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Abstract

Laminins are a major constituent of the basement membranes of the kidney collecting system. 

Integrins, transmembrane receptors formed by non-covalently bound α and β subunits, serve as 

laminin receptors, but their role in development and homeostasis of the kidney collecting system 

are poorly defined. Integrin α3β1, one of the major laminin receptors, plays a minor role in kidney 

collecting system development, while the role of α6 containing integrins (α6β1 and α6β4), the 

other major laminin receptors, is unknown. Patients with mutations in α6 containing integrins not 

only develop epidermolysis bullosa, but also have abnormalities in the kidney collecting system. In 

this study, we show that selectively deleting the α6 or β4 integrin subunits at the initiation of 

ureteric bud development in mice does not affect morphogenesis. However, the collecting system 

becomes dilated and dysmorphic as the mice age. The collecting system in both null genotypes 

were also highly susceptible to unilateral ureteric obstruction injury with evidence of excessive 

tubule dilatation and epithelial cell apoptosis. Mechanistically, integrin α6-null collecting duct 

cells are unable to withstand high mechanical force when adhered to laminin. Thus, we conclude 

that α6 integrins are important for maintaining the integrity of the kidney collecting system by 

enhancing tight adhesion of the epithelial cells to the basement membrane. These data give a 

mechanistic explanation for the association between kidney collecting system abnormalities in 

patients and epidermolysis bullosa.
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Introduction

The multi-branched kidney collecting system develops from the ureteric bud (UB) which 

undergoes iterative branching morphogenesis following its interactions with the metanephric 

mesenchyme (MM). This process requires growth factor-mediated cell signaling and 

integrin-dependent cell-extracellular matrix (ECM) interactions.

Integrins are transmembrane receptors formed by non-covalently bound α and β subunits 

and they mediate multiple cellular processes including adhesion, migration, proliferation and 

tubule formation [1–3]. In mammals, 18 α and 8 β subunits combine in a restricted manner 

to form specific dimers with different ligand binding properties [4]. Of these heterodimers, 

α3β1, α6β1 and α6β4 act as primary receptors for laminins (LM) which are large 

heterotrimeric glycoproteins composed of one α, one β, and one γ chain [5, 6]. LMs belong 

to a multigenic family with five α, four β and three γ chain genes that can assemble into at 

least 15 different heterotrimers [7]. Preferred ligands for integrin α3β1 are LMs-111 and 

332 and the α5-containing LMs, such as LM-511 and 521 [8, 9]. Integrin α6β1 was 

identified as a receptor for LMs-111, 511 and 521, while integrin α6β4 preferentially binds 

to LM-332, however it also interacts with the LMs-511 and 521 [9–11].

The contribution of α6 containing integrins to skin development is well described. 

Mutations of either α6 or β4 result in junctional epidermolysis bullosa with skin blistering 

in humans [12]. Consistent with this finding, integrin α6- and β4-null mice die at birth with 

epidermolysis bullosa, despite no skin morphogenesis defects [13–15]. Dysplasia of the 

kidney collecting system is also found in epidermolysis patients caused by mutations in the 

subunits of either integrin α6β4 or of LM-332[16], however due to their perinatal fatality, no 

causal link has been shown in mice. There is good circumstantial evidence that these 

integrins are important for normal development and maintenance of the kidney collecting 

system as integrin α6 and β4 subunits are highly expressed in the UB and antibodies 

directed against either subunit decreased UB branching morphogenesis in ex vivo organ 

culture models[17]. Also, selectively deleting the other major LM receptor, integrin α3β1, in 

renal collecting ducts at an early embryonic stage resulted in only a mild renal phenotype 

[18–20].

In this study, we selectively deleted the α6 or β4 integrin subunits in the developing UB and 

found that although morphogenesis was normal, the kidney collecting system was 

pathologically dilated in aged mice. Both null genotypes were also highly susceptible to 

tubular dilatation and tubular cell apoptosis following ureteric obstruction. Mechanistically 

integrin α6-null collecting duct (CD) cells cannot withstand high forces when adhered to 

LM-332. Thus, we conclude that α6 integrin/LM-332 interactions play a key role in 

maintaining the integrity of the kidney collecting system by mediating tight adhesion of the 

epithelial cells to the basement membrane. These data provide a mechanistic explanation for 

the susceptibility of epidermolysis bullosa patients to kidney injury.
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Results

Integrin α6 and β4 subunits are not required for normal ureteric bud morphogenesis, but 
are necessary for maintaining normal kidney collecting duct integrity

We deleted either the α6 or β4 integrin subunit at the initiation of UB development (E 10.5) 

by crossing integrin Itga6flox/flox or integrin Itgb4flox/flox mice with the Hoxb7cre mouse. 

Despite successful deletion of integrin α6 (Fig. 1A), the kidneys of Hoxb7cre:Itga6flox/flox 

mice developed normally with no defects observed in 3 months old mice (Fig. 1B–C). 

