6 production levels in LPS-activated 

HKCCs compared with those that were not (Figs. 4a and 4b). TVX caused decreased ATP 

levels with LPS co-treatment (Fig. 4c), whereas no significant decreases in ATP levels were 

observed in LVX-treated HKCCs under any condition (Fig. 4d). TVX produced 

concentration-dependent increases in TNF-α production (Fig. 4a) and corresponding 

decreases in IL-6 production (Fig. 4b) at 22 μM before overt toxicity at the highest 

concentration tested (200 μM). TVX and LPS co-exposure significantly affected both TNF-

α and IL-6 production (interaction term p < 0.0001). LPS and LVX co-exposure caused 

significant increases in TNF-α that were independent of LVX concentration (Fig. 4a). In 

contrast, LPS and LVX interact (interaction term p < 0.05) to increase IL-6 at 66 μM with 

respect to LVX vehicle control. These data recapitulate previous data collected from rat co-

culture systems without HC.16

As a result of these initial outcomes, we further expanded on these findings by exploring the 

effects of low levels of HC on Cyp3A metabolic activity and cytokine levels in LPS-

activated HKCCs. Inflammatory cytokines, such as IL-6, are known to reduce the drug-

metabolizing capacity of the liver in both animal models and isolated primary 

hepatocytes.26-28 Therefore, cells were exposed to either 1 or 10 μM HC during attachment 

(∼2 h) or continuously for the first 24 h in culture, followed by treatment for an additional 

48 h with LPS and TVX (50 μM), which causes well-defined alterations in IL-6 and Cyp3A 
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activity levels without overt hepatocellular injury in the previous experiments. Under all HC 

treatment conditions tested, the expected suppression of Cyp3A activity was observed in the 

absence of TVX as a result of the corresponding increases in IL-6 and TNF-α production in 

LPS-activated HKCCs (Fig. 5). Moreover, the corresponding reversal of this suppressive 

effect was observed in activated co-cultures treated with 50 μM TVX regardless of the HC 

concentration or exposure period. These outcomes were further confirmed by the 

concomitant LPS-induced changes in the proinflammatory cytokine profiles of IL-6 and 

TNF-α in the presence and absence of TVX (Figs. 5b, 5c, 5e, and 5f).

The corresponding morphologic effects of short-term (2 h) versus long-term (24 h) exposure 

to HC before LPS stimulation were also examined on HKCCs using phase-contrast 

microscopy. The results indicated that treatment with 1 or 10 μM HC sustained or improved 

the over morphologic integrity and longevity of the cultures compared with those maintained 

in HC-free medium over the course of the study period (Supplementary Fig. 4).

HC Effects on LPS- and TVX-Induced Gene Expression in HKCCs

To further elucidate the impact of brief versus prolonged exposure of HKCCs to 1 or 10 μM 

HC on liver-specific gene expression, we investigated the changes in the mRNA levels of 2 

glucocorticoid receptor-dependent genes (Alb and Tat) and 2 oxidative stress and acute 

phase-response genes (Crp and Nos2). The results, represented as a percentage of respective 

HC-free controls, indicate that brief exposure to 1 μM HC did not cause significant changes 

in the expression levels of the 4 genes under any treatment condition (Figs. 6a-6d). However, 

24-h exposure to 1 μM HC caused a decrease in the acute-phase response gene Crp in the 

absence of LPS, whereas it caused an overall decrease in the expression of Nos2 under all 

treatment conditions (Figs. 6a and 6b). Addition of LPS reversed Crp suppression brought 

about by24 h of 1 μM HC exposure. HKCCs exhibited a global increase for all 4 genes when 

exposed to 10 μM HC at plating, regardless of LPS or TVX treatments (Figs. 6e-6h). As 

seen with 24 h-1 μM HC, LPS-induced Crp expression increased with 24 h of 10 μM HC 

(Fig. 6e). Another similarity to 24 h of 1 μM HC results is the overall decrease in expression 

of Nos2 under all treatment conditions when combined with 24 h of 10 μM HC (Fig. 6f). 

Although no differences in Tat expression were observed between the different 10 μM HC 

exposure times tested, a trend in the upregulation of Alb was observed in HKCCs exposed to 

10 μM HC for 24 h (Figs. 6g and 6h).

