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The epigenetic regulation of Dicer and microRNA biogenesis by Panobinostat
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ABSTRACT
microRNAs (miRs) are small noncoding RNAs that regulate/fine tune many cellular protein networks by
targeting mRNAs for either degradation or translational inhibition. Dicer, a type III endoribonuclease, is a
critical component in miR biogenesis and is required for mature microRNA production. Abnormal Dicer
expression occurs in numerous cancer types and correlates with poor patient prognosis. Recent reports
have demonstrated that epigenetic agents, including histone deacetylase inhibitors (HDACi), may regulate
Dicer and miR expression. HDACi are a class of epigenetic agents used to treat cancer, viral infections, and
inflammatory disorders. However, little is known regarding the epigenetic regulation of miR biogenesis
and function. We therefore investigated whether clinically successful HDACi modulated Dicer expression
and found that Panobinostat, a clinically approved HDACi, enhanced Dicer expression via
posttranscriptional mechanisms. Studies using proteasome inhibitors suggested that Panobinostat
regulated the proteasomal degradation of Dicer. Further studies demonstrated that Panobinostat, despite
increasing Dicer protein expression, decreased Dicer activity. This suggests that Dicer protein levels do not
necessarily correlate with Dicer activity and mature miR levels. Taken together, we present evidence here
that Panobinostat posttranscriptionally regulates Dicer/miR biogenesis and suggest Dicer as a potential
therapeutic target in cancer.
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Introduction

Cancer development is a complex process involving multiple
factors including, but not limited to, oncogene activation,
silencing of tumor suppressor genes, resistance to apoptosis,
and immune escape.1 Recent work has demonstrated that epi-
genetic dysregulation is crucial to cancer development and
growth.2 Abnormal histone tail posttranslational modifications
alter acetylation status and result in irregular gene expression.3

Several clinical drugs aimed at targeting these epigenetic abnor-
malities in cancer are available. Histone deacetylase inhibitors
(HDACi) are a relatively new class of epigenetic modifying
drugs developed to treat cancer.4 Tumor cells have a higher
sensitivity to HDACi treatment compared with non-trans-
formed cells due to enhanced cell cycle progression and altered
tumor suppressor/oncogene expression.5 HDACi treatment in
cancer harnesses this sensitivity by selectively inducing tumor
cell apoptosis, differentiation, and/or cell cycle inhibition.6

Previous work from our lab demonstrated that HDACi
treatment of tumor cells enhanced immune gene expression
and tumor immunogenicity.7-11 Identification of the mecha-
nisms underlying immune modulation by HDACi treatment
thus becomes an important question. A landmark study
recently showed that a functional immune system is required
for the beneficial effects of HDACi treatment.12 However,
HDACi may also have several negative effects on the immune
system, including expansion of immunosuppressive cell

populations such as T-regs and MDSC.13,14 Furthermore,
innate immune cells become suppressed upon exposure to
HDACi.15 Current HDACi treatment goals are to induce apo-
ptosis and differentiation in tumor cells. In addition to negative
effects on the immune system, unwanted side effects and toxic-
ity have been reported.16 Therefore, it is important to fully
understand HDACi treatment effects.

microRNAs (miRs) are »22 nucleotide noncoding RNAs
that contribute to posttranscriptional gene regulation.17 Their
biogenesis is a tightly regulated process that involves numerous
evolutionarily conserved factors. Dicer, an RNase III endoribo-
nuclease, is responsible for cleaving the pre-miR into a mature
miR duplex in the cytoplasm and is indispensable to most miR
biogenesis.18 Upon completion of miR maturation, the mature
miR duplex is unwound and the guide strand is loaded onto
the RNA-induced silencing complex (RISC).17 The RISC is
responsible for bringing the miR to its target mRNAs, where it
binds to the 30 UTR and leads to translation inhibition or deg-
radation of the target mRNA.19 Dicer is essential for proper
embryonic development, as well as organogenesis in verte-
brates. An embryonic knockout of Dicer is lethal in mice.20

Furthermore, Dicer has a substantial role in immune cell devel-
opment and function.21 A potential role for Dicer in oncogene-
sis was identified by the observation that diminished miR
processing augmented tumorigenesis and cellular transforma-
tion in lung cancer.22 Moreover, several cancer subtypes possess

CONTACT Thomas B. Tomasi thomas.tomasi@roswellpark.org
Supplemental data for this article can be accessed on the publisher’s website.