Interestingly, at 6 months of age these mice had dilated collecting ducts (Fig. 1 D–E) that 

was worse in 10 month old mice (Fig. 1F–I). Despite these kidney defects, these mice lived a 

normal life span. We also achieved successful deletion of the integrin β4 in the collecting 

system of Hoxb7cre:Itgb4flox/flox mice (Fig. 2A) and, similar to the integrin 

Hoxb7cre:Itga6flox/flox mice, no kidney abnormalities were detected in 3 months old mice 

(Fig. 2B–C). The Hoxb7cre:Itgb4flox/flox kidneys demonstrated some dilatation of the 

collecting ducts at both 6 and 12 months, however it was less pronounced than that observed 

in Hoxb7cre:Itga6flox/flox mice (Fig. 2. D–I). These results suggest that α6 containing 

integrins are not required for morphogenesis of the developing kidney collecting system but 

are necessary for maintenance of its integrity over time.

The integrin α6 and β4 subunits protect the kidney collecting system from injury

Based on the finding that the collecting system of the Hoxb7cre:Itga6flox/flox and 

Hoxb7cre:Itgb4flox/flox mice developed dysplastic papillae over time, we tested the 

hypothesis that α6-containing integrins play a critical role in maintaining kidney structure 

following injury by subjecting them to unilateral ureteric obstruction (UUO). Three days 

after UUO the Hoxb7cre:Itga6flox/flox kidneys displayed increased tubular dilation, flattened 

collecting duct epithelium and proteinacious casts relative to kidneys from Itga6flox/flox mice 

(Fig. 3 A–B). On day 5 after UUO, we also observed an increase in cellularity at the 

corticomedullary junction of the kidneys of the Hoxb7cre:Itga6flox/flox mice (Fig. 3 C–D). 

By day 10 the increased cellularity in the Hoxb7cre:Itga6flox/flox kidneys was easily seen 

(Fig. 3 E–F). Despite this phenotype, kidneys of injured Hoxb7cre:Itga6flox/flox mice did not 

develop worse fibrosis than Itga6flox/flox mice as assessed by trichrome staining (Fig 3G–H) 

and immunoblotting for collagen I in isolated kidneys (Fig. 3I–J). The degree of tubular 

injury was scored (see Concise Methods) at days 3, 5 and 10 after UUO, and the 

Hoxb7cre:Itga6flox/flox mice always had a significantly worse injury score than the 

Itga6flox/flox mice. The respective scores for the Hoxb7cre:Itga6flox/flox and Itga6flox/flox 

mice were 3.25 ± 0.5 (SE) versus 2.00 ± 0.15 (SE) at 3 days; 3.75 ± 0.00 (SE) versus 2.25 

+ 0.25 (SE) at 5 days and 4.00 ± 0.00 (SE) versus 3.00 + 0.25 (SE) at 10 days. Furthermore, 

the kidneys of Hoxb7cre:Itga6flox/flox mice developed a significant increase in tubular 

dilatation compared to Itga6flox/flox mice (Fig. 3 K). here was also a significant increase in 

TUNEL staining in the Hoxb7cre:Itga6flox/flox collecting duct epithelium 2 days after UUO 

(Fig. 3 L–N) and this difference persisted at 3 and 5 days (data not shown). Taken together, 

α6-containing integrins protect the kidney collecting system from injury in the setting of 

UUO model by decreasing collecting duct dilatation and apoptosis, but not the fibrotic 

response.
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We next investigated the relative contribution of integrin α6β4 in mediating this protection 

in the setting of UUO injury model by performing the same experiments in the Itgb4flox/flox 

and Hoxb7cre:Itgb4flox/flox mice. Similar to the Hoxb7cre:Itga6flox/flox mice, the 

Hoxb7cre:Itgb4flox/flox mice developed more severe injury than the Itgb4flox/flox mice at 3, 5 

and 10 days after injury (Fig 4A–F), which was characterized by increased tubular dilation, 

flattened collecting duct epithelium, proteinacious casts and excessive cellularity but no 

increase in fibrosis. When the injury was scored it was significantly worse in the 

Hoxb7cre:Itgb4flox/flox when compared with the Itgb4flox/flox mice at 3, 5 and 10 days 

respectively. (3.5 ± 0.5 (SE) versus 2.25 ± 0.15 (SE) at 3 days; 4 ± 0.00 (SE) versus 2.5 

+ 0.25 (SE) at 5 days and 4.00 ± 0.00 (SE) versus 3.00 + 0.25 (SE) at 10 days). There were 

no significant differences in fibrosis between the two genotypes as assessed by trichrome 

staining and immunoblotting for collagen I (Fig. 4G–J). The tubular dilatation was 

significantly increased in the Hoxb7cre:Itgb4flox/flox relative to the Itgb4flox/flox mice in all 

three days (Fig. 4K). There was also a significantly increased amount of apoptosis in the 

collecting ducts of the injured Hoxb7cre:Itgb4flox/flox when compared to Itgb4flox/flox mice 

at 2, 3 and 5 days (Fig. 4 L–N). Thus the differences in severity of injury in the α6 and β4 

null mice relative to their wild type controls were very similar, suggesting the protection 

from injury after UUO was primarily mediated by integrin α6β4.