Immune-Mediated Toxicity Testing Using the Modified HKCC System

Overall, the combined results from the previous experiments demonstrated that HKCCs 

exposed to HC in the first 24 h of culture exhibited better viability, morphology, and hepatic 

gene expression profiles while successfully recapitulating the in vitro changes in metabolic 

function, cytokine profiles, and hepatotoxic effects known to occur under glucocorticoid-free 

conditions.16 As a result of these findings, MCM medium supplemented with 1 μM HC for a 

24-h period before treatment with LPS was selected as our system of choice for screening 

additional compounds for immune-mediated changes in cytokine profiles and hepatocellular 

functions. For these experiments,a subset of compounds with known associations with liver 

injury and inflammation was selected from a list of hepatotoxic compounds published 

previously.29 After a 24-h post-plating acclimation period, monocultures of hepatocytes and 
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matching HKCCs were treated with compounds over a range of concentrations in the 

presence or absence of LPS to assess effects on cytokine production and metabolic (Cyp3A) 

activity. These experiments were designed to show the impact of KC activation in the 

presence of LPS on the concentration-dependent effects of 6 hepatotoxic compounds (Fig. 

8). Matching monocultures of hepatocytes alone (Fig. 7) were treated in an identical fashion 

to discriminate between intrinsic compound-dependent hepatocellular injury in the absence 

of a KC-mediated inflammatory response.

The results are represented in Figures 7 (monocultures) and 8 (co-cultures) as a percent 

change in each end point at each concentration compared with the initial vehicle control 

value from the corresponding groups treated with or without LPS. Corresponding actual 

values for each end point in monocultures and co-cultures treated with each compound are 

included as supplementary tables (Supplementary Tables 1 and 2). In monocultures of 

hepatocytes, TVX caused a 2-fold increase in Cyp3A activity at the highest concentration 

tested but no net change in cytokine production regardless of LPS treatment (Figs. 7a and 

7b). This same overall pattern was observed in HKCCs in the absence of LPS (Fig. 8a). 

However, in the presence of LPS (i.e., KC activation), TVX caused a concentration-

dependent decrease in IL-6 levels that was concomitant with a pronounced approximately 5-

fold increase in Cyp3A activity and enhanced hepatotoxicity (at the highest concentration) 

compared with the other treatment groups (Fig. 8b). Little or no concentration-dependent 

effects were observed on TNF-α levels. On closer inspection of the absolute values of the 

end point data for the HKCCs with and without LPS, it was apparent that the activation of 

KCs in the vehicle control HKCCs treated with LPS caused a 50% reduction of Cyp3A 

activity concomitant with a marked increase in both IL-6 and TNF-α levels (Supplementary 

Table 2A). The data also showed that the TVX-mediated increase in the Cyp3A activity 

correlated with a concentration-dependent decrease in IL-6 production without effect on the 

corresponding production of TNF-α.

APAP also caused a concentration-dependent increase (∼3-fold) in Cyp3A activity in 

monocultures of hepatocytes relative to the vehicle controls without a major change in the 

corresponding cytokine levels regardless of LPS treatment (Figs. 7c and 7d). This pattern of 

effects also occurred on Cyp3A and cytokine profiles in APAP-treated HKCCs in the 

absence of LPS (Fig. 8c). In APAP-treated HKCCs in the presence of LPS, there was a 

concomitant concentration-dependent reduction in IL-6 levels and >5-fold change in Cyp3A 

activity at the highest concentration without a corresponding effect on TNF-α levels (Fig. 

8d). The shift in Cyp3A activity was again associated with the reversal of IL6-mediated 

suppression of Cyp3A similar to what was observed with TVX (Supplementary Table 2A).

TCS caused no significant changes in Cyp3A activity or cytokine levels in monocultures of 

hepatocytes regardless of LPS treatment before observing overt toxicity, which occurred at 

the highest concentration tested (100 μM) (Figs. 7e and 7f). In HKCCs treated with LPS, 

TCS also did not cause a significant change in Cyp3A activity or cytokine levels at subtoxic 

concentrations. A slight reduction in IL-6 levels was observed in the presence of LPS, but it 

was less pronounced compared with TVX and did not result in reversing the IL-6 

suppression of Cyp3A activity levels (Supplementary Table 2A). Acetochlor also did not 

cause marked changes in Cyp3A activity or cytokine levels in monocultures of hepatocytes 
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relative to vehicle controls before overt toxicity, which also occurred at the highest 

concentration tested (100 μM) (Figs. 7g and 7h). In HKCCs, acetochlor caused a slight 

increase in TNF-α which resulted in a slight decrease in Cyp3A activity but no net effect on 

IL-6 levels until the highest concentration (Fig. 8g). In contrast, it caused a reduction in IL-6 

levels in HKCCs treated with LPS, without concomitant effects on TNF-α or Cyp3A (Fig. 

