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Abstract: We present imaging of corneal pathologies using optical coherence tomography 
(OCT) with high resolution. To this end, an ultrahigh-resolution spectral domain OCT (UHR-
OCT) system based on a broad bandwidth Ti:sapphire laser is employed. With a central 
wavelength of 800 nm, the imaging device allows to acquire OCT data at the central, 
paracentral and peripheral cornea as well as the limbal region with 1.2 µm x 20 µm (axial x 
lateral) resolution at a rate of 140 000 A-scans/s. Structures of the anterior segment of the eye, 
not accessible with commercial OCT systems, are visualized. These include corneal nerves, 
limbal palisades of Vogt as well as several corneal pathologies. Cases such as keratoconus 
and Fuchs’s endothelial dystrophy as well as infectious changes caused by diseases like 
Acanthamoeba keratitis and scarring after herpetic keratitis are presented. We also 
demonstrate the applicability of our system to visualize epithelial erosion and intracorneal 
foreign body after corneal trauma as well as chemical burns. Finally, results after Descemet’s 
membrane endothelial keratoplasty (DMEK) are imaged. These clinical cases show the 
potential of UHR-OCT to help in clinical decision-making and follow-up. Our results and 
experience indicate that UHR-OCT of the cornea is a promising technique for the use in 
clinical practice, but can also help to gain novel insight in the physiology and 
pathophysiology of the human cornea. 
©2017 Optical Society of America 
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1. Introduction 

The integrity of the cornea and the ocular surface is essential for normal vision. Globally, 
corneal disease is a major cause of blindness including a wide variety of infectious, 
inflammatory and hereditary disorders [1, 2]. Clinically the cornea is examined using slit 
lamp biomicroscopy at various magnifications. Different lighting regimen such as diffuse 
illumination, focal illumination, indirect illumination and retroillumination can be used to 
further differentiate tissues and layers. To assess the shape of the cornea, keratoscopic 
techniques are available. Placido-disk based keratoscopy is based on looking into the 
reflected image from the corneal surface of an object composed of multiple discs. Nowadays 
videokeratoscope-based technology allows for identification of astigmatism, keratoconus, or 
corneal scars, but no information on the posterior surface of the cornea is obtained [3]. Slit-
scanning elevation topography combines the principles of Placido-disk based keratoscopy 
with those of slit scanning providing measurements of anterior and posterior curvature as well 
as mapping the structure of the cornea [4]. Scheimpflug cameras use imaging where the plane 
of an object is not parallel to the film of the camera. Modern instruments employ rotating 
Scheimpflug cameras that take multiple slit-images and allow for quantification of corneal 
elevation, curvature, and thickness [5]. The standard technology for measuring corneal 
thickness is ultrasound pachymetry, by measuring the ultrasound propagation time in the 
tissue. Using very high frequency it is also possible to do multi-layered pachymetry [6]. 

The above-mentioned imaging techniques are, however, all limited by their resolution, 
which does not provide visualization of structures down to the microscopic range. Specular 
microscopy, introduced in the 1920s, is used to visualize the corneal endothelium interface 
and has integrated software capable of analyzing endothelial cell morphology and cell-count 
within a predetermined fixed frame [7]. Newer technology uses automatic image focusing, 
allowing pachymetric measurements. Imaging at a cellular level is also possible using 
confocal microscopy (CM) [8]. By applying the principles of confocal imaging it is possible 
to omit defocused light from reaching the detector. This increases optical resolution and 
contrast. 

Soon after its first use for in vivo imaging of the human retina in 1993 [9], optical 
coherence tomography (OCT) was also applied to the anterior segment of the eye [10]. The 
advancements in acquisition speed and sensitivity that came along with the introduction of 
spectral-domain (SD) OCT allowed imaging of both the morphology of the cornea and the 
corneo-scleral limbus as well as the limbal microvasculature [11–15]. The advances in 
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broadband light source technology led to axial resolutions of a few micrometers and enabled 
visualization of all distinct layers and morphological structures of the anterior eye segment in 
vitro [16] and in vivo [17–21]. The limbal palisades of Vogt, which are the putative location 
of the corneal stem cells, were imaged both, ex vivo and in vivo, using full-field optical 
coherence microscopy (FFOCM) [22] and ultrahigh-resolution OCT (UHR-OCT) [23, 24]. 
Using a broadband superluminescent diode spectrally centered at 1060 nm, images of nerve 
fiber bundles in the peripheral cornea as well as limbal and scleral lymph and blood 
vasculature in healthy eyes were also shown [24]. 

The high axial resolution of UHR-OCT systems allowed precise delineation of the corneal 
layers and together with the short recording times enabled measurement of epithelium and 
Bowman’s layer thickness in both normal and keratoconic eyes [25, 26]. Using SD-OCT 
prototypes, pathologic changes in the Descemet’s membrane in different stages of Fuchs’ 
endothelial dystrophy could be visualized [27, 28]. 

