Skip to main content
. 2017 Feb 13;13(2):e1005384. doi: 10.1371/journal.pcbi.1005384

Fig 4. Effect of relative resting energy r on optimized energy efficiency ηopt(ρ).

Fig 4

(A, B) The optimized energy efficiency ηopt(ρ) vs. activity level ρ for various values of relative resting energy r in both binary (A) and analog scenarios (B). Larger r shifts the value of ρm for maximal ηopt(ρ) monotonically from ρm → 0 at r = 0 to ρm = 0.5 in binary scenario (open circles in (A)) or ρm = 1 in analog scenario (solid points in (B)) at r → ∞. (C) The monotonic dependence of ρm as well as its corresponding firing rate v (v = ρτ, Δτ = 20 ms) on r in both binary (black dashed line) and analog scenarios (black solid line). To achieve the maximal energy efficiency ηopt(ρ), the neuronal firing rate is constrained in the range of 1 ∼ 8 Hz for binary patterns (red dashed line) or 1 ∼ 10 Hz for analog patterns (red solid line) with r in the empirical range 0.005 ∼ 0.1, respectively.