8g), which was not observed in corresponding monocultures of hepatocytes (Supplementary 

Tables 1 and 2). Notably, the overt cytotoxicity observed in acetochlor-treated monocultures 

at the highest concentration was attenuated in HKCCs (data not shown).

Propiconazole treatment of monocultures caused a large ∼10-fold increase in Cyp3A activity 

at the lowest concentration tested, followed by a complete inhibition of Cyp3A activity at 

the higher concentrations (Figs. 7i and 7j). In contrast, it had minimal effects on cytokine 

levels that were related to the LPS treatment (Supplementary Table 1A). Propiconazole-

treated HKCCs in the absence of LPS exhibited a reduced 4-fold increase in Cyp3A activity 

at the lowest concentration followed by complete inhibition of metabolic activity at the 

higher concentrations (Fig. 8i; Supplementary Table 2A). However, the induction of Cyp3A 

activity at the lower concentration was nearly completely attenuated in LPS-activated 

HKCCs (Fig. 8j). Little or no effects were observed on the cytokine levels in HKCCs 

regardless of the LPS treatment with the exception of LPS-treated co-cultures at the highest 

propiconazole concentration tested, where reduced IL-6, but not TNF-α, and enhanced 

cytotoxicity were observed (Supplementary Table 2A).

AA caused little or no changes in IL-6 or TNF-α levels in monocultures of hepatocytes in 

the absence of LPS (Fig. 7k). However, there was a slight concentration-dependent increase 

in IL-6 in LPS-treated monocultures (Fig. 7l). Regardless of the LPS treatment, a marked 

reduction in Cyp3A activity was observed in monocultures at concentrations ≥100 μM, 

which coincided with the onset of overt cytotoxicity (Figs. 7k and 7l; Supplementary Table 

1B). Treatment of HKCCs with AA caused more pronounced changes in cytokine levels in 

the presence of LPS at concentrations ≥100 μM (Figs. 8k and 8l). Notably, there were more 

pronounced concentration-dependent decreases in Cyp3A activity at the lower 

concentrations of AA in HKCCs compared with monocultures but less pronounced 

decreases in Cyp3A activity at higher AA concentrations (Figs. 8k and 8l). On closer 

inspection of the separate end point values, AA caused a concentration-dependent decrease 

in Cyp3A activity that was independent of LPS treatment (Supplementary Table 2B).

Discussion

Drug- and chemical-induced hepatotoxicity continues to be a major concern during 

development and compound prioritization in the pharmaceutical and agrochemical 

industries, despite the scientific advancements in our understanding of the clearance, 

disposition, and exposure for most compounds. Many hepatotoxic responses are caused or 

exacerbated by an immune system component, which cannot be mimicked in simple 

monocultures of hepatocytes.3,6 More advanced, multicellular models incorporating both 

primary adult hepatocytes and resident immune cells, i.e., KCs, recapitulate the interaction 

between parenchymal and immune cells under controlled conditions.30 LPS- and treatment-

mediated KC activation also has been shown to contribute to a number of adverse effects 
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produced by hepatotoxic compounds.21,30,31 Hypotheses for the key molecular events and 

cellular pathways that may be involved in the mechanisms of action and progression of the 

hepatotoxic effects in vivo have been elegantly described and illustrated previously.10,32 

Accordingly, the direct and indirect effects of compounds on important cell–cell 

interactions, shifts in cytokine levels, and changes in metabolic clearance can only be 

examined more systematically in vitro using more sophisticated co-culture systems that 

incorporate the key cell types that possess biochemical pathways.