While the axial resolution in OCT is inversely proportional to the bandwidth of the light 
source, the lateral resolution is determined by the diffraction limited spot size in the focal 
plane of the probe beam [29]. The minimum spot size is inversely proportional to the 
numerical aperture (NA) of the focusing optical system. In order to achieve a high lateral 
resolution, a large numerical aperture has to be used. The depth of focus, however, is 
inversely proportional to NA2, thus, increasing the lateral resolution decreases the depth of 
field. Therefore, OCT is typically operated at low NA to allow a long depth of focus in the 
range of several hundred micrometers for imaging of biological tissues. This limits the lateral 
resolution to values in the range of 15 to 20 µm, hampering imaging on a cellular level. Using 
a liquid lens for dynamic focusing on different depth locations [30], Gabor-domain OCM 
allowed to overcome this limitation and provided non-contact ex vivo imaging of corneal cells 
in various layers and corneal nerves in the central cornea, comparable to CM [31]. 

Further fields of applications of the new developments in OCT technology are wide and 
range from biometry and pachymetry to evaluation of surgical outcome after e.g. treatment of 
anterior corneal scarring [32] or refractive surgery [33]. In addition, OCT might allow for 
localization of the demarcation line after cross-linking procedures in keratoconus [34]. 

Beside the imaging anterior segment’s morphology and vasculature, UHR-OCT was 
shown to be capable of resolving the pre-corneal tear film [18, 35, 36] and to provide tear 
film thickness maps [37] of the central cornea, which gives the technology a potential for 
diagnosis and treatment monitoring in dry eye diseases [38, 39]. Furthermore, the assessment 
of the OCT reflectance provided super-resolved visualization of the tear film lipid layer [40]. 

In the present paper, we show images of various corneal pathologies taken by a custom-
built ultrahigh-resolution OCT system with a resolution of approximately 1.2 µm and discuss 
possible implications for the use of this device in clinical practice. 

2. Methods 

2.1. Ultrahigh-resolution OCT 

The experimental setup used for in vivo high-resolution imaging of the anterior eye segment 
is an adapted version of the ultrahigh-resolution SD-OCT system for imaging of the human 
precorneal tear film and has been reported previously [35]. The setup is based on a broad 
bandwidth Ti:sapphire laser (Integral OCT; Femtolasers Produktions GmbH, Vienna, Austria) 
with a spectrum centered at 800 nm. The full width at half maximum (FWHM) bandwidth of 
the source is 170 nm, which results in a theoretical axial resolution of 1.2 to 1.3 micrometers, 
depending on the measured tissue structures. The optical system was designed in order to 
deliver optimal performance for broad spectral bandwidth used for imaging. The free space 
Michelson interferometer is built up by a beam splitter plate (BSN17, Thorlabs GmbH, 
Dachau/Munich, Germany) with an asymmetric splitting ratio of 90:10 and contains two 
variable neutral density (ND) filters. The first one at the input of the interferometer allows to 
set the probe beam power according to the maximum permissible exposure (MPE) limits as 
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specified by the International Electrotechnical Commission (IEC 60825-1) [41] and by the 
American National Standard for Safe Use of Lasers (ANSI Z136.1) [42] and to optimize the 
signal that arises from the sample and is detect by the spectrometers CCD camera. The second 
ND filter in the reference arm is used for balancing the reference arm signal according to the 
reflectivity of the sample. In addition, a prism pair is used for compensating the group 
velocity dispersion (GVD) mismatch caused by the optics in the sample arm. The sample arm 
comprises a two-axis galvanometric scanner (GVS002; Thorlabs GmbH) for directing and an 
OCT scan lens objective (LSM04-BB; Thorlabs GmbH) for focusing the probe beam onto the 
sample. Taking the parameters of the probe beam and the focal length of the imaging optics 
into account yields a lateral resolution of 20 µm at the sample. Two achromatic fiber 
collimators (f = 12 mm, Schäfter Kirchhoff GmbH, Hamburg, Germany) are used to collimate 
the input light emitted by the light source and to couple the light from the exit of the 
interferometer. This spectral signal is then directed towards a custom built spectrometer. The 
spectrometer is composed of a collimator with focal length f = 100 mm (OZ Optics, Ottawa, 
Canada) and a holographic transmission diffraction grating with 1200 lines per mm (Wasatch 
Photonics, Logan, UT, USA). The light emerging from the grating is imaged by means of an 
objective with a focal length f = 85 mm (ZEISS PLANAR T 1.4, ZF-IR-I; Carl Zeiss AG, 
Oberkochen, Germany) onto a high-speed line array CCD camera (Basler sprint spL4096-
140km; Basler AG, Ahrensburg, Germany) with 4096 pixels and maximum readout rate of 
140 kHz. As compared to the previously presented version two changes regarding the 
spectrometer part of the system were done: Firstly, the maximum acquisition speed increased 
from 70 000 to 140 000 A-scans per second, leading to a shortening of the recording time 
thereby reducing the effect of involuntary eye movements. Secondly, the depth range of the 
UHR-OCT system was almost doubled (z = 2 mm), allowing imaging of the junction zone 
between cornea and limbus with higher lateral scanning ranges. The signal-to-noise ratio 
close to the zero delay was measured with 97 dB (1.5 mW probe beam power) and the 
sensitivity decay due to the finite spectrometer resolution is 10 dB to a depth of 1 mm. The 
data acquisition and visualization is done in Labview (Labview 2013, National Instruments, 
Austin, TX, USA), while the post processing is performed in MATLAB (MATLAB R2013b, 
The MathWorks Inc., Natick, MA, USA). 

