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Abstract

Addiction to psychostimulants has been considered as a chronic psychiatric disorder, characterized 

by craving and compulsive drug seeking and use. Over the past two decades, accumulating 

evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and 

cellular changes that results in enduring neuroadaptation in brain circuitry and underlie 

compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of 

abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of 

learning and memory associated with addiction. Here, we review the role of the extracellular 

signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related 

intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with 

drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. 

We also discuss the neurobiological and behavioral effects of pharmacological and genetic 

interferences with ERK-associated molecular cascades in response to abused substances. 

Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel 

molecular targets for therapeutic strategies to drug addiction.
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1. Introduction

Drug addiction is a chronic brain disease characterized by high relapse rates and compulsive 

drug use despite negative consequences. To date, there is no effective treatment for drug 

addiction. Understanding the neurobiological aspects underlying substance abuse provides a 

basis for developing potential therapeutic strategies targeting to drug addiction. 

Accumulating evidence demonstrates that drugs of abuse alter dopamine (DA) and 

glutamate (Glu) neurotransmission in the mesocorticolimbic system to exert their molecular 

and behavioral effects1–3. DA neurons in the ventral tegmental area (VTA) and their 

descending projections to the nucleus accumbens, prefrontal cortex (PFC) and other limbic 
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regions, including the hippocampus (HIPP) and amygdala (Amy), comprise the 

mesocorticolimbic system4, which is crucial for reward and reinforcement processing, 

motivation, and goal-directed behavior5,6. The NAc and VTA also receive Glu output from 

the PFC. In addition, a reciprocal Glu connection is found between the PFC and Amy. The 

nigrostriatal pathway containing the DA projection from the substantia nigra to the caudate 

putamen (CPu/dorsal striatum) has also been implicated in molecular events, rewarding 

effects and habitual behavior of drug addiction7,8.

The extracellular signal-regulated kinases (ERK) cascade, one of isoforms of mitogen-

activated protein kinases (MAPK), is associated with the pathology of diseases due to its 

role in cell proliferation, differentiation, survival, and death9,10. ERK contains two isoforms, 

ERK1 and ERK2, which are indicated as “ERK” throughout the current review. Otherwise, 

individual subtype of ERK is specified as ERK1 or ERK2. In 1996, the activation of ERK 

was first identified in the VTA after chronic morphine or cocaine administration11. 

Thereafter, several lines of studies have focused ERK-mediated molecular signaling in 

response to various drugs of abuse during the last two decades. Herein, we review the 

alterations of ERK signaling induced by abused substances including cocaine, amphetamine, 

methamphetamine, marijuana, nicotine, and alcohol. In addition, most of these drugs have 

been shown to induce psychomotor changes, the ERK-associated molecular changes 

underlying drug-induced behaviors is also discussed. Further, due to the critical role of ERK 

on the neuroplasticity of learning and memory associated with addiction12, its influence on 

the reinforcing, rewarding, and relapse/reinstatement of drug addiction is also described.

2. ERK signaling pathway

Initially, intracellular ERK signaling has been characterized to respond to extracellular 

stimuli and regulate cell proliferation and differentiation13. For example, once activated by 

growth factors or neurotrophins, the tyrosine kinase receptors recruit Ras family G-proteins 

and lead to sequential activation of Raf (MAPK kinase kinase), MEK (MAPK kinase), and 

ERK. Once ERK is activated, the phosphorylated (p)ERK protein can translocate to the 

nucleus14, where they phosphorylate the ternary complex factor Elk-115,16. The activated 

Elk-1 and other ternary complex factors associate with serum response factor, bind to the 

serum response element site, and promote immediate early gene (IEG) transcription related 

to neuroadaptation17–19. In addition to Elk-1, through phosphorylating ribosomal S6 kinases 

and mitogen- and stress-activated protein kinases (pRSKs and pMSKs, respectively), ERK 

has been shown to indirectly result in cAMP response element-binding protein 

phosphorylation (pCREB), a transcription factor that has been shown to regulate gene 

expression20–24. Increasing evidence shows a glutamate linkage to ERK signaling in neurons 

both in vivo and in vitro. For instance, through the elevation of intracellular calcium (Ca2+)/

calmodulin (CaM)/CaM kinases (CaMK), the activation of the Glu N-methyl-D-aspartate 

receptor (NMDA-R) can increase the phosphorylation of MEK (pMEK)/ERK/Elk-1 in 

hippocampal slices, neuronal culture25–27, cortical cultured neurons28, and striatal cultured 

neurons29–31. Inhibition of ERK activation attenuates Glu-mediated pElk-1 in the striatal 

slice32, striatum including the CPu33–35 (wrong article for ref 35; should be Sgambato V. et 

al., J. Neurosci. 1998 18(21):8814–8825), and the HIPP17. Alternatively, in PC12 cells, Ca2+ 

may increase the intracellular cAMP through Ca2+/CaM-sensitive adenylyl cyclase (AC) 
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leading to the activation of PKA. Increase of cAMP and PKA induces pMEK via the 

activation of Rap1/Raf36,37. Consistent with these studies, pharmacological activation of DA 

D1 receptor (D1-R) or the AC markedly stimulates ERK activity and its phosphorylation in 

various neuronal cells33,38–41. In addition, activation of group 1 metabotropic Glu receptors 

(mGluR1/5) has been shown to increase the intracellular Ca2+ and activate ERK 

signaling42–45. Although the activation of DA D2 receptor (D2-R) inhibits PKA activity, D2-

R stimulation also increases ERK signaling through PKC activation46.

There are several families of ERK-related protein phosphatases (PPs). Among them, PP2A 

and striatal-enriched protein tyrosine phosphatase (STEP) are the best characterized. PP2A 

is a major serine/threonine phosphatase containing two regulatory subunits and one catalytic 

subunit. PP2A mediates a rapid inactivation of pERK in vitro. STEP is another phosphatase 

that regulates ERK activation. Although it is enriched in the CPu and NAc, STEP is 

expressed abundantly in the mesocorticolimbic system47,48. Through direct interaction of a 

kinase-interacting motif, STEP and its non-neuronal homologues have been shown to 

dephosphorylate pERK and prevent its nuclear translocation49,50. Phosphorylation of STEP 

(pSTEP) reduces its activity and its capacity to inhibit pERK49. STEP is regulated through 

D1-R/PKA/DARPP-32 signaling51. In vitro, D1-R activation has been shown to activate 

pThr34 and inhibit pThr75 DARPP-32 via PKA-activated PP2A52, respectively. The 

activation of pThr34 DARPP-32 subsequently inhibits PP1 and thereby increasing pSTEP53. 