In a previous study, we described an in vitro co-culture model using rat primary hepatocytes 

and cryopreserved KCs.16 We established conditions that facilitated short-term culture of 

both cell types while maintaining responsiveness to LPS activation and TVX-dependent 

hepatocellular injury. TVX is one of the most highly studied and best described examples of 

immune-mediated enhanced hepatotoxicity.33,34 Previous work has shown that TNF-α is a 

key mediator of TVX effects on caspase-dependent hepatocellular injury by direct effects on 

resident macrophages (e.g., KCs) and increasing its biosynthesis and slowing its 

elimination.32,35 LVX, a structural analog of TVX, does not exhibit the direct effects on KCs 

nor the corresponding hepatotoxic properties in vivo or in vitro.

In our previous work, we used KCs from a commercial source (Life Technologies/Thermo 

Fisher) and avoided the use of glucocorticoids due to their known anti-inflammatory effects. 

As an extension of our previous work, our goal was to establish methods of isolating donor-

matched hepatocytes and KCs from the same tissue specimen to establish a model for 

studying the role of innate and adaptive immunity in idiosyncratic drug-induced liver injury 

(IDILI). The ability to isolate and culture donor-matched cell types also would allow studies 

to be performed using the matched cell types from knock-out animals and specific strains 

from murine genetic diversity panels.15,36 Moreover, we are exploring the genetic variability 

that accounts for the idiosyncratic drug-induced liver injury and its severity in some patient 

populations.2 To conduct these studies, it is important to eliminate any artifactual immune 

response that could be due to differences in the human leukocyte antigen system and major 

histocompatibility complex proteins or mismatches across donors. This becomes even more 

important when using inbred strains of rodents or precious human tissue samples from 

patients that have very rare or unique genetic backgrounds. In addition to having donor-

matched liver cells, we also intended to identify a more suitable medium formulation 

incorporating low levels of glucocorticoids, if possible, to prolong the useful life span of 

HKCCs and to better understand drug-induced hepatotoxic events under more physiologic 

conditions.

To isolate liver cells from the same tissue, we combined methods from the literature that had 

been originally designed to isolate individual cell types and modified them until we were 

able to obtain suitable quantities of hepatocytes and KCs with acceptable purity and 

viability.18-20 As demonstrated in Figure 1, we were able to obtain relatively pure 

populations of KCs that exhibited >90% enrichment of macrophage-specific markers, CD68 

and CD163. Further examination by phase-contrast and immunofluorescence microscopy 

confirmed the presence of KCs that stained positive for these same markers. We also 

established a protocol for plating the hepatocytes and KCs sequentially, which followed the 

natural progression of the isolation procedure, such that the hepatocytes were isolated first 
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and allowed to attach for 45-60 min, whereas the KCs were purified from the NPC-enriched 

supernatant fractions. Freshly isolated KCs were then added to the attached hepatocyte 

monolayer, after which they became integrated in between individual hepatocytes, as 

illustrated in Figure 2.

Following the establishment of our isolation protocols, we explored different formulations of 

culture media that had been used for the maintenance of primary hepatocytes.18,23 The 

results from the medium experiments indicated that MCM provided greater support for 

optimal co-culture morphology and viability over a 72-h culture period, which was deemed 

suitable for investigating compound effects on immune-related responses and hepatocellular 

injury. Notably, MCM had been identified previously as a “preferred” medium for 

maintaining primary hepatocyte function and viability over longer culture periods, but this is 

the first report to show evidence of its beneficial effects on maintenance of HKCC 

monolayer integrity and functionality.17,23

We then attempted to identify suitable conditions under which we could incorporate 

glucocorticoids to sustain hepatocyte gene expression and metabolic capacity, while 

retaining the HKCC cytokine response to LPS.17,30 Our initial experiments confirmed that 

the use of potent and stable glucocorticoids, such as Dex, completely abolish the activation 

of KC by LPS in both KC monocultures and co-cultures even after limited exposure during 

the initial attachment phase. However, subsequent results suggest that HKCCs, exposed to 

low levels of HC (1 μM) for up to 24 h after plating, could still respond normally to LPS 

treatment, recapitulating key events such as TNF-α and IL-6 cytokine production and 

concentration-dependent TVX toxicity. Importantly, cytokine production directly resulted in 

the downregulation of CYP activity, which was reversed by TVX treatment, a benchmark 

result from a prototype compound that is known to elicit adverse effects in vitro and in vivo, 
especially under inflammatory conditions.10,12,16,25 Moreover, gene expression levels of 

liver-specific and oxidative stress and acute phase-response genes were maintained at higher 

levels in HKCCs with HC pretreatment compared with those without it.