For human in vivo measurements, the optical power incident on the subject’s anterior 
segment structures is set to values between 1 and 2 mW, depending on the tissue to be 
probed. However, all exposure values are well below the MPE of 8.6 mW for the current 
configuration as specified by [41, 42], to ensure the safety of the eye. 

2.2. Data collection and processing 

UHR-OCT tomograms and three-dimensional data sets were acquired in vivo from both 
healthy subjects and patients with various pathologies of the corneal or limbal region. All 
imaging procedures were approved by the Ethics Committee of the Medical University of 
Vienna. The nature of the measurements was explained to all participating subjects and 
written consent to participate was given. The protocol of the study complied with the 
standards of the Declaration of Helsinki. 

Before OCT measurements, subjects underwent a screening examination including slit 
lamp biomicroscopy and assessment of medical history. For the measurement procedure, the 
head of the subject was stabilized on a modified slit lamp head rest, and the subject was 
advised to fixate either an internal fixation target for corneal imaging or an external target for 
probing of structures of the limbal area. Both scanning range of the XY-galvanometric 
scanner and the sampling density of the tomograms and volume data sets were individually 
adapted for optimal visualization of the anterior eye segment structure of interest. All images 
comprised 2048 pixels in depth, corresponding to about 1.5 mm in tissue. Measurement times 
varied between one and seven seconds, depending on the targeted sampling density. Motion 
artifacts in between the acquired tomograms caused by involuntary eye movements of the 
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subject were compensated based on cross-correlation of consecutive images [43]. For 
calculation of corneal thicknesses, group refractive indices for stroma and epithelium of 1.38 
[44] and 1.40 [45] were assumed. 

3. Results 

3.1. Healthy cornea 

Figure 1 shows a representative cross-sectional UHR-OCT image of a healthy human cornea. 
All major corneal layers, including epithelium (EP), Bowman’s layer (BL), stroma (ST), 
Descemet’s membrane (DM) and corneal endothelium (ED) can be distinguished. 
Furthermore, the precorneal tear film (TF) – seen as the topmost highly reflective layer in the 
tomogram – can be visualized. From Fig. 1 it is also worth noting that at the interface 
between epithelium and Bowman’s layer, epithelial tissue shows lower reflectivity (darker 
appearance in the tomogram) compared to the overlying epithelial layers. 

The appearance in the tomogram reflects well the morphology of this corneal layer. 
Briefly, the epithelium consists of five to six layers of cells with a total thickness of 
approximately 50 µm. At the base, a single layer of columnar shaped cells with a height of 15 
to 20 µm is found. This layer is followed by two to three layers of wing cells. Most 
superficially, two layers of squamous cells with flattened nuclei can be found. As compared 
to the overlying cell layers, the basal epithelial cells have a low nucleus-cytoplasm ratio [46, 
47]. Furthermore, while superficial epithelial cells show hyperreflective nuclei, basal 
epithelial cells appear hyporeflective and have only hyperreflective borders [48, 49]. Taking 
into account their columnar shape oriented “in parallel” to the incident probe beam and the 
fact that it consist of only one layer of cells, this explains the lower scattering of the basal 
layer of epithelium (BLE). 

Based on the three-dimensional UHR-OCT data set of the healthy subject, average 
thicknesses of the corneal layers were measured as follows: central cornea 585 µm, 
epithelium 55 µm, Bowman’s layer 18 µm, Descemet’s membrane 10 µm and endothelium 
4.5 µm. 

 

Fig. 1. UHR-OCT tomogram of the central and paracentral zone of the cornea of a 38 year old 
healthy male. TF, tear film; EP, epithelium; BLE, basal layer of epithelium; BL, Bowman’s 
layer; ST, corneal stroma; DM, Descemet’s membrane; ED, endothelium. 
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High resolution imaging of the limbal palisades of Vogt is shown in Fig. 2. The palisades 
of Vogt are a series of radially oriented fibrovascular ridges in the limbus that cross this 
junctional zone between the cornea and conjunctiva [50, 51]. Corneal epithelial stem cells are 
thought to reside at this region of the corneal limbus, mainly superiorly and inferiorly. 

 

Fig. 2. Limbal palisades of Vogt of a 38 year old male subject. (a) Transversal scan at the 
inferior limbus revealing the fence-like structure of the palisades with highly reflective 
collagen ridges. (b,c) Sagital scans at (b) inter-palisade and (c) palisade positions yielding the 
difference in reflectivity at the putative location of the stem cell niches. The blue asterisk 
indicates the hyperreflective extension of the corneo-scleral junction. Green arrows indicate 
parts of the conventional aqueous humor drainage pathway. 