In addition, stimulation of NMDA-R has been reported to induce Ca2+-activated PP2A and 

PP2B which inhibit DARPP-32 signaling52,54,55 and indirectly modulate ERK activity. 

Therefore, the PPs of pERK are regulated by DA- and Glu-mediated transmission. Further, 

dual specificity MAPK phophatases 1 and 3 (MKP-1/3) are also implicated in pERK de-

activation. Both in vitro and in vivo studies indicated that MKP-1/3 expression and 

activation is dependent on ERK signaling. Once induced and activated, MKP-1/3 reduces the 

ERK activation as an inhibitory feedback loop34,56–61. Furthermore, there is evidence 

demonstrating that MKP-1 is phosphorylated (pMKP-1) by pERK leading to MKP-1 protein 

stabilization without altering its ability to dephosphorylate pERK62.

3. ERK signaling and drug addiction

ERK signaling is responsive to various abused drugs in the mesocorticolimbic system. Both 

acute and chronic exposure to drugs results in alteration of ERK-mediated signaling in 

specific brain regions underlying neuronal plasticity and drug-induced behavioral changes. 

Therefore, we focus on the effects of most prevalent abused substances on ERK signaling 

and its relationship of drug-mediated behavioral changes across different paradigms 

including locomotor activity/sensitization, conditioned place preference (CPP), and self-

administration (SA), if applicable. Since pharmacological and genetic approaches have been 

used to interfere with the ERK signaling cascade, their effects on abused drug-mediated 

behaviors were summarized in Table 1 and Table 2, respectively.

3.1 Cocaine

Numerous studies have demonstrated that acute cocaine administration increases pERK in 

the CPu, NAc, PFC, central and basolateral Amy (CeA and BLA, respectively), HIPP, and 
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bed nucleus of the striatal terminals (BNST)63–77. The increased pERK and its downstream 

targets including pMSK-1, pElk-1, pCREB, phosphorylation of GluN2B (pGluN2B) and 

IEGs by acute cocaine are dependent on the activation of MEK, D1-R/DARPP-32, and 

NMDA-R51,63,66,67,70,71,74,76,78–80. In addition to pMSK-1 induction, the pRSKs in the CPu 

are also increased by acute cocaine leading to the indirect activation of CREB by pERK77,79. 

In terms of PPs of pERK, acute cocaine has been shown to result in an increase of MKP-1 

mRNA in the CPu and cortex81. In addition, depending on D1- and NMDA-Rs, the 

phosphorylation of MKP-1 was also enhanced in the CPu and NAc 45–60 min after acute 

cocaine, contributing to the transient pERK induction76. Further, the pSTEP was also 

downregulated after acute cocaine in the CPu with corresponding pERK induction77. 

Together, in a time dependent manner, the activation and inactivation of PPs is critical for 

controlling the acute cocaine-augmented pERK. Behaviorally, the acute cocaine-induced 

locomotor activity was not affected by the MEK inhibitor, SL327 (30 or 40mg/kg), but 

partially inhibited or not altered with a higher dose injection (50mg/kg) which has non-

specific sedative effect on basal locomotion51,78,80,82,83. Similar to acute cocaine, 

MEK/ERK activation is necessary for the chronic cocaine-induced IEG expression in the 

CPu, NAc and Amy in a time-dependent manner66,67. In cocaine-sensitized animals, 7–21 

days but not 1 day withdrawal resulted in increased Glu aminomethyl phosphonic acid 

receptor (AMPA-R) subunit surface insertion and NDMA-R subunit expression with 

paralleled pERK induction in the NAc84–87 (also see88). AMPA-R expression in the NAc 

after prolonged withdrawal from repeated cocaine injection is dependent on the activation of 

both GluN2B and pERK, which contributes to the development of behavioral sensitization86. 

This conclusion is further supported by a study demonstrating that D1-R/Src kinase-

mediated pGluN2B is necessary for the pERK induction in response to repeated cocaine 

administration70. In addition, cocaine challenge after withdrawal from repeated cocaine 

administration also resulted in sensitized pERK in the CPu and NAc compared to the acute 

cocaine effect72,89,90. The cocaine behavioral sensitization-induced pERK and pCERB in 

the NAc is dependent on ERK activation91. Further, the induction and expression of cocaine 

behavioral sensitization can be inhibited by systemic SL327 injection or intra-NAc MEK 

inhibitor infusion80,92,93. Similarly through MEK activation, the pERK induction in the VTA 

is required for the development of behavioral sensitization to cocaine11,94. Lastly, studies 

have indicated that, in response to D1- and NMDA-Rs activation, pERK induced by cocaine 

is responsible for the chronic cocaine-enhanced dendritic spine density and dendritic length 

in the CPu and NAc95,96 providing the morphological evidence mediated by ERK signaling 

after repeated cocaine administration. Repeated pairing a specific environment with drug 

administration leads to a memory association between contextual cues and the drug 

rewarding effect. Subsequently, the context itself directly motivates drug-seeking behavior as 

a measurement of the reinforcing effect of the drug97,98, which is associated with ERK 

signaling. For example, the acquisition of cocaine-CPP is accompanied by pERK induction 

in the NAc and PFC in a D1-R dependent manner99. Systemic pre-administration of SL327 

(50mg/kg) and a GluN2B antagonist prevented the development of cocaine-CPP70,78, 

indicating the requirement of NMDA-R-mediated ERK activation in the formation of 

context-drug association memory. ERK activation in the VTA is necessary for the 

development of cocaine-CPP100. Cocaine challenge in the drug-paired environment resulted 

in pERK and pCREB induction in the subset of neurons of the NAc101. In animals with 
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repeated cocaine administration, the saline challenge enhanced pERK induction in the D1-

positive neurons in NAc and CPu indicating context conditioning-induced ERK activity72. 

Similarly, after the establishment of CPP, CPP testing or re-exposure to the cocaine-

associated context induced pERK, pCREB and/or ΔFosB in the CPu, HIPP, VTA and NAc 

as well as in D1-R containing neurons of the NAc100,102–106. The CPP test-induced pERK 

expression in the VTA is dependent on mGluR1 activation and protein synthesis106. Further, 

Miller and Marshall demonstrated that CPP test-elevated pERK and drug-seeking behavior 

were blocked by intra-NAc core infusion of U0126 (2μg/side) 107. In the cocaine SA 

paradigm, context-induced relapse is also associated with enhanced pERK in the NAc core 

and CPu108. Altogether, these results imply that, through ERK signaling, the NAc core and 

VTA are important for the memory formation of context-drug association. pERK in the NAc 

core and CPu also involve the retrieval of CPP memory and a general motor activation 

driven by drug-associated context, respectively.