© 2017 Taylor & Francis Group, LLC

EPIGENETICS
2017, VOL. 12, NO. 2, 105–112
http://dx.doi.org/10.1080/15592294.2016.1267886

http://dx.doi.org/10.1080/15592294.2016.1267886
http://dx.doi.org/10.1080/15592294.2016.1267886


abnormal Dicer expression, correlating with increased disease
staging and poor patient prognosis/overall survival.23

One HDACi in particular, Panobinostat, has achieved some
success in cancer and is FDA approved for treating multiple
myeloma.24 Panobinostat inhibits class I (HDAC 1, 2, 3, 8),
class II (HDAC 4, 5, 6, 7, 9), and class IV (HDAC 11) HDACs
and is one of the most robust pan-HDACi used clinically.25

However, it remains unknown if Panobinostat treatment affects
Dicer and miR expression. The studies reported here were
designed to determine if clinically relevant HDACi, including
Panobinostat, regulate Dicer and miR expression in tumor cells.
We examined the consequence of Panobinostat treatments on
Dicer expression and activity, while extending the studies to
chemically similar HDACi. Lastly, we investigated the mecha-
nism by which Panobinostat regulates Dicer protein expression
and activity. We demonstrate that Panobinostat regulates Dicer
expression and its activity in a posttranscriptional manner and
that Dicer regulation by HDACi could potentially be used clini-
cally to treat certain diseases.

Results

We sought to determine whether Panobinostat, a HDACi used
in cancer treatment, regulates Dicer expression in tumor cells.
JAR choriocarcinoma cells possess epigenetically silenced
immune genes that serve as a model for immune escape. JAR

cells were treated in vitro with increasing doses of Panobinostat
for 24 h. We found that Panobinostat significantly enhanced
Dicer protein expression in a dose dependent manner (Fig. 1A
and B). Since HDACi promote the acetylation of histones and
non-histone substrates, we used acetylated histone H3 to repre-
sent treatment efficacy. Panobinostat treatment enhanced acety-
lated histone H3 levels that correlated with increased Dicer
protein expression. This suggests a direct connection between
chromatin status and Dicer protein expression. An important
issue is that HDACi can induce apoptosis in cells depending on
the dose and treatment duration. The presence of cleaved Cas-
pase-3 was measured to identify whether apoptosis was occur-
ring following Panobinostat treatment. However, only low levels
of cleaved Caspase-3 were detected after treatment (Fig. 1A).
Therefore, apoptosis likely does not play a role in Dicer enhance-
ment by Panobinostat. Furthermore, Dicer was identified as a
potential Caspase substrate, which suggests that apoptosis would
have the opposite effect on Dicer mRNA expression.26 Surpris-
ingly, Dicer mRNA expression was significantly decreased by
Panobinostat, implying that Dicer was likely being posttran-
scriptionally regulated (Fig. 1C). Argonaute-2, a member of the
RNA-induced silencing complex (RISC), was also enhanced at
the protein level by Panobinostat (Fig. 1A). This suggests that
multiple steps in the miR pathway are epigenetically regulated.
To investigate whether chemically similar HDACi to Panobino-
stat regulate Dicer, we tested a second hydroxamate,

Figure 1. Panobinostat posttranscriptionally enhances Dicer protein expression. A. JAR cells treated with increasing doses of Panobinostat for 24 h were harvested, lysed,
and probed for expression of Dicer, Argonaute-2, acetylated histone 3, Caspase-3, cleaved Caspase-3, and b-actin via Western blot. Data represent three independent
experiments. B. Data from A quantified from three independent experiments. C. RNA was harvested from the previous cell treatments and Dicer and b-actin mRNA levels
were assessed via quantitative real-time RT-PCR. D. JAR cells treated with 25 nM Trichostatin A were harvested and probed for expression of Dicer, acetylated histone 3,
and b-actin via Western blot. The data represent three independent experiments. E. Data from D quantified from three independent experiments. Error bars § SEM,
�P < 0.05, ��P < 0.005, ���P < 0.0005.
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Trichostatin A (TSA). TSA is one of the most well characterized
HDACi, but has not been used extensively in recent clinical tri-
als. A dose of TSA that induced proportionate cell viability to
25 nM Panobinostat, as detected by trypan blue viability, was
used to treat JAR cells in vitro for 24 h. Similar to Panobinostat,
TSA significantly enhanced Dicer protein expression (Fig. 1D
and E). To confirm that Dicer regulation by Panobinostat and
TSA was not specific to JAR cells, the above experiments were
repeated using HeLa cells, a cervical carcinoma. A comparable
significant enhancement in Dicer protein expression was
obtained from HeLa cells treated with Panobinostat for 24 h
(data not shown). Furthermore, TSA also significantly enhanced
Dicer protein expression in HeLa cells (data not shown). These
data demonstrate that Dicer protein expression is enhanced by
the epigenetic agents Panobinostat and TSA.