Multiple stacks of UHR-OCT images were acquired at the inferior limbus of a healthy 
subject. Exemplary tomograms with different orientations of the fast axis of the probe beam 
scanner are depicted in Fig. 2. In the transversal scan presented in Fig. 2(a), limbal palisades 
of Vogt appear as a fence-like structure, yielding different scattering properties within this 
region. The yellow rectangle indicates the stronger scattering collagen ridges of the palisades 
with regions of reduced scattering in-between. In Figs. 2(b) and 2(c), sagittal scans of the 
same region are shown. The red arrow in Fig. 2(b) indicates the low scattering region while 
the yellow arrow in Fig. 2(c) reveals again the highly scattering collagen ridges corresponding 
to the putative location of the limbal stem cell niches. Furthermore, a hyper-reflective band 
(blue asterisk) is visible in the transition zone between corneal epithelium and conjunctiva. 
The power of the probe beam was adjusted in order to allow optimal visualization of the 
superficial structures of the limbus, avoiding saturation of the CCD camera by highly 
reflective structures of the sclera. Therefore, visibility of deeper limbal structures is reduced. 
However, still some features of the aqueous outflow system can be visualized. Aqueous 
humor is drained by collector channels, directly via aqueous veins or indirectly via 
intrascleral plexus towards episcleral veins. The green arrows exemplary indicate intrascleral 
plexus and episclearal plexus, both part of the conventional drainage pathway. 

Three-dimensional UHR-OCT data sets were acquired at the temporal cornea and limbal 
transitional zone to the sclera of a healthy subject. Again all corneal layers are clearly 
visualized (Fig. 3). The right side of the image shows the highly reflective limbal structures of 
blood vessels (red asterisk) casting shadows due to the light absorption of blood and two 
layers of aqueous venous plexus (green arrows). 
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Fig. 3. UHR-OCT tomogram of the paracentral and peripheral cornea and limbus of the same 
subject as in Fig. 1. In the mid stroma, a highly reflective corneal nerve (yellow arrows) with a 
thickness between 5µm (central) and 10 µm (paracentral) is visible. In the limbus, blood 
vessels (red asterisk) as well as conjunctival and episclearal plexus (green arrows) are shown. 

In the mid stroma, a highly reflective structure with a thickness decreasing from the 
peripheral (10µm) to the paracentral-central (5 µm) cornea can be visualized. This structure 
most probably corresponds to a corneal nerve fiber bundle. The nerve bundles enter the 
cornea at the periphery in a radial manner. Within approximately 1 mm of the limbus, nerve 
bundles lose their perineurium and myelin sheaths [52] to maintain corneal transparency. 
After that they continue only surrounded by Schwann cell sheaths and further subdivide into 
smaller side branches. This change in ultrastructure reduces the ability of OCT to visualize 
corneal nerves in the central zone. 

3.2. Corneal pathologies 

3.2.1. Traumatic corneal injuries 

3.2.1.1. Corneal abrasion 

Figure 4 depicts a high resolution OCT scan of a corneal epithelial defect. In Fig. 4(a), a slit 
lamp photography using Fluorescein staining to mark the corneal erosion four days after 
accelerated epi-off CXL is shown. Clearly, the epithelial defect in the central cornea is 
visible. UHR-OCT volume data, comprising 1024 x 512 x 2048 pixels corresponding to 7.5 x 
7.5 x 1.5 mm (horizontal x vertical x depth), were acquired [34]. In the cross-sectional image 
depicted in Fig. 4(b), the epithelial erosion can clearly be observed. Four days after corneal 
abrasion, wound healing was far advanced. Only in the central region close to the apex of the 
cornea, the depth of the wound still approximated Bowman’s layer. Only this area of the 
wound was stained by fluorescein. This region could be easily identified in the tomogram. In 
addition, in the paracentral zone of the cornea the OCT images show some more superficial 
irregularities in the epithelium, indicating that the epithelium surrounding the fluorescein 
stained abrasion is not fully settled as the cells consolidate their attachments to the underlying 
basement membrane. 
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Fig. 4. Corneal epithelial abrasion in a 25 year old male with progressive keratoconus, image 
taken 4 days after epi-off corneal collagen cross-linking procedure. (a) slit lamp photograph 
with Fluorescein staining showing the defect, (b) corresponding OCT image. 

3.2.1.2. Intrastromal foreign body 

Figure 5 shows an OCT (a) and slit lamp image (b) of an intracorneal foreign body obtained 
four days after an accident of a spectacle wearer. Using the UHR-OCT image, the exact 
position of the intracorneal foreign body can be determined. The strong reflectivity points to 
glass debris in the anterior stoma. The cut in stroma involving different reflectivity values and 
shadowing effects in the OCT signal is clearly visible, while the epithelial wound is already 
closed. However, UHR-OCT reveals a displacement of the wound margin as well as a small 
corneal flap consisting of epithelial and stromal tissue. 