Memory reconsolidation occurs when well-established drug-associated memories are 

recalled by re-exposure to drug associated context, cues, or the drug itself during which 

memories can be destabilized by adding new information or subjected to 

manipulation109–111. The ability to disrupt drug-related memories provides an opportunity to 

promote treatment outcome and prevent relapse. The general procedure to test the memory 

reconsolidation on drug seeking behavior contains two phases: re-exposing animals to drug-

associated context (phase 1) followed by testing drug seeking behavior after withdrawal 

(phase 2). A previous study demonstrated that, before or immediately after phase 1, intra-

NAc core MEK inhibition through U0126 (1μg/side) or PD98059 (2μg/side) reduced 

cocaine-CPP during the phase 2. The expression of pERK, pCREB, pElk-1 and c-Fos 

induced by phase 2 is also attenuated with inhibiting ERK during phase 1107. Systemic 

SL327 injection after phase 1 also decreased subsequent context-induced CPP in animals 

conditioned by escalating doses of cocaine112. Similar to reactivation of CPP memory by 

context, the memory reconsolidation in response to cocaine is also accompanied by ERK 

activation in the PFC, NAc, and CPu. With or without cocaine priming, the systemic SL327 

(20mg/kg) pre-treatment before phase 1 blocks the subsequent drug seeking behavior82. 

However, the effect of ERK on cocaine-induced memory reconsolidation is still dependent 

on the presence of context. Thus, the contribution of cocaine itself on memory 

reconsolidation is still ambiguous. After the establishment of cocaine SA, U0126 (1μg/side) 

infusion into the BLA immediately after phase 1 prevented context-induced reinstatement 

and the pERK induction after phase 2113. Taken together, these studies indicate that ERK 

signaling activated during memory reconsolidation is necessary for cocaine seeking 

behavior. However, a critical time window, 6 hr after the reactivation of memories, has been 

documented during which the memory is susceptible to alteration in the fear conditioning 

paradigm114. The pre-treatment before phase 1 may influence the memory retrieval instead 

of reconsolidation. If the ERK signaling actually involves in drug-related memory 

reconsolidation, the difference should be found when treatment is conducted within and 

beyond the critical time window in terms of both behavioral and molecular aspects.

Unlike pERK sensitization in cocaine-induced behavioral sensitization, immediately after 

the cessation of cocaine SA, there is an a dissociation between pERK induction and cocaine 

intake indicating the failure of developing pERK sensitization or tolerance, although with 
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enhanced pERK expression in several brain regions115. However, ERK activation has been 

implicated in relapse after withdrawal. For example, the extinction test (conditioned cues + 

context) significantly increased pERK in the CeA and cocaine seeking behavior after 30 

days withdrawal. Both enhanced pERK and relapse are dependent on MEK and NMDA-R 

activation116. Similarly, the pERK induction in the ventromedial PFC has been shown to 

mediate extinction test-induced cocaine seeking behavior after 1 or 30 days withdrawal from 

cocaine SA117. Through ERK activation, direct intra-VTA glial cell line-derived 

neurotrophic factor (GNDF) or brain derived-neurotrophic factor (BDNF) infusion 

immediately after the last session of cocaine SA induced robust drug seeking behavior after 

3 or 10 days withdrawal118,119. These results demonstrated that the potentiated ERK 

signaling underlies relapse behavior after cocaine SA. In contrast to augmented pERK 

induction in the PFC after 1 day abstinence of cocaine SA117, 2 hr after the last cocaine SA 

session, we have demonstrated a transient reduction of pERK in the PFC120–122. The 

reduction of pERK is associated with an increase of STEP but not PP2A activity 

accompanied by decreased total GluN2B protein expression and phosphorylation, 

suggesting the inhibitory effect of STEP on pERK and NMDA-R123. Through MEK 

activation and normalization of pERK in the PFC, direct BDNF infusion into the 

dorsomedial PFC immediately after the end of the last cocaine SA session resulted in a long-

term inhibition on context-, cue- or cocaine-induced relapse121. Thus, it indicated that 

rescuing the ERK signaling or hypofunction in the PFC during early withdrawal might 

provide a potential therapeutic strategy for preventing cocaine relapse.

Several animal models have been used to dissect the ERK signaling cascade in cocaine-

induced behavioral changes. For example, double knockout (KO) type 1 and type 8 Ca2+-

stimulated AC resulted in a reduction of basal pERK in medium spiny neurons in the CPu 

with blunted acute cocaine-induced pERK, pMSK-1 and pCREB. Behaviorally, these double 

KO AC mice are supersensitive to low dose acute cocaine-induced locomotion and fail to 

develop behavioral sensitization in response to repeated cocaine administration124. Ras-

guanine nucleotide-releasing factors 1 (Ras-GRF1), the upstream activator of Ras, can 

increase ERK signaling. In the CPu and NAc, the protein expression of Ras-GRF-1 is 

increased by acute psychostimulants including cocaine125,126. D1-R agonist and Glu-

induced pERK is attenuated in the striatal slice of Ras-GRF-1 KO mice. The acute cocaine-

induced pERK is downregulated and upregulated in Ras-GRF-1 KO and overexpressing 

(OE) mice, respectively. In addition, the development of cocaine behavioral sensitization and 

cocaine-CPP are attenuated in Ras-GRF-1 KO mice accompanied by a reduction of FosB/

ΔFosB in the CPu and NAc. An opposite facilitation on behavior and FosB/ΔFosB was 

observed in Ras-GRF-1 OE mice in response to repeated cocaine127. ERK1 KO mice exhibit 

higher responsibility to morphine128. Similarly, in response to chronic cocaine exposure, 

ERK1 KO mice display enhanced behavioral sensitization and cocaine-CPP as well as c-fos 
mRNA induction in the CPu34. This suggests that ERK1 acts as an inhibitor on ERK2 

activation and a heightened stimulus- or cocaine-induced ERK2 signaling after ERK1 