To further characterize Dicer protein regulation by Panobino-
stat, JAR cells were treated with 25 nM Panobinostat over a 48 h
time course. An enhancement of Dicer protein expression was first
detected at 24 h of treatment, suggesting the increase was occurring
between 18–24 h post-treatment (Fig. 2A). However, acetylated
histone H3 was first observed 1 h post-treatment, and peaked 18 h
post-treatment. This implies that Panobinostat rapidly inhibits
deacetylase activity without measurable effects on Dicer protein
expression. DicermRNA levels did not increase at any point during
the time course (data not shown). Similar results were obtained
using TSA; however, histone H3 acetylation following TSA treat-
ment did not endure as long as that observed with Panobinostat
(Fig. 2B). Consistent with our data demonstrating that Dicer
mRNA is decreased by Panobinostat, these results suggest that
Panobinostat can posttranscriptionally regulate Dicer.

Since Dicer protein expression was enhanced by Panobinostat
and TSA, Panobinostat was chosen for use in subsequent studies
because it gave a greater enhancement of Dicer protein expression
and due to its clinical relevance. HDACi treatment can alter protea-
somal degradation of various proteins, either enhancing or inhibit-
ing their degradation.27-32 Therefore, we investigated whether the
increase in Dicer protein expression by Panobinostat was a result
of diminished proteasomal degradation. Bortezomib, a well-known
and clinically relevant inhibitor of proteasomal degradation, was
chosen for these studies. JAR cells were treated with Bortezomib,
Panobinostat, or both for 24 h. As expected, Panobinostat signifi-
cantly enhanced Dicer protein expression (Fig. 3). We also found
that Bortezomib significantly increased Dicer protein expression,
suggesting that Dicer is degraded by the proteasome (Fig. 3).

Surprisingly, there was no significant difference between Panobino-
stat and Bortezomib combination treatments compared with the
single agent treatments (Fig. 3). This suggests that Dicer protein
expression was not synergistically enhanced by the Panobinostat
and Bortezomib combination and that both drugs may regulate
Dicer expression through similar mechanisms (Fig. 3).

AlthoughDicer protein expression was enhanced by either Pan-
obinostat or Bortezomib treatments, it is important to determine
how these changes affect Dicer-dependent miR biogenesis. There-
fore, we established an in vitroDicer activity assay utilizing radiola-
beled pre-miR-124a to quantify Dicer activity in protein lysates.
Untreated JAR cell protein lysates were titrated to demonstrate the
linearity in both pre-miR cleavage and mature-miR production
(Supp. Fig. 1A and B). The radiolabeled pre-miR-124a Dicer cleav-
age sites are known, which allowed us to predict specific cleavage
products. Recombinant Human Dicer was incubated with radiola-
beled pre-miR-124a and demonstrated specific cleavage of the pre-
miR by Dicer (Supp. Fig. 1C). Surprisingly, JAR cells treated with
Panobinostat for 24 h exhibited significantly less Dicer activity, as
determined by more pre-miR-124a template remaining and less
maturemiR-124a produced (Fig. 4A). Dicer’s relative specific activ-
ity was calculated using the ratio of mature-miR produced to nor-
malized Dicer protein expression in the cell lysate. There was a
significant reduction in Dicer’s relative specific activity by Panobi-
nostat treatments (Fig. 4B). These results demonstrate that Panobi-
nostat treated cells have reduced Dicer activity despite higher Dicer
protein expression.

Since Panobinostat treated cells had enhanced Dicer protein
expression, but reduced Dicer activity, we next sought to determine
if Bortezomib had similar effects. As demonstrated earlier, Bortezo-
mib significantly enhancedDicer protein expression (Fig. 3). Unex-
pectedly, there was no significant difference in the amount of
mature miR-124a produced or pre-miR-124a template remaining
in assays with the JAR cell protein lysates C/¡ Bortezomib treat-
ment (Fig. 5A). However, Dicer’s relative specific activity was sig-
nificantly reduced by Bortezomib (Fig. 5B). These data further
suggest that Dicer protein expression does not reflect activity levels,
as two separate treatments that increase Dicer protein expression
(Panobinostat and Bortezomib) inhibit its activity.