After establishing the culture conditions for maintaining cell longevity and improved 

hepatocyte functionality while retaining LPS responsiveness, a subset of known 

hepatotoxicants was tested using the modified HKCC model system.29,37 The compounds 

were tested over a 48-h exposure period at several concentrations that were relevant to their 

exposure in vivo or that had been shown to cause hepatocellular injury in vitro. We then 

examined their immune-mediated (LPS induced) and direct effects (without LPS) on the 

production of key cytokines, namely TNF-α and IL-6, and metabolic capacity as represented 

by Cyp3A activity. Cytotoxicity was monitored either visually by phase-contrast microscopy 

and/or biochemically by measuring changes in intracellular ATP levels.

First, the data confirmed the fidelity of the modified HKCC model to recapitulate the key 

events exhibited by the benchmark compound TVX, including the concentration-dependent 

alteration in IL-6/TNF-α ratios and corresponding shift in Cyp3A suppression that has been 

described previously.16 HKCCs treated with APAP also exhibited a similar trend in LPS-

mediated effects on cytokine profiles and CYP activity. In addition, APAP caused a greater 

cellular ATP decrease in LPS-treated HKCCs relative to co-cultures not exposed to LPS, 
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which was similar to what was observed with TVX (data not shown). Notably, APAP is 

another compound known to be associated with immune-mediated enhanced hepatotoxic 

events leading to severe liver injury and liver failure in some individuals.37 Although it is 

well established in the literature that APAP is metabolically activated to a reactive 

metabolite (N-acetyl-p-benzoquinone imine), which depletes glutathione as a key initiating 

event leading to oxidative stress and hepatocellular injury, our results provide confirmation 

that there may be secondary pathways involved in its hepatotoxic mechanism, such as 

changes in cytokine profiles and metabolic capacity, that may be responsible for 

enhancement of toxicity in LPS-activated HKCCs, outside the classical APAP-induced 

cytotoxic effects from N-acetyl-p-benzoquinone imine, formation. Notably, the 

“idiosyncratic” nature of the severity of APAP toxicity in some patients has been linked to 

the patient's adaptive immune responses, suggesting that it too may fall into a category of a 

“TVX-like” mechanism.15,37

Other hepatotoxic compounds that were tested using the enhanced HKCC system exhibited 

unique trends in their effects on either cytokine profiles and/or CYP activity that seemed to 

lead to exacerbated or attenuated cytotoxicity. For the most part, the compound-induced 

effects observed in the HKCC model system are likely to be a reflection of their mode of 

action on KC activation and/or hepatocellular functions. For example, it has been shown that 

TCS causes LPS-independent perturbations in thyroxine disposition.38 Chloroacetanilide 

pesticides, such as acetochlor and alachlor, exhibit metabolism-dependent 

hepatotoxicity.29,39 Many antifungals, such as propiconazole, are known to be potent 

inhibitors and inducers of liver CYP enzymes and nongenotoxic tumor promoters, events 

which are exacerbated by inflammatory responses.40 AA has been shown to exhibit selective 

hepatocellular damage around the periportal region that was shown to be related to localized 

gradients in oxygen and inflammatory responses.41

Taken together, these results suggest that the HKCC model could provide additional 

information and insights into the innate potential of compounds in development to cause 

hepatocellular injury and toxicity. We propose that the HKCC model system could 

potentially be used to stratify toxic compounds into subcategories of immune-mediated 

hepatotoxic responses as observed in this study, for example, (1) compounds that caused 

KC-mediated decreases in IL-6 levels with concomitant metabolic activity leading to 

enhanced cytotoxicity (e.g., TVX, APAP); (2) compounds that caused hepatocellular effects 

and cytotoxicity that were independent of inflammatory mediators (e.g., TCS); (3) 

compounds exhibiting KC-mediated attenuation of hepatocellular effects and cytotoxicity 

(e.g., acetochlor, AA); and (4)compoundsthatcausemarked changes in metabolic capacity 

(i.e., induction and inhibition of Cyp3A), with enhanced KC-mediated cytotoxicity in the 

absence of distinct cytokine effects (e.g., propiconazole). Moreover, our findings underscore 

the need for more biologically relevant, multicellular culture models to study these complex 

biologic and toxicologic events. Further research is warranted to explore the mechanisms of 

the LPS-enhanced and KC-mediated secondary and adaptive events leading to enhanced or 

diminished hepatocellular injury.
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Conclusions