KO129. In addition, selective ERK2 OE in the VTA resulted in an increase of sensitivity of 

cocaine-CPP and the repeated cocaine-mediated behavioral sensitization130. In contrast, 

inhibition of ERK2 activity in the VTA attenuated the cocaine-CPP and the development and 

expression of cocaine-induced locomotor sensitization. Through activating MSKs, ERK 
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leads to the increase of CREB activity. The acute cocaine-induced pCREB and IEGs as well 

as histone H3 phosphorylation were attenuated in the CPu and/or NAc of MSK-1 KO mice, 

indicating the role of MSK-1 in chromatin remodeling in response to cocaine. Although 

showing higher sensitivity to low dose cocaine-CPP, MSK-1 KO mice have reduced 

behavioral sensitization in response to repeated cocaine administration79. Finally, systemic 

injection of the peptide inhibiting pElK-1 significantly inhibited acute cocaine-activated 

pElk-1, pElk-1 nuclear translocation, and histone H3 phosphorylation, as well as IEGs 

protein and mRNA expression in the CPu and NAc74,131. Further, the inhibition of pElk-1 

also resulted in an attenuation of repeated cocaine-induced dendritic plasticity in the NAc 

shell and prevented repeated cocaine-induced behavioral sensitization and CPP74. Together, 

these studies demonstrated that ERK-associated signaling is important for the long-term 

cocaine-mediated behavioral alterations, rewarding effects and neuronal plasticity. 

Interestingly, the acute cocaine-mediated locomotor activity was not altered in animal 

models with manipulation of ERK1 or downstream molecular targets of ERK (e.g. MSK-1, 

ElK-1), further supporting that ERK signaling is not required for the acute cocaine-induced 

psychomotor effect.

Since both NMDA- and D1-Rs are implicated in cocaine-induced pERK, the direct protein-

protein interaction between both receptors may underlie their effects on ERK 

activation132–135. Previously, we have demonstrated the protein-protein interaction between 

D1-R and GluN1 of NMDA-R in the CPu. The D1-R/GluN1 complex is disrupted after 

acute cocaine administration which may underlie transient pERK induction by cocaine136. 

The assumption is supported by a recent finding indicating that interference of D1-R/GluN1 

association in vitro decreases D1 agonist- and NMDA-induced pERK induction. In addition, 

disrupting the protein-protein interaction in the NAc also attenuates acute cocaine-induced 

pERK induction and repeated cocaine-induced behavioral sensitization in the two injection 

protocol137. Further, the receptor complex of sigma-1, histamine H3, and D1-Rs has been 

found in the striatum. Through binding to sigma-1-R, cocaine results in a disinhibitory effect 

of histamine H3 receptor on D1-Rs leading to pERK activation after either acute cocaine 

injection or cocaine SA138. However, the impact of these receptor-receptor interactions on 

cocaine-induced behavioral alteration is still unknown.

3.2 Amphetamine

Acute amphetamine (AMPH) has been shown to increase pERK in the CPu, NAc, PFC, and 

VTA51,80,92,139–143. Multiple upstream receptors and molecular activators have been 

implicated in acute AMPH-induced ERK signaling in a brain region specific manner. For 

instance, acute AMPH-induced pMEK and pERK in the striatum is regulated by D1-R/

DARPP-32 and NMDA-R activation51. In contrast, pERK induction in the PFC by acute 

AMPH is dependent on NMDA-R, adrenoceptors and serotonin receptors but not D1- or D2-

Rs144. Blockade of mGluR1/5 or mGluR5 specifically in the CPu attenuated acute AMPH-

induced pERK, pElk-1, pCREB, and Fos immunoreactivity145–147. The activation of Ca2+/

calmodulin-dependent protein kinases II (CaMK II) in the CPu is also necessary for acute 

AMPH-augmented pERK, pElk-1, and pCREB145. Direct MEK inhibition via systemic 

SL327 (20–100 mg/kg) administration or intra-CPu U0216 (2μg/side) infusion attenuated 

acute AMPH-elevated pERK and pCREB protein expression in the CPu and NAc, and IEGs 
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including preproenkephalin, preprodynorphin, and c-fos mRNA in the CPu80,140,141,148. 

However, the differential pERK induction profile in the CPu in response to acute 

psychostimulants is determined by the environment: acute AMPH and cocaine induced 

pERK expression mainly in D1-R-expressing neurons51,72,149, whereas, in a novel 

environment, AMPH dominantly increases pERK in D2-R-containing neurons of the 

striatum148. In line with cocaine, PPs have been shown to be induced by acute AMPH 

administration which may control ERK activity after AMPH stimulation. For example, in 

the CPu, acute AMPH significantly increases pSTEP in a DARPP-32 dependent manner51. 

In addition, acute AMPH increases the gene encoding PP2B in the striatum including the 

CPu and NAc150 relevant to MKP-1 mRNA expression and DARPP-32/STEP activity53,151.

Behaviorally, similar to their enhanced response to rewarding properties of morphine and 

cocaine, ERK1 KO mice exhibit higher hyperlocomotion after acute AMPH 

injection34,128,152. ERK1 KO mice display increased basal locomotor activity accompanied 

by a reduction of pRSK expression in the PFC and striatum128,152,153, indicating a blunted 

ERK-mediated signaling after ERK1 ablation. The increased basal and acute AMPH-

induced locomotion as well as the reduction of pRSK can be replicated by chronic and 

continuous infusion of MEK inhibitor, PD98059 (50μM), and selective knockdown of ERK1 

in the PFC154. Although the predominant hypothesis indicates that enhanced stimuli-

activated ERK2 signaling in the CPu and NAc in ERK1 KO mice is responsible for 

increased behavioral responses to abused drugs34,128, the reduction of ERK-mediated 

molecular cascade, at least in the PFC, may also contribute to both basal and drug-induced 

behavioral phenotype due to a general inhibition of ERK1 and ERK2 activity by MEK 

inhibitor. The latter assumption is supported by our recent finding demonstrating that rats 

raised in enriched environment have an augmented basal pERK induction in the PFC 

associated with lower basal and repeated nicotine-induced locomotion compared to control 

animals155. The acute AMPH-induced hyperactivity was not altered by SL327 (30–40 

mg/kg) but attenuated by high doses of SL327 (50–100 mg/kg) with a potentially inhibitory 

effect on basal locomotion80,92,140,141,156. Although inhibiting acute AMPH-induced 

locomotor activity, acute systemic MEK inhibition by SL327 (50 mg/kg) resulted an 

enhancement to the basal locomotion157. The discrepancy may be accounted for 

experimental procedure, since a potentiated acute AMPH-activated locomotor activity was 

documented after pERK suppression in the CPu of rats without habituating to the behavioral 

apparatus147.