Discussion

To date, numerous studies have demonstrated that abnormal
Dicer expression exists in various cancers and correlates with

Figure 2. Dicer protein expression over 48 h of Panobinostat treatment. A. JAR cells treated with 25 nM Panobinostat over the course of 48 h were harvested and probed
for expression of Dicer, acetylated histone 3, and b-actin via Western blot. B. JAR cells treated with 25 nM Trichostatin A over the course of 48 h were harvested and
probed for expression of Dicer, acetylated histone 3, and GAPDH via Western blot. The data represent two independent experiments.
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advanced staging, poor prognosis, and reduced overall sur-
vival.23 The data presented here demonstrates that Dicer pro-
tein levels do not correlate with mature miR production.
Therefore, it will be important to determine if patient tumor
samples recapitulate this discrepancy between Dicer expression
and activity. Assaying Dicer activity in patient samples could

potentially clarify this conundrum. If Dicer protein levels do
not correlate with activity in patient tumors, then a new layer
of dysregulated miR biogenesis could be added to the already
complex nature of cancer. A recent report has suggested that
Dicer may be a potential therapeutic target to enhance multiple
sclerosis patient response to treatment.33 Determining Dicer

Figure 3. Panobinostat reduces the proteasomal degradation of Dicer. A. JAR cells treated for 24 h with Bortezomib, Panobinostat, or Bortezomib C Panobinostat were
harvested and probed for expression of Dicer, acetylated histone 3, Caspase-3, cleaved Caspase-3, and b-actin via Western blot. The data represent three independent
experiments. B. Data from A quantified from three independent experiments combined and the statistics are displayed in the table. Error bars § SEM, �P < 0.05,
��P < 0.005.

Figure 4. Panobinostat decreases Dicer activity. A. Protein lysates (20 mg) from JAR cells C/¡ 24 h of Panobinostat treatment were used in the Dicer activity assay and
the amount of pre-miR-124a and mature-miR-124a were quantified. B. Dicer’s relative specific activity was calculated using the ratio of mature-miR-124a produced to
Dicer protein expression in a lysate. The data represent three independent experiments. Error bars§ SEM, ��P < 0.005.

Figure 5. Bortezomib decreases Dicer activity. A. 20 mg of protein lysates from JAR cells C/¡ 24 h of Bortezomib treatment were used in the Dicer activity assay and the
amount of pre-miR-124a and mature-miR-124a were quantified. B. Dicer’s relative specific activity was calculated using the ratio of mature-miR-124a produced to Dicer
protein expression in a lysate. The data represent three independent experiments. Error bars § SEM, ��P < 0.005.
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activity levels in patients with various diseases will be important
to understand their disease and stratify them into different
treatment groups.

Several clinical trials involving HDACi have been completed
or are ongoing.34-36 Positive HDACi clinical trial results have
been observed mainly in non-solid tumors, although encourag-
ing results were recently obtained in solid tumors.34-36 Despite
this, the cellular effects of HDACi are largely unknown. Better
understanding HDACi cellular impacts could explain their suc-
cess in treating certain cancers compared with others. One con-
tribution could be their ability to regulate Dicer and miRs.
Future studies designed to determine whether other clinically
relevant HDACi and non-HDACi drugs affect Dicer expression
and activity could allow for better selectivity in targeting cancer
subtypes. Additionally, it will be important to demonstrate
Dicer regulation by HDACi using in vivo models, as our studies
are limited to in vitro systems. Determining Dicer and miR reg-
ulation in HDACi treated patient tumors will also be essential
to confirm these studies.