 

Fig. 5. Intrastromal foreign body in a 43 year old male patient who wore glasses during an 
accident. The injury was accompanied by a globe perforation. During the slit lamp 
examination after surgery, a corneal foreign body was noted; yet, it was not clear whether it 
needed immediate removal through a second surgical intervention or not. (a) OCT image, (b) 
slit lamp photograph. 

3.2.1.3. Chemical burn 

The patient in Fig. 6 suffered from an alkali burn ten years ago. Figure 6(a) shows the slit 
lamp photograph of the patient, in which corneal neovascularization has developed. UHR-
OCT three-dimensional data sets were acquired on the temporal limbus of both the healthy 
right eye and the affected left eye. Comparison of the images demonstrates several 
differences. Firstly, a significant thinning of the peripheral cornea is observed. While the 
thickness of the healthy cornea in the periphery close to the limbus was measured at 635 µm, 
the similar location of the diseased eye had a thickness of 401 µm. 
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Fig. 6. Image of a 44 year old female patient with a chemical burn in her left eye, caused by a 
bathroom cleaner 10 years ago. Slit lamp photography (a) of the left eye reveals corneal 
neovacularization. UHR-OCT cross-sectional images of the temporal limbus of the (b) right 
and (c) left eye. Yellow arrow, limbal palisade of Vogt. Red arrow, scar tissue with absence of 
palisades. Yellow asterisk indicates the position of a newly formed vessel in the conjunctiva. 
Green arrow, Schlemm’s canal. Blue asterisk, corneal nerve. 

Furthermore, UHR-OCT revealed significant differences in the limbal palisades of Vogt 
when comparing the healthy (b) with the injured eye (c) of the patient. The absence of the 
clear differentiation of limbal tissue structures with the palisades of Vogt (yellow arrow in 
Fig. 6(b)) indicates stem cell deficiency. The high absorption of the probe beam light by the 
scar tissue (red arrow in Fig. 6(c)) prevents visualization of deeper limbal structures. In 
addition, OCT scans of the wounded eye reveal neovascularization in the transition zone 
between epithelium and limbus (yellow asterisk) with a blood vessel casting a shadow due to 
the light absorption of red blood cells. Despite the low probe beam power used for imaging of 
superficial tissues, the sensitivity in the deeper layers is high enough to visualize Schlemm’s 
canal in the limbus of the healthy eye (green arrow in Fig. 6(b)). In addition, in the mid 
stroma corneal nerve (blue asterisk) is visible. 

3.2.2. Corneal inflammatory and infectious diseases 

3.2.2.1. Acanthamoeba keratitis 

Acanthamoeba is a free-living protozoa with two phases in its life cycle: firstly, the active 
trophozoite form and, secondly, the double walled cyst, which is resistant to treatment. The 
resistance in the second phase is mainly due to cellulose molecules present in the inner layer 
of the cysts. This cellulose double coating is the main source of scattering used for optical 
imaging modalities like OCT and confocal microscopy. 

Figure 7(a) shows an in vivo confocal microscopy image of a patient with Acanthamoeba 
keratitis. Here, Acanthamoeba cysts present themselves as highly reflective structures in the 
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central part of the image. Figure 7(b) and 7(c) show the same patient examined with UHR-
OCT in the same location on the cornea. In the magnified cross-sectional image (c), at least 
three highly reflective dots indicating the presence of cysts in the anterior third of the cornea 
can be seen. In addition, the defects in the epithelium and the anterior stroma are clearly 
visible. 

 

Fig. 7. 45 year old male patient with Acanthamoeba keratitis, (a) Confocal microscopy 
depicting Acanthamoeba cysts. (b) and (c) UHR-OCT scans of the same patient revealing at 
least three cysts (yellow arrows) and defects in epithelium and anterior stroma. 

 

Fig. 8. UHR-OCT of Acanthamoeba keratitis in the same patient as shown in Fig. 7. The cross-
sectional image reveals radial keratoneuritis with a thickened corneal nerve and a 
hyporeflective space (blue arrow) above the double banded structure of the epithelium. 

The UHR-OCT image in Fig. 8 was obtained at another vertical position within the three-
dimensional OCT data and revealed radial keratoneuritis (yellow arrow), which is an 
inflammatory response of the corneal nerves and is associated with a perineural infiltrative 
process. In the OCT scan it presented as thickening of the corneal nerve in the mid stroma 
when compared to the healthy state in Fig. 3. Furthermore, the borders of the nerve appear 
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rugged. In addition, UHR-OCT also reveals a hyporeflective space (blue arrow) in the 
anterior cornea with several reflective particles in it. Since the Descemet’s membrane is the 
basement membrane of the endothelium (green arrow), a separation of the two layers is 
extremely unlikely. The double banded appearance of the most inferior structure in the 
tomogram with the hyporeflective space above might therefore correspond to a split in 
Descemet’s membrane with a mixture of fluid and collagenous material in it. 