In a D1- and D2-Rs dependent manner, AMPH challenge after withdrawal from repeated 

AMPH exposure resulted in behavioral sensitization which is associated with pERK and 

pCREB sensitization in the CPu158,159. The chronic AMPH-augmented pERK and pCREB 

induction is attenuated by D1- but not D2-Rs antagonist. Thus, although antagonism of both 

D1- and D2-Rs can inhibit the expression of behavioral sensitization, only D1-R-mediated 

ERK and CREB activation is critical for the expression of behavioral sensitization of the 

AMPH challenge. In contrast to the CPu, the expression of AMPH-induced behavioral 

sensitization is required for ERK’s inhibitory effect on CREB activity modulated by Ca2+ 

voltage-gated channels in the NAc80. However, in the VTA, withdrawal from repeated 

AMPH exposure results in elevated MKP-1 and PP2B protein expression to downregulate 

the AMPH-mediated pERK induction143. Systemic administration of SL327 (30 or 40 
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mg/kg) dose-dependently prevents the development and expression of behavioral 

sensitization as well as the acquisition of conditioned locomotor response to AMPH 

administration80,92. A previous study demonstrated that intra-NAc AMPH infusion led to 

pERK and the establishment of CPP160. The AMPH-CPP was prevented by direct intra-NAc 

PD98059 (2.5 μg/side) infusion either before or after each conditioning session, suggesting 

the role of ERK on memory acquisition and consolidation of association of contextual 

rewarding effect of AMPH. However, the enhanced locomotor response by intra-NAc 

AMPH infusion is not affected by MEK inhibition. Altogether, it seems that ERK plays an 

important role in chronic AMPH-induced behavioral alterations ranging from behavioral 

sensitization, conditioned locomotor response to CPP. However, dynamic molecular 

mechanisms underlying behaviors including ERK-mediated downstream targets and the 

modulatory effect of ERK-related protein phosphatases should be further elucidated in 

specific brain regions associated to AMPH.

3.3 Methamphetamine

Methamphetamine (METH) is a highly addictive psychostimulant causing a serious and 

growing worldwide problem associated with medical, socioeconomic, and legal 

domains161,162. Although accumulating evidence has implicated the Glu and DA 

neurotransmission in METH-induced behavioral changes163–167, a direct exploration of their 

downstream target, ERK signaling, is limited. Acute METH (3 mg/kg) injection 

significantly increases pERK in the striatum which is attenuated in serine racemase KO 

mice168. Serine racemase is an enzyme synthesizing D-serine, an endogenous co-agonist of 

NMDA-R, thereby, partially supporting the requirement of NMDA-R for acute METH-

induced pERK. In contrast, a recent study demonstrated that acute METH (2 mg/kg) did not 

affect pERK in either CPu or NAc169. The dose of METH, routes of administration, or the 

timing of collecting tissue may contribute to the discrepancy.

METH challenge after withdrawal from repeated METH exposure has been shown to induce 

behavioral sensitization related to pERK induction in both CPu and NAc as well as ΔFosB 

expression in the CPu122,169,170. The development and expression of METH behavioral 

sensitization and challenge-augmented pERK induction were inhibited by levo-

tetrahydropalmatine, an antagonist of D1- and D2-Rs169,171,172, suggesting the involvement 

of DA receptors in chronic METH-induced pERK and behavioral sensitization. However, the 

METH challenge-elevated pERK is associated to the consequences of acute stimulation, 

since the pERK protein expression in the NAc is transiently increased during early 

withdrawal or not altered after long-term abstinence122,173. In agreement with the increase 

of pERK induction in the NAc shell after 1 day withdrawal from METH sensitization122, 2 

hr withdrawal from METH SA resulted in elevated D1-R, pCREB, and ΔFosB protein 

expression as well as transcriptional regulating genes including CREB, Elk-1, and Fos 

family in the CPu174,175. Genes associated with dual-specificity phosphatases 12 and protein 

tyrosine phosphatase were also upregulated, implying an inhibitory mechanism to dampen 

ERK signaling during the early phase of withdrawal from METH SA175–177. In both D1- 

and NMDA-Rs dependent manners, acute or chronic METH administration results in 

increases of MKP-1 and MKP-3 mRNA in several brain regions including the PFC, orbital 

cortex, CPu, NAc, and HIPP178,179. Therefore, the ERK-driven MKPs expression and other 

Sun et al. Page 9

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phosphatases represent a positive feedback to gate the transient ERK activation in response 

to acute or chronic METH exposure.

The increase of pERK, pElk-1, pCREB, and/or ΔFosB protein expression in the CPu, NAc 

or PFC is related to METH-induced CPP180,181. Specifically, the acquisition of CPP and 

pERK induction in the NAc by METH-CPP require D1-R but not NMDA-R activation. 

Intra-NAc infusion of MEK inhibitor, PD98059 (2 μg/side), also prevents the expression of 

METH-CPP and pERK induction180. Therefore, this demonstrates the importance of the 

activation of D1-R/MEK/ERK/pElk-1 in the NAc on the development and expression of 

METH-CPP. In contrast, the METH-CPP testing reduced pERK and pCREB in the NAc 

after a single pairing session with 2 days withdrawal182, suggesting either a compensatory 

reduction in response to overactivation of ERK signaling during conditioning and 

withdrawal or other molecular cascades are required for the initial acquisition of METH-

CPP. Both assumptions should be further deciphered to identify molecular mechanisms 

underlying the difference between single and multiple condition session-mediated METH-

CPP.

Chronic METH use causes cognitive deficits associated with altered 

neurotransmission183–186. In animal studies, repeated METH administration leads to spatial 

learning and memory impairment, which is associated with reduced total ERK in the 

PFC187. In addition, deficits in spatial working memory and novel object recognition (NOR) 

are accompanied by an inability of pERK induction in the HIPP and PFC by the learning 

process or stimuli188–191. Interestingly, intra-PFC infusion of PD98509 (2 μg/side) mimics 

the METH-induced cognitive impairment in NOR188, indicating that a reduced pERK 

signaling is responsible for the cognitive dysfunction after long term METH exposure. 