An important consideration is that Dicer transcript levels do
not always correlate with Dicer protein expression, suggesting
potential posttranscriptional regulation of Dicer expression.37-39

The strong association between Dicer and chromatin status fur-
ther complicates this matter. For example, the formation of het-
erochromatin requires Dicer expression.40,41 Additionally,
siRNA mediated knockdown of Dicer induced histone acetyla-
tion and promoted heterochromatin switching to euchromatin.40

Hypoxia, through the inhibition of H3K27me3 demethylases
KDM6A/B, was able to epigenetically silence the DICER pro-
moter and reduce Dicer expression in breast cancer cells.42 In
colon cancer cells, epigenetically silenced genes are re-expressed
upon loss of Dicer expression, suggesting a role for Dicer in the
epigenetic regulation of tumor suppressor genes through regula-
tion of CpG hypermethylation.43 Collectively, these and
other studies show that Dicer is differentially regulated through
epigenetic mechanisms and plays an important role in epigenetic
regulation.

Here, we demonstrated that Panobinostat regulates Dicer
protein expression posttranscriptionally, potentially through
reduced proteasomal degradation of Dicer protein. However,
the mechanism involved in Panobinostat reduction of Dicer
activity remains unknown and warrants further investigation.
We believe that Panobinostat may be inducing a posttransla-
tional modification on Dicer protein that could affect its activ-
ity and expression levels. We performed several experiments
investigating whether Panobinostat treatment resulted in Dicer
protein acetylation; however, these experiments were unsuc-
cessful due to technical limitations and will require alternative
approaches. Similarly, Bortezomib also increases Dicer protein
expression, while reducing Dicer activity levels. This suggests
that both Bortezomib and Panobinostat could be altering ubiq-
uitination of Dicer protein, resulting in higher expression lev-
els, but reducing its activity. Future studies utilizing mass
spectrometry to analyze potential posttranslational modifica-
tions of Dicer protein will be needed to fully dissect Dicer pro-
tein modifications.

Currently, little is known regarding the mechanisms regu-
lating Dicer expression under basal conditions. This presents
a major gap of knowledge in Dicer biology. Distinct pathways,

including autophagy, apoptosis, and hypoxia can regulate
Dicer expression.26,42,44-46 Additionally, transcription factors
such as MITF, SOX4, and NF-kB interact with the DICER
promoter to regulate its expression.47-49 Since Dicer levels are
frequently altered in disease states, determining the mecha-
nisms of Dicer regulation and dysregulation will be of para-
mount importance. Additionally, Dicer can have various
binding partners that influence its activity levels, including
TRBP and PACT.18 It will be important to determine how
HDACi treatment affects their ability to interact with Dicer,
their regulation of Dicer activity, and their expression levels.
Furthermore, we showed that Argonaute-2 was enhanced by
Panobinostat treatment. As Argonaute-2 is a vital member of
the RNA-induced silencing complex (RISC), this suggests that
miR function, in addition to miR biogenesis, could be regu-
lated by HDACi treatment. Previously, it was shown that
HDACi treatment could rapidly alter miR expression levels,
either increasing or decreasing certain subsets of micro-
RNA.50-53 Future studies should include dissecting how and
why HDACi differentially regulate the expression of miR sub-
sets. Investigating whether different classes of HDACi affect
miR expression similarly may lead to a better understanding
of HDACi treatments and the epigenetic regulation of miRs.
HDACi treatments may also modulate the half-life of certain
miRs, resulting in altered expression levels.

Taken together, we have demonstrated that (1) Panobinostat
enhances Dicer primarily through posttranscriptional mecha-
nisms; (2) Panobinostat potentially regulates the proteasomal
degradation of Dicer; (3) Panobinostat enhances Dicer protein
expression, but decreases Dicer activity; (4) Dicer protein levels
do not always correlate with mature miR production/expres-
sion levels. These new data contribute to a growing understand-
ing of Dicer expression, regulation, and function critical to
elaborating its biology and its clinical potential.

Materials and methods

Cell culture and reagents

The human choriocarcinoma cell line JAR and human cervical
carcinoma cell line HeLa were purchased from American Type
Culture Collection (ATCC) and cultured according to ATCC’s
instructions. Trichostatin A (Cat #203–17,561, Wako Biochem-
ical) treatments were 25 nM. Panobinostat (Cat #S1030, Selleck
Chemicals) treatments were between
10–75 nM. Bortezomib (Cat #S1013, Selleck Chemicals) treat-
ments were between 5–20 nM.