3.2.2.2. Herpetic keratitis 

In Fig. 9, image data of a 34 year old patient with sequelae after herpes keratitis infection are 
shown. The slit lamp photography in Fig. 9(a) reveals corneal haze and neovascularization. 
UHR-OCT three-dimensional data sets covering a region of 7 mm x 7 mm x 1.5 mm and 
containing 650 x 650 x 2048 pixels were acquired at the central and paracentral zone of the 
cornea. All distinct corneal layers (EP, BL, BLE, ST, DM, ED) could again be visualized. 
Measurement of corneal thickness yielded a significant thinning of the affected part of the 
cornea (average thickness 377 µm) as compared to the healthy eye (581 µm). A cross-
sectional image obtained at the location marked in the slit lamp photography is depicted in 
Fig. 9(b). In the deep stroma, highly reflective condensed tissue due to scarring with presence 
of calcification and lipid is seen as single highly reflective scattering zone. In addition, 
extensive corneal neovascularization is present, which can be clearly seen in the OCT image. 

 

Fig. 9. Sequelae after herpetic keratitis in a 34 year old male who was first diagnosed 3 years 
ago. The slit lamp photography (a) as well as the OCT image (b) reveal neovascularization. 
Yellow dotted line in (a) indicates the location of the UHR-OCT scan; Green arrows, corneal 
neovascularization; yellow asterisk, calcifications/lipid. 

3.2.3. Corneal dystrophies 

3.2.3.1. Keratoconus 

Keratoconus is a progressive non-inflammatory disease of the cornea, leading to thinning and 
gradual protrusion of the cornea. Corneal ectasia can result in high myopic astigmatism and 
irregular astigmatism and thereby to severe visual distortion [53, 54]. 

A three-dimensional data set covering a 512 x 512 x 2048 pixels and 7 mm x 7 mm x 1.5 
mm of the central and paracentral cornea of a patient with progressive keratoconus scheduled 
for epi-off corneal collagen cross-linking (CXL) was acquired. In Fig. 10, an UHR-OCT 
image close to the corneal apex is depicted. While Scheimpflug imaging (Pentacam HR, 
OCULUS Pentacam, Wetzlar, Germany) only allowed depicting the central corneal thickness 
in general (491 µm in the presented patient), UHR-OCT enabled assessment of both corneal 
and epithelial thickness in the central and paracentral zone of the cornea. OCT measurement 
of corneal thickness yielded a value of 505 µm. In addition, the cross-sectional image 
revealed the typical thinning of the epithelium in the left paracentral zone and compensatory 
thickening in the opposing zone of the cornea. 
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Fig. 10. Cross sectional image of the paracentral zone of the cornea of a 38 year old male 
patient with progressive keratoconus. Epithelial thinning in the paracentral cornea is 
visualized. 

In Fig. 11(a), a Scheimpflug tomography map of corneal refractive power is shown. The 
region of highest refractive power corresponding to the thinnest zone of the cornea is found in 
the temporal inferior part of the cornea. In Fig. 11(b), an epithelial thickness map extracted 
from the OCT volume data and corrected for corneal curvature and incident angle of the 
probe beam is depicted. As can be seen, the location of the thinnest zone of the epithelium 
evaluated via UHR-OCT corresponds very well with the steepest zone of the cornea extracted 
by Scheimpflug tomography. 

 

Fig. 11. Corneal topography of the same 38 year old patient as shown in Fig. 10. (a) Corneal 
refractive power as measured via Scheimpflug tomography. (b) Epithelial thickness map 
retrieved from a three-dimensional UHR-OCT data set. Yellow dashed lines in both figures 
indicate the position of the cross-sectional scan depicted in Fig. 11. Due to reduced signal-to-
noise-ratio in the periphery, the evaluated region was cropped to a circular pattern with a 
diameter of 6 mm. The thinnest region of the cornea is present in the temporal inferior part and 
corresponds well with the thinnest zone of the epithelium as measured by UHR-OCT. 

3.2.3.2. Fuchs’ endothelial dystrophy 

Fuchs’ endothelial dystrophy is the most common posterior corneal dystrophy [55]. It is 
characterized by a non-inflammatory, bilateral slowly progressing degeneration of endothelial 
cells, eventually leading to corneal decompensation and visual decline. 

In Fig. 12, a case of early stage Fuchs’ endothelial dystrophy is presented. The guttatae in 
the endothelium are clearly visible in the OCT image (a), even though the slit lamp 
photograph shows scarce details (b). Furthermore, a thickening of DM with an average 
thickness of 24.5 µm was observed. 
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Fig. 12. Fuchs’ endothelial dystrophy that was newly diagnosed in a 60 year old female 
patient, (a) OCT image, (b) corresponding slit lamp photograph. 

Figure 13 shows a patient with Fuchs’ dystrophy in an advanced stage after Descemet’s 
membrane endothelial keratoplasty (DMEK). The endothelial graft can be visualized well; in 
addition, a small area with an irregularity in the recipient stroma bed with retained interface 
fluid (yellow arrow) can be observed. 

 

Fig. 13. UHR-OCT image of the cornea of a 74 year old female patient who underwent DMEK 
for Fuchs’ dystrophy (24 hours postoperatively). Yellow arrow marks an irregularity in the 
recipient stroma. Yellow asterisk indicates an image artifact due to the internal fixation target 
of the OCT. 