We have demonstrated the utility of an optimized donor-matched HKCC model for 

exploring possible mechanisms of immune-mediated drug responses. Our HKCC system 

responds to prototype effector molecules of inflammation and toxicity and corresponds 

closely with results observed previously in vitro and in vivo for prototype hepatotoxic 

compounds. Application of this model system to screening a limited set of compounds 

associated with liver injury indicated that APAP displayed enhanced immune-mediated 

effects similar to that of TVX, a known IDILI compound. Other compounds had unique 

direct or indirect effects on cytokine levels and metabolic capacity that appeared to reflect 

known in vitro and in vivo effects or modes of action.29,37,42,43 Overall, these findings 

support the use of HKCCs, with proper medium formulation, as a valuable in vitro tool to 

evaluate and stratify compounds with hepatotoxic liability that would otherwise be 

overlooked using hepatocytes alone. Moreover, this novel approach can be extended to 

development of a human-based co-culture model to explore population diversity in innate 

immunity and its role in IDILI.
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Figure 1. 
Flow cytometric analysis of freshly isolated rat NPC- and KC-containing fractions. (a) 

Representative fluorescent images of cells analyzed by flow cytometry and counterstained 

with antibodies against CD68 and CD163 for visual verification of cells with macrophage 

lineage (i.e., KCs). Original magnification, 100×. (b) FSC/SSC plot representing entire 

population present after elutriating liver cells for KC. Counts were recorded for 100,000 

events within the population of interest. All cells are shown in FSC/SSC to ensure maximum 

collection of KC during elutriation. (c) Cell viability is represented by dye exclusion. Only 

viable cell populations were used for subsequent cell marker analysis. (d) Flow analysis of 

cell fractions using CD68 and CD163 as markers of cell lineage and relative fraction purity 

with corresponding gating strategy. Representative plots for unstained control sample, SEC 

fraction, and KC fraction are shown. Quadrants display cells that are both CD68− and 

CD163−, single CD68+, single CD163+, and double CD68+/CD163+. Data are 

representative of 3 separate elutriations. SEC, sinusoidal endothelial cells.
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Figure 2. 
Effect of maintenance medium formulation on intracellular ATP levels in HKCCs. 

Hepatocyte monocultures and HKCC were cultured for 48 h with or without LPS in 4 

different types of maintenance media. (a) Cell viability across medium formulations without 

LPS stimulation. (b) Cell viability across medium formulations with LPS stimulation. An 

“*” denotes a significant difference between ATP values for a given medium and those for 

MCM, after a Bonferroni post-test (p < 0.001).
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Figure 3. 
Effects of Dex supplementation in hepatocyte and KC plating medium on HKCC cytokine 

release. TNF-α and IL-6 release from HKCCs in which Heps and KCs were plated in media 

containing Dex (a and c, 1 μM; b and d, 20 nM) (†, values from biologic singlet wells). 

Significance of Dex treatment on cytokine release in LPS-stimulated HKCC was determined 

by 2-tailed Student's t-test (****p < 0.0001; ***p < 0.001; **p < 0.01). BLQ, below limit of 

quantification.
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Figure 4. 
Validation of immune-mediated biology in HKCC with prototypical positive and negative 

control compounds. HKCCs were exposed to a concentration range (0-200 μm) of TVX or 

LVX in the presence and absence of LPS. Levels of TNF-α (a) and IL-6 (b) in collected 

medium samples were assayed by ELISA after 48 h of compound exposure. Combined 

effects of LPS and compound were analyzed for each cytokine by 2-way ANOVA with 

Dunnett's post-test and compared with compound vehicle control (*p < 0.05; **p < 0.01; 

***p < 0.001; ****p < 0.0001). Matching data for levels of ATP in HKCC after treatment 

with TVX (c) or with LVX (d) in the presence or absence of LPS found that relative to no 

LPS control, LPS significantly increases ATP levels for LVX and significantly decreases 

ATP for low TVX concentrations. ATP statistics were performed by 2-way ANOVA with 

Bonferroni's post-test to compare no LPS to LPS (*p < 0.05; **p < 0.01; ***p < 0.001; 