Western blotting

For whole protein extracts, cells were washed with Phosphate
Buffered Saline (PBS) (Cat #14,190–250, Life Technologies),
harvested, pelleted at 450 £ g for 7 min, and washed once with
PBS. The pellets were lysed on ice for 60 min using RIPA lysis
buffer (Cat #R0278, Sigma-Aldrich) supplemented with prote-
ase inhibitor cocktail (Cat #P8340, Sigma-Aldrich), phospha-
tase inhibitor cocktail (Cat #78,420, Thermo Scientific), and
1 mM dithiothreitol (Cat #D9779, Sigma-Aldrich). The extract
was then centrifuged at 10,000£ g for 10 min and supernatants
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collected. Protein concentrations were determined with the
Micro BCA Assay Kit (Cat #23,235, Pierce). Protein lysates
(20 mg) were heated for 5 min at 95� C in SDS sample buffer
plus 0.13 M dithiothreitol (Cat #D9779, Sigma-Aldrich), sepa-
rated on 7% [for Dicer], 10% [for Argonaute-2], or 15% [for
b-actin, acetyL-Histone H3, Caspase-3, GAPDH] SDS-PAGE
gels and transferred to Immun-blot LF PVDF membranes (Cat
# 162–0177, BioRad). Membranes were blocked using 5% non-
fat dry milk in TTBS (Tween 20 Tris-Buffered Saline) followed
by addition of primary antibodies. Antibodies used were anti-
Dicer (Cat #3,363, Cell Signaling Technology), anti-Caspase-3
(Cat #9,662, Cell Signaling Technology), anti-Argonaute-2 (Cat
#2,897, Cell Signaling Technology), anti-GAPDH (Cat #2,118,
Cell Signaling Technology), anti-b-actin (Cat #8,227, Abcam),
anti-acetyL-Histone H3 (Cat #06–599, Millipore), and goat
anti-rabbit IgG-horseradish peroxidase (Cat #W4011, Prom-
ega). Blots were developed with a West Pico Chemiluminescent
Kit (Cat #34,080, Pierce) and imaged with a Chemidoc MP
imager (BioRad).

In vitro Dicer activity assay

We designed and optimized an in vitro assay to test Dicer activ-
ity in cellular protein lysates. First, we generated a pre-miR-
124a template using PCR. The primers used were
50-CAGCCCCATTCTTGGC-30 [forward] and 50-TAATAC-
GACTCACTATAGGGAGGCCTCTCT-30 [reverse]. Next, we
used the MEGAscript T7 transcription kit (Cat #AM1334,
Ambion) to synthesize a a-32P-UTP (Cat #NEG007C001MC,
PerkinElmer) radiolabeled pre-miR-124a. We then performed
reactions using the radiolabeled pre-miR-124a and recombi-
nant Human Dicer (Cat #T520001, Genlantis) to demonstrate
specific cleavage of the pre-miR by Dicer. We also confirmed
our assay’s specificity using Dicer loss of function cell lines.
20 mg of protein lysates from JAR cellsC/¡ Panobinostat treat-
ment or JAR cells C/¡ Bortezomib treatment were then incu-
bated for 16 h with the radiolabeled pre-miR-124a. Once the
reactions were complete, the samples were run on a denaturing
Urea PAGE gel and specific mature-miR-124a cleavage prod-
ucts were quantified by phosphorimaging (Molecular Dynam-
ics Storm).

Real-time quantitative RT-PCR

Total RNA was isolated using the mirVana kit (Cat #AM1560,
Ambion) and 2 mg was used for reverse transcription with
Superscript II (Cat #18,064–014, Invitrogen) plus oligo dT.
Real-time PCR was performed as previously described on an
ABI7900HT (Applied Biosystems).11 Amplification of cDNA
samples was performed with either Taqman PCR Master Mix
(Cat #RT-QP2£02C10, Eurogentec) or SYBR Green
Master Mix (Cat #4,913,850,001, Roche) according to the man-
ufacturer’s protocol. Primers used included human b-actin
50-GGAGCAATGATCTTGATCTT-30 [forward] and
50- CCTTCCTGGGCATGGAGTCCT-30 [reverse], human
Dicer 50-GTACGACTACCACAAGTACTTC-30 [forward] and
50-ATAGTACACCTGCCAGACTGT-30 [reverse]. Relative
expression levels were determined by the DDCt method as pre-
viously described.11

Statistical analysis

Statistical analysis was performed with GraphPad version 6.05
software. Results are shown as mean § standard error of the
mean (SEM). Comparison of results from Western blots,
qPCR, and Dicer activity assays were performed using the two-
tailed unpaired t-test. Analysis of the combination treatments
(Fig. 3) was validated with ANOVA followed by Fisher’s LSD
test.
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