4. Discussion 

In this report we present the potential of UHR-OCT with a theoretical axial resolution of 1.2 
μm in air to image corneal pathologies. The technique may have considerable potential for 
improved clinical decision making and treatment monitoring. 

The cornea consists of five distinct layers that can all easily be identified on the presented 
OCT images (Fig. 1). Using this approach we were able to obtain average thickness of 
epithelium, Bowman’s layer, stroma and Descemet’s membrane in healthy subjects. In 
contrast to commercial systems, we were also able to distinguish endothelium from 
Descemet’s membrane. Recently, an UHR-OCT prototype based on a supercontinuum laser 
as light source has been presented allowing in vivo imaging and thickness measurements of 
the human Pre-Descemet’s layer and endothelium [56]. 

We have further presented images of human stem cell niches located in the limbal 
palisades of Vogt (Fig. 2). Epithelial stem cells are situated within well-defined niches called 
limbal epithelial crypts [57, 58]. These cells are responsible for the self-renewal capacity of 
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the epithelium and ensure maintenance of epithelial turn over in the normal cornea. Imaging 
of these structures has been provided previously using OCT, but with lower resolution than in 
the present study [59]. 

Furthermore, corneal fine structures, such as corneal nerves, can be visualized using this 
technique (Fig. 3). This may be useful in systemic diseases associated with neuropathy, such 
as diabetes mellitus, but also in ocular diseases such as infectious keratitis, corneal 
dystrophies, and neurotrophic keratopathies. In addition, visualization of corneal nerves after 
refractive surgery might be of interest [60]. An advantage of this technique over CM is the 
contact-free nature of OCT. However, a quantitative parameter for assessing and monitoring 
corneal nerves with OCT has yet to be determined. 

As epithelium can be visualized using ultrahigh resolution OCT, wound healing rates as 
measured with the device allow for evaluation of treatment effects following pharmaceutical 
interventions [34]. Figure 4 provides an example of an epithelial defect. It is clearly visible 
that the tear film covers this defect. Indeed, the role of tear film maintenance of tissue 
homeostasis and wound healing is not fully understood. It is, however, well established that 
epidermal growth factor release rates are significantly lower in patients undergoing corneal 
wound healing than in normal eyes during reflex tearing [61]. 

Figure 5 shows a case of an intracorneal foreign body. OCT offers advantages over other 
imaging technologies because it is easy to determine whether DM is penetrated or not. By 
identifying the exact location, the optical properties of the intracorneal foreign body and the 
status of the surrounding ocular structure, the OCT imaging provides guidance for the choice 
of timing and the selection and planning of the optimal surgical technique. In this case, no 
surgery was necessary since the high reflectivity suggested a remnant glass fragment in the 
stroma from the patient’s spectacles. Since glass is considered to be completely inert, no 
immediate removal was required [62]. However, because complications such as keratopathy 
or irregular astigmatism may occur, the patient has to be followed up regularly [63, 64]. 

UHR-OCT was employed for visualization of an alkali burn in the eye as depicted in Fig. 
6. Corneal neovascularization is clearly visible and a result of limbal stem cell deficiency that 
is often associated with the chemical injury [65, 66]. When looking at the stem cell niches of 
this patient, morphological differences between the healthy right eye and the injured left eye 
can be clearly seen. Autologous Simple Limbal Epithelial Transplantation (SLET) is a 
relatively new approach for treatment of unilateral limbal stem cell deficiency that does not 
require sophisticated and expensive laboratory procedures for harvesting and expanding stem 
cells in vitro. In a single procedure, limbal tissue is removed from the healthy eye and 
distributed evenly over an amniotic membrane, which is then placed on the cornea of the 
diseased eye [67, 68]. In these cases, OCT of the limbal stem cell niche could be used for 
identifying the ideal site for harvesting limbal tissue and for assessment of long-term effects 
of the procedure on the donor site. 

Acanthamoeba keratitis is a rare but sight-threatening inflammation of the cornea which is 
predominantly seen in patients wearing soft contact lenses. As Acanthamoeba occur 
ubiquitously in tap water, air and soil, they easily get into lens storage cases where they feed 
on other microorganisms. The life cycle of Acanthamoeba consists of two stages: the 
trophozoite stage, in which the organism feeds and multiplies, and the metabolically inactive 
cyst stage, which is induced in response to adverse environmental conditions and that enables 
the organism to withstand heat, UV radiation, biocides and chlorination. This explains why 
the infection is notoriously difficult to treat. Differential diagnosis is difficult and cultures 
from corneal scrapings have little sensitivity 30-70% [69]. Cysts can be visualized using 
confocal microscopy [70–72], helping to decide on the treatment regimen, which in itself is 
toxic to the limbal stem cells. However, the technique is contractile and only a limited field 
can be observed. Previously, high-resolution OCT allowed for in vitro imaging of cysts [73]. 
In the case presented in Figs. 7 and 8, Acanthamoeba cysts could, to the best of our 
knowledge, for the first time visualized in vivo using UHR-OCT although further studies are 
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required to verify the clinical utility of this approach. In addition, the employed OCT system 
provided detailed visualization of radial keratoneuritis in the patient, a capability that may be 
helpful for diagnosis and follow-up in early stages of the disease. 