Several drugs have been demonstrated to ameliorate the cognitive deficit by METH through 

ERK signaling. For example, depending on nicotinic acetylcholine receptors (nAChRs), D1-

R and MEK activation, galantamine, a drug used to treat Alzheimer’s disease by inhibiting 

acetylcholinesterase and allosterically modulating nAChRs, alleviates NOR impairment 

through pERK induction in the PFC190. Similarly, modafinil, a cognitive enhancer with a 

weak DA transporter inhibiting effect, also activates pERK in the PFC to rescue the NOR 

deficit191,192 probably through increasing extracellular DA levels. Finally, clozapine, an 

atypical antipsychotic medication, reverses dysfunctional pERK signaling in the HIPP with 

an attenuating effect on spatial working memory impairment induced by chronic METH189. 

Taken together, these results demonstrate that the cognitive impairment induced by chronic 

METH is attributed to the downregulation of ERK signaling during learning and memory-a 

potential therapeutic molecular biomarker for future drug development.

3.4 Marijuana

Δ9-tetrahydrocannabinol (THC) is the main psychoactive component of marijuana which is 

one of the most used illicit drugs193. Cannabinoid receptors 1 and 2 (CB1-R and CB2-R) 

have been identified and located mainly in neuronal and peripheral tissues, respectively. 

Activation of the CB1-R leads to the closing of Ca2+ and the opening of potassium channel, 

subsequently inhibiting AC and activating protein kinase including ERK194. Acute low dose 

THC injection (1 mg/kg) has been demonstrated to increase pERK expression in the 
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mesocorticolimbic system63,195. Specifically, in the CPu and NAc, the THC-activated pERK 

is mediated by CB1-, D1-, D2- and NMDA-Rs indicating a synergistic action among 

cannabinoid, DA and Glu neurotransmission. Acute THC-induced ERK downstream targets, 

pElk-1 and zif268 mRNA, were inhibited by D1-R antagonist and the MEK inhibitor, SL327 

(100 mg/kg). Further, in response to repeated low dose of THC injection, the development of 

THC-CPP was attenuated by SL327 (50 mg/kg), suggesting that ERK-regulated signaling is 

involved in THC rewarding effect196. Similarly, acute THC- (1 mg/kg) induced transient 

pERK induction in the HIPP was dependent on the activation of CB1- and NMDA-Rs. 

SL327 (100 mg/kg) pre-treatment also inhibited the acute THC-induced IEG expression (c-

Fos protein, Zif268 and BDNF mRNAs) in the HIPP197. However, the relevance between 

acute THC-induced behavioral changes and ERK signaling should be further elucidated, 

since there is no significant locomotor activity alteration by low dose THC198.

In contrast to the low dose of THC, high dose of THC (≥10 mg/kg) acutely resulted in 

hypolocomotor activity in the CPu and cerebellum with pERK, pCREB, and c-fos induction 

depending on CB1-R and Ras-GRF1195,199,200. Although the ERK signaling in both brain 

regions is distinct from the acute THC-induced hypolocomotor, it is necessary for the 

development of behavioral tolerance, a gradually behavioral recovery from the initial 

hypolocomotor by acute THC, after repeated THC injection199–201. In an ERK dependent 

manner, the behavioral tolerance is mediated by recruiting G protein-coupled receptor 

kinases and β-arrestins to desensitize and internalize CB1-R in the CPu and cerebellum. The 

chronic THC-mediated cerebellar synaptic transmission and plasticity as well as reduced 

sensitivity of CB1-R activation were also prevented in Ras-GRF1 KO mice202. In addition, 

chronic THC exposure-induced pCREB and FosB protein expression in the PFC and HIPP is 

inhibited by either SL327 (50 mg/kg) or in Ras-GRF1 null mice201. Taken together, the 

results demonstrated that, in response to a high dose of THC, the activation of pERK-

mediated signaling in the CPu and cerebellum is critical for the development of behavioral 

tolerance. In the PFC and HIPP, the ERK-associated molecular cascade may underlie the 

addicted state for THC. However, the latter assumption needs to be examined due to a 

similar analgesic tolerance effect after a chronic high dose of THC. Since THC-induced 

behavioral sensitization and self-administration have been documented203–205, it will be 

worthwhile to determine the role of ERK on reinforcing/rewarding effects of THC in 

specific brain region(s).

In addition to the THC action on CB1-R, dopamine agonist and psychostimulants have been 

shown to increase endocannabinoid release206–208. A previous study has indicated that acute 

cocaine-induced pERK, and c-Fos in the CPu and NAc was inhibited by CB1-R antagonist 

pretreatment, and mice with CB1-R KO or conditional deletion in the forebrain neurons68. 

In addition, the elevated pERK protein expression-induced by chronic cocaine in the VTA is 

dependent on CB1-R activation. The development of cocaine-CPP and underlying pERK 

induction were also inhibited by intra-VTA CB1-R antagonist infusion100, implicating the 

role of CB1-R and endocannabinoids in regulating the rewarding effect of cocaine mediated 

by ERK signaling activation.
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3.5 Nicotine

Cigarette smoking is the largest preventable cause of death and diseases worldwide with an 

estimated 6 million deaths each year209. It has been shown that nicotine, through activation 

of the DA- and Glu-related signaling in the mesocorticolimbic system, exerts its reinforcing 

effects210–212. Several in vitro studies have demonstrated that activation of ERK and CREB 

by acute and chronic administration of nicotine depends on nAChRs, CaMKs, PKA, and 

MEK activity213–217. A genome-wide expression analysis revealed acute nicotine exposure, 

through activation of ERK signaling, induced alterations of gene expression218. Similarly, 

acute nicotine induced transient ERK activation through nAChRs, Ca2+ voltage-gated 

channels, CaMKs, and MEK in primary cortical and hippocampal neurons219,220; however, 

only PKA is required for pERK induction by nicotine in the hippocampal neurons, 

suggesting differential upstream activators for ERK activity in distinct neuronal types. 

Chronic nicotine exposure in mesencephalic dopaminergic neuronal culture resulted in 

increases of dendritic length and soma size through nAChRs- and D3-R-recrutied ERK 

signaling221, demonstrating that ERK involves nicotine-mediated structural neuronal 

plasticity. In vivo, acute nicotine administration increases pERK levels in the NAc, CPu, 

PFC, Amy, and BNST51,63 (also see222,223). In both the CPu and NAc, acute nicotine-

induced pERK is mediated by D1-R/PKA/DARPP-32 signaling pathways63,64, indicating 

the relevance of dopaminergic neurotransmission in response to nicotine. After chronic oral 

consumption of nicotine, the levels of pERK and pCREB were increased in the PFC, but 

pCREB was decreased in the NAc222, suggesting an increase of PFC excitatory output into 

the NAc. Indeed, pERK was increased in the NAc of nicotine-induced CPP animals223, 

supporting the role of PFC-NAc projection in the conditioned rewarding effect of nicotine. 