****p < 0.0001).
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Figure 5. 
Effects of 1 and 10 μM HC on Cyp3A activity and IL-6/TNF-α levels in HKCCs. HKCCs 

were exposed to 1 or 10 μM HC briefly (∼2 h) at plating or for 24 h and then were treated 

with 1 μg/mL LPS, 50 μM TVX, and/or respective controls for 48 h. Cyp3A activity was 

assessed (a, 1 μM HC; d, 10 μM HC), and media was collected and frozen for IL-6 (b, 1 μM 

HC; e, 10 μM HC) and TNF-α (c, 1 μM HC; f, 10 μM HC) analyses as described in the 

Materials and Methods section.
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Figure 6. 
Gene expression in HKCC after exposure to 1 or 10 μM HC. HKCCs were exposed to 1 or 

10 μM HC briefly (∼2 h) at plating or for 24 h and then were treated with 1 μg/mL LPS and 

50 μM TVX and/or respective controls for 48 h; (a-d) represent levels of gene expression 

after 1 μM HC exposure and (e-h) after 10 μM HC exposure. Crp expression is shown in (a) 

and (e), Nos2 in (b) and (f), Tat in (c) and (g), and Alb in (d) and (h).
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Figure 7. 
Effects of known hepatotoxic compounds on Cyp3A activity and IL-6/TNF-α levels in 

monocultures of hepatocytes with or without LPS; data expressed as % +/− LPS controls; 24 

h post-plating, hepatocytes were treated with varying doses of TVX (a, b), APAP (c, d), TCS 

(e, f), acetochlor (g, h), propiconazole (i, j), or AA (k, l) with or without 1 μg/mL LPS for 48 

h. Cyp3A activity was assessed, and media was collected and frozen for IL-6 and TNF-α 
analyses as described in the Materials and Methods section. Data are representative of a 

single experiment and expressed as a percentage of the respective LPS-free or LPS-

containing vehicle controls as shown on the y-axis. *Toxicity evident in photomicrographs 

or ATP studies for this compound (data not shown).
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Figure 8. 
Effects of known hepatotoxic compounds on Cyp3A activity and IL-6/TNF-α levels in 

HKCCs with or without LPS; data expressed as % of +/− LPS controls. HKCCs were treated 

with varying doses of TVX (a, b), APAP(c, d), TCS (e, f), acetochlor (g, h), 

propiconazole(ij), orAA(k, l) with or without 1 μg/mL LPS for 48 h. Cyp3A activity was 

assessed and media was collected and frozen for IL-6 and TNF-α analyses as described in 

the Materials and Methods section. Data are representative of a single experiment and 

expressed as a percentage of the respective LPS-free or LPS-containing vehicle controls as 

shown on the y-axis. “*,” Indicates toxicity evident in photomicrographs or ATP studies for 

this compound (data not shown).
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Table 1
Effects of Dexamethasone (20 nM) in Hepatocyte Plating Medium on Subsequent HKCC 
Cytokine Release

No LPS Activation Analyte (pg/mL) LPS Activation

−Dex +Dex −Dex +Dex

16.6 ± 6.5 3.0 ± 2.0a TNF-α 547.65 ± 311.3 16.0 ± 5.2

384.25 ± 47.6 ND IL-6 1981.1 ± 130.9 ND

5.7 ± 0.9a 6.6 ± 1.4a GM-CSF 115.9 ± 12.1 ND

1.0 ± 3.8a ND INF-γ 12.2 ± 34.4 ND

ND ND IL-1α 148.78 ± 38.0 ND

20.3 ± 1.4a 6.4 ± 3.1a IL-1β 135.1 ± 26.1 7.0 ± 0.7a

93.2 ± 2.1 41.6 ± 0.9a IL-2 381.5 ± 11.6 48.4 ± 1.4a

0.4 ± 1.3a 0.4 ± 0.5a IL-4 0.4 ± 0.9a 0.4 ± 0.6a

55.2 ± 1.3a 65.6 ± 2.7a IL-10 162.83 ± 5.1 117.3 ± 2.1

23.3 ± 1.1a 22.0 ± 0.8a IL-12 203.1 ± 8.9 6.0 ± 0.5a

GM-CSF, granulocyte-macrophage colony-stimulating factor; INF-g, interferon gamma; ND, not detected.

a
Indicates that a value was extrapolated below the linear range of the standard curve for a given cytokine.
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