In Fig. 9 corneal scarring after herpetic keratitis is shown. At the time when the 
measurement was performed, no inflammation was present. One can, however, see that there 
is a massive corneal thinning as a result of recurrent inflammation episodes that require 
treatment with corticosteroids. OCT can be useful in the follow-up of this patient, to precisely 
assess the stage of the disease, localization and extent of stromal scarring and 
neovascularization. 

Visualization of the epithelium is not only interesting in patients with epithelial defects as 
presented above. Quantification of epithelial thickness is also valuable in keratoconus, a 
progressive disease leading to central corneal thinning, ectasia and irregular astigmatism 
(Figs. 10 and 11). Corneal collagen cross-linking is widely used to slow down or arrest 
progression of the disease [74]. Briefly, during this procedure the corneal epithelium is 
removed and riboflavin eye drops are applied for a pre-defined time-period followed by 
corneal exposure to ultraviolet A (UVA) light. This induces a photochemical reaction leading 
to an increase in cross-linking of the extracellular matrix and thereby to an increase in corneal 
rigidity [75]. Since CXL is used to prevent progression of keratoconus, patients at risk should 
be identified as early as possible. Data from several studies indicate that epithelial thinning 
precedes other corneal changes in keratoconus [76, 77]. Therefore, the use of UHR-OCT in 
these cases could be valuable for identifying those who should be treated. In addition, 
epithelial thickness measurements might also be interesting for the pre-operative screening in 
refractive surgery, to identify patients at risk for postoperative corneal ectasia. High-
resolution epithelial thickness maps could also be employed for treatment planning in 
excimer-laser surgery of superficial scarring (phototherapeutic keratectomy). 

In Fig. 12, an early case of Fuchs’ endothelial dystrophy is shown. The measured increase 
in thickness of DM corresponds well with values previously obtained using UHR-OCT 
technology [27]. Corneal dystrophies are inherited disorders by inborn defects of cells 
associated with pathological changes leading to corneal haze [78]. Fuchs’ dystrophy is a 
slowly progressive disease characterized by four stages: cornea guttata, endothelial 
decompensation, bullous keratopathy and stage of scarring. Ultrahigh resolution OCT may be 
an attractive approach to screen for the disease at an early stage which is of special 
importance when planning cataract surgery. During the surgical procedure, care has to be 
taken to avoid endothelial cell loss in these patients. This can be done by reducing the 
duration of surgery, avoiding direct endothelial trauma and using the proper viscoelastic 
material [79]. Since in Fuchs’ endothelial dystrophy, except for the stage III, not all corneal 
layers are affected, less invasive surgical techniques such as Descemet’s membrane 
endothelial keratoplasty (DMEK) have been developed. Treatment in Fuchs’ endothelial 
dystrophy can be modulated according to the severity of the disease. While in PKP a full 
thickness piece of variable diameter of the patient’s cornea is removed and then replaced by a 
corneal transplant from a donor’s eye [80], DMEK only requires the replacement of a lamella 
consisting of Descemet’s membrane and endothelium. After DMEK, the literature reports a 
re-surgery rate of approximately 5%, caused by graft failure or detachment [81–83]. Graft 
detachment has been identified as the main complication following DMEK occurring in up to 
40% of patients after surgery [84, 85]. Some surgeons treat this complication by inserting air 
in the anterior chamber (“rebubbling”) in order to achieve reattachment of the graft. The 
results of these procedures differ in the literature, since some authors report a failure rate 
requiring re-grafting in nearly 100% of patients [86, 87] while others report graft failure in 
20% only [84]. Rebubbling has to be performed within the first six weeks after initial surgery 
since beyond that time the tissue becomes too rigid [88]. Figure 13 shows the cornea of a 
patient with Fuch’s dystrophy after DMEK. The graft can be visualized well, allowing UHR-
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OCT to be used for monitoring of success of the intervention and the follow-up of patients 
after surgery. 

5. Conclusion 

In this paper we presented OCT imaging of the human cornea with a resolution of 
approximately 1.2 μm. The potential applications of this technology are wide, including 
quantification of tear film and its dynamics in patients with dry eye disease, OCT-guided 
refractive surgery, monitoring of epithelial wound healing, visualization of demarcation line 
after cross-linking in keratoconus and visualization of endothelial cell layer. Optimized 
scanning patterns and alternative illumination pathways may allow for improved peripheral 
imaging and improved transversal resolution, respectively. 

In the presented pathologies, UHR-OCT has potential in clinical decision making and 
follow-up. Ultrahigh-resolution OCT of the cornea is not only a promising technique for the 
use in clinical practice, but may also be employed to gain novel insight into the physiology 
and pathophysiology of the human cornea and limbus. 
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