Interestingly, a direct protein-protein interaction between α7nAChR and GluN2A has been 

identified in the HIPP, which can be upregulated by chronic nicotine exposure224. After 

nicotine self-administration, disruption of the α7nAChR-NMDA-R complex decreased ERK 

activity and blocked cue-induced reinstatement of nicotine seeking behavior224. Taken 

together, these results demonstrate that the ERK signaling pathway is a key integrator of the 

DA/D1-R and Glu/NMDA-R signaling that induces long-term cellular alterations and 

behavioral adaptation in response to nicotine exposure. However, a direct manipulation on 

ERK is warranted to examine its effect on nicotine-induced behavioral changes.

Environment is an important factor affecting the vulnerability for drug abuse225–227. 

Exposure to an environmental enrichment paradigm results in neurobiological adaptations, 

particularly in the PFC of the mesocorticolimbic dopaminergic system155,228–230. Our recent 

study has demonstrated that the basal level of pERK was higher in animals housing in an 

enriched environment condition compared with animals housing in an impoverished 

condition, which was negatively correlated with their respective baseline locomotor 

activities155. After nicotine sensitization or nicotine SA, the pERK induction was 

significantly increased in the PFC of rats raised in either impoverished or standard condition. 

In contrast, due to their higher basal ERK activity in the PFC, nicotine did not alter pERK 

protein levels in animals raised in an enriched environment condition with a decreased 

sensitivity in response to chronic nicotine155. Regardless of raising conditions, the pERK 

induction is positively correlated to the amount of nicotine intake during nicotine SA. Thus, 

these results suggest that pERK induction in the PFC may underlie the rewarding effect of 
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nicotine which is consistent with a previous study demonstrating a preference for ERK-

mediated signaling pathway activation in the PFC after nicotine SA231.

3.6 Alcohol (ethanol)

In a time dependent manner, acute injection with higher doses of ethanol (EtOH, 2.5–

4.7g/kg) reduced pERK and pCREB in the PFC, NAc, CPu, Amy, HIPP, cerebellum, and 

BNST in various ages of rodents232–235. In contrast, acute administration of a lower dose of 

EtOH (1g/kg) significantly increased pERK in various regions including the NAc, and CeA 

in the D1-R and neuropeptide S receptor dependent manner236,237. The acute EtOH-induced 

c-fos induction in the medial Amy was inhibited by the MEK inhibitor, U0126238. Similarly, 

acute acetaldehyde (ACD), the first and main metabolite of EtOH, enhanced pERK in the 

NAc, CeA and BNST through activation of D1-R and opioid receptors239,240. Behaviorally, 

the low dose of acute EtOH (1mg/kg) is associated an anxiolytic response accompanied by 

the rapid increase of spine density in the CeA and medial Amy (MeA) through the BDNF-

mediated TrkB phosphorylation and pERK/pElk-1/pCREB and Arc induction241. In addition 

to the acute EtOH-mediated pERK signaling, its intrinsic activation state may contribute to 

the alcohol intake or preference. For example, despite the mixing results of acute EtOH-

mediated pERK level in alcohol preferring animals, they have higher basal pERK level in 

the PFC and NAc as well as Ras-GRF2 expression, the upstream activator of MEK, in the 

brain compared to their alcohol non-preferring counterparts242–245. The Ras-GRF2 KO mice 

exhibited lower EtOH intake associated with an aberrant DA transmission in the VTA-NAc 

projection mediated by ERK activation242, revealing a functional role of ERK on acute 

EtOH-mediated DA signaling underlying the preference of alcohol.

The effect of chronic EtOH exposure on pERK is heavily dependent on administering 

paradigms, time of withdrawal and brain regions. Immediate cessation of repeated EtOH 

oral consumption and vaporized EtOH exposure has been demonstrated to decrease pERK in 

the PFC, NAc, CPu, Amy, and HIPP, although with an enhanced pERK induction after 7–11 

hr withdrawal235,246,247. In contrast, the chronic EtOH-attenuated neuronal plasticity during 

early withdrawal (e.g. within 1 day withdrawal) is associated with the downregulation of 

pERK and the inability of pERK induction in response to stimulus in the HIPP248. Similarly, 

a desensitization/tolerance of pERK or c-fos expression in response to EtOH re-exposure or 

challenge after withdrawal from repeated EtOH has been found in the PFC and HIPP238,247. 

Further, a paralleled attenuated phosphorylation of GluN1 and CaMKII is also documented 

immediately after chronic EtOH exposure235,247. Taken together, these results demonstrate 

that a reduction of Glu receptor-mediated ERK activity during early withdrawal leads to the 

desensitization of subsequent EtOH-induced pERK signaling. In contrast, Pandey and 

colleagues demonstrated that 24hr withdrawal from repeated EtOH consumption produced 

anxiety-like behavior followed by blunted BDNF/TrkB/pERK/pElk-1 and Arc protein 

expression with reduced spine density in the CeA and MeA241. Intra-CeA BDNF infusion 

restored the early withdrawal-induced ERK signaling dysfunction and inhibited the anxiety-

like behavior. Similarly, knockdown of the BDNF-mediated ERK signaling in the CeA and 

MeA induces anxiety and promotes EtOH intake249. This suggests that withdrawal 

syndrome after chronic EtOH consumption accompanied by physical signs and negative 

emotional state (e.g. anxiety, depression and irritability250,251) may precipitate the relapse of 
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EtOH intake. In addition, withdrawal from repeated EtOH has been demonstrated to result in 

an enhancement of fear conditioning depending on pERK activation in the BLA by NMDA-

R and MEK activation252. Thus, the ERK signaling in the Amy complex is important for the 

development and further acquisition of the negative affective state underlying the 

vulnerability for subsequent alcohol seeking behavior after withdrawal.

The role of ERK signaling pathway in EtOH-mediated rewarding effect has been 

documented. In the CPP model, the alcohol metabolite ACD-CPP is dependent on D1-R 

activation and the development of ACD-CPP can be attenuated by the MEK inhibitor, 

PD98059253. In contrast, a previous study has indicated that the systemic SL327 

administration in the ERK-independent learning mechanism in EtOH-CPP did not affect the 

acquisition, expression and extinction of EtOH-CPP (2g/kg) as well as pERK after acute 

EtOH administration (2.5g/kg)254. However, EtOH-CPP has been shown to be established 

by the lower dose of EtOH (1g/kg) in D1-R dependent manner253, which is sufficient to 

induce pERK induction as described above. Based on the D1-R-activated pERK and 

significant pERK induction after acute EtOH, it is required to further test the effect of D1-

R/ERK signaling on EtOH-CPP by the lower dose of EtOH. The ERK signaling is also 

implicated in the operant rewarding effect of EtOH. For instance, systemic MEK inhibition 

resulted in an increase of EtOH SA255, indicating the antagonism of acute pharmacological 

effect of alcohol promoting the drug taking behavior. After abstinence form EtOH SA, re-

exposure to conditioned cues induced alcohol seeking behavior accompanied by pERK and 

c-Fos expression in the BLA256. The ERK signaling is also critical for the Glu transmission-

mediated alcohol seeking. After extinction from EtOH SA, systemic mGluR5 inhibition 

attenuated cue-induced reinstatement and the cue-induced pERK expression in the BLA and 

NAc shell in alcohol-preferring rats257. Probably through restoring the Glu transmission, L-

cysteine prevents EtOH SA and EtOH-primed-induced drug seeking258. In addition, the 

reinstatement-induced pERK in the NAc shell is also inhibited by the L-cystine pre-

treatment. Finally, ERK activation in the VTA has been demonstrated to mediate the 

inhibitory effect of GDNF in preventing EtOH intake and reacquisition of EtOH SA after 

extinction259.

4. Conclusion and future direction

Drug addiction is a significant public health problem and has been considered as a chronic 

psychiatric disorder, characterized by craving and compulsive drug seeking and use. The 

main obstacle in drug addiction treatment is the cycle of relapse/reinstatement from drugs of 

abuse. This review summarizes the current understanding on the role of ERK signaling and 

its associated intracellular signaling pathways in drug-induced neuroadaptive changes 

underlying the rewarding and reinforcing mechanisms in response to abused drugs. Despite 

the differential regulatory pathways in which all drugs of abuse can affect ERK signaling, 

one evolving theme in all cases is the regulation of the ERK molecules at the 

phosphorylation level. It is therefore important to understand the precise mechanisms that 

underlie the regulation of ERK phosphorylation by different drugs of abuse. The ERK 

signaling pathway may play a critical role in the early intervention during withdrawal from 

chronic drug administration. For example, our recent studies demonstrated that normalizing 

the prefrontal ERK signaling pathway during the early withdrawal from repeated cocaine 
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exposure leads to a long-term inhibitory effect on cocaine relapse120,121 and restores the 

extracellular glutamate dysregulation in the NAc260. In contrast, after prolonged withdrawal 

from cocaine, an increase of PKA-mediated signaling is dominant in the PFC and NAc 

responsible for cocaine seeking85,121,261–263, implicating that ERK activity in the PFC-NAc 

projection is dynamically regulated by multiple intracellular pathways. Future studies will 

evaluate the ability of novel therapeutic interventions to restore normal ERK signaling 

activity in the brain for inhibiting addictive drug-seeking behavior. On the other hand, 

environmental factors can also influence vulnerability to drug addiction. We demonstrated 

that environmental enrichment induces compensatory alterations of D1-R/DARPP-32 and 

ERK signaling pathways in the PFC, which may contribute to environmental enrichment-

dependent reduction of susceptibility to nicotine155,264. Although current knowledge of 

multiple factors regulating ERK activity has greatly expanded, many aspects of this 

regulation remain to be elucidated. For example, overexpression of microRNA-221 

attenuates nicotine-induced pERK (unpublished data), whereas activation of ERK can 

regulate microRNA-221 expression265. Furthermore, ERK signaling has been associated 

with epigenetic mechanisms including chromatin remodeling through histone methylation 

and DNA methylation associated with drug addiction266–268, which are critical for the 

regulation of gene expression, neuronal plasticity, and drug-induced behavioral alteration. In 

summary, several molecular signaling pathways are involved in the complexity of drug 

addiction; with ERK being the most highly characterized during the past two decades. 

Herein, we provide the general role of ERK-mediated molecular cascade in response to 

various abused drugs, but it is by no means exhaustive. Future studies are warranted to 

dissect the ERK signaling pathway providing a better understanding for the development of 

feasible and potential therapeutic strategies for drug addiction and related disorders.
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Abbreviations

AMPH amphetamine

DA dopamine

Glu glutamate

VTA ventral tegmental area

PFC prefrontal cortex

HIPP hippocampus

Amy amygdala

CPu caudate putamen

NAc nucleus accumbens
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ERK extracellular signal-regulated kinase

MAPK mitogen-activated protein kinase

MEK MAPK kinase

CB1-R Cannabinoid receptor 1

CB2-R Cannabinoid receptor 2

pERK phosphorylated ERK

IEG immediate early gene

RSK ribosomal S6 kinase

MSK mitogen and stress-activated protein kinase

CREB cAMP response element-binding protein

pCREB phosphorylated CREB

Ca2+ calcium

CaM calcium/calmodulin

CaMK CaM kinase

pMEK phosphorylation of MEK

AC adenylyl cyclase

mGluR1/5 metabotropic glutamate receptor-1/5

D1-R dopamine D1 receptor

METH methamphetamine

D2-R dopamine D2-R

PKA Protein Kinase A

PKC Protein Kinase C

PP2A Protein phosphatase 2A

PP2B proteinphosphatase 2B

STEP striatal-enriched protein tyrosine phosphatase

pSTEP phosphorylation of STEP

DARPP-32 dopamine and cAMP regulated phosphoprotein-32

pThr75 DARPP-32 phosphorylation of DARPP-32 at Threonine 75

MKP-1/3 MAPK phosphatases 1 and 3
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CPP conditioned place preference

SA self-administration

BNST bed nucleus of the striatal terminals

pGluN2B phosphorylation of glutamate receptor, ionotropic, N-

methyl D-aspartate 2B

BDNF brain derived-neurotrophic factor

Ras-GRF-1 Ras-guanine nucleotide-releasing factors 1

nAChRs nicotinic acetylcholine receptors

THC Δ9-tetrahydrocannabinol
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