Integrin α6-null collecting duct cells adhere and signal normally on LM-511 but not on 
LM-332

To study the mechanisms whereby integrin α6-LM interactions regulate the homeostasis of 

the kidney collecting system during aging and after UUO, we isolated collecting duct cells 

from Itga6flox/flox mice (Itga6f/f cells) and deleted Itgα6 in vitro using Cre adenovirus 

(Itga6−/− cells). The α6 integrin subunit was efficiently deleted resulting in no surface 

expression on CD cells (Fig. 5A). This deletion also decreased the surface expression of β4 

but did not significantly alter β1 surface expression or total expression of the α3 (Fig. 5A–

B) or αv integrin subunits (data not shown). We next assessed the functional consequences 

of deleting integrin α6 on CD cell functions on LM-511, the principal LM in the collecting 

duct. Surprisingly, CD cells lacking the integrin α6 subunit did not show significant changes 

in cell adhesion, migration and proliferation (Fig. 5 C–E). Furthermore, when Itgα6−/− CD 

cells were plated on purified LM-511, there were no differences in adhesion-dependent Akt, 

p38-MAPK or ERK activation (Fig. 5F). Thus, in cells expressing the LM-binding integrin 

α3β1, loss of the integrin α6 does not play a role in mediating interactions between CD cells 

and LM-511.

Although LM-511 is the principal LM in the collecting duct, we showed that LM-332 is also 

expressed in the developing collecting system, where it is required for normal CD 

development [18]. As both integrins α6β1 and α6β4 are receptors for LM-332, we defined 

the functions of Itga6−/− CD cells on LM-332. Unlike on LM-511, these cells had significant 

adhesion and migration defects on LM-332 (Fig. 6A, B) with no overall changes in their 

ability to proliferate on this substrate (Fig. 6C). When we determined whether there were 

adhesion-dependent signaling defects of the Itga6-\- CD cells on LM-332, none were found 

(Fig. 6D). Finally, based on the severe dilatation of the tubules seen in the UUO model in the 

Hoxb7cre:Itga6flox/flox mice, we assessed the adhesion strength of Itga6−/− CD cells on 
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LM-332 by performing the spinning disc assay. The adhesive strength of these cells was 

significantly less compared to Itga6f/f CD cells on LM-332, but not on fibronectin, a ligand 

for α5β1 and αv integrins (Fig. 6E). These results suggest that integrin Itga6−/− CD cells 

have an adhesion and migration defect on LM-332 and they cannot withstand high forces 

when adhered to LM-332.

Discussion

Normal UB development requires integrin-dependent cell-ECM interactions, however the 

role of specific integrins in this process is poorly defined. Deleting the integrin β1 subunit 

(which deletes 12 integrins) at the initiation of the developing UB resulted in a severe UB 

branching phenotype that ultimately caused lethal kidney failure [21]. Surprisingly, deleting 

the α3 subunit in the UB only results in a mild UB development disorder [18–20] and 

integrin α1 and α2 null mice have normal kidney collecting systems [3, 4]. The addition of 

blocking α6 and β4 antibodies to in vitro kidney and UB cultures inhibited branching 

morphogenesis suggesting these LM-binding receptors are important for collecting system 

development [17, 22]. In this study we directly investigated the role of the α6 integrins in 

UB development by selectively deleting the α6 or β4 subunit at the initiation of UB 

development. We show that normal UB morphogenesis does not require expression of either 

of these integrin subunits, however as the mice age the collecting system becomes dilated 

and dysmorphic, suggesting a role for the α6 integrins in maintenance of the normal 

architecture of the kidney collecting system. Consistent with this finding the collecting 

systems of both the α6- and β4-null mice were highly susceptible to UUO injury, exhibiting 

excessive tubule dilatation and apoptosis of the kidney tubules. Mechanistically integrin α6-

null CD cells have an adhesion and migration defect on LM-332 and they cannot withstand 

high forces when adhered to this LM. Thus, α6 integrins are important for maintaining the 

integrity of the kidney collecting system by providing sufficient adhesive strength to 

epithelial cells on BMs. In the absence of α6 integrins, there is less tight adhesion of CD 

cells to the BM leading to tubular dilatation over time and increased susceptibility to injury. 

These data suggest a mechanistic explanation for the higher incidence of renal abnormalities 

in patients with epidermolysis bullosa [16, 23–25].

Our result that deleting the α6 or β4 integrin subunit from the developing UB did not alter 

branching morphogenesis was consistent with the observation that newborn constitutive 

integrin α6-null mice had no renal phenotype [13]. These data contrast with the minor UB 

branching abnormalities seen in the integrin α3 and LM γ2, or α5 null mice[18–20], which 

suggests that integrin α3β1 is the principal LM receptor required for normal UB 

development in vivo. As the renal phenotype of the integrin α3-null mouse is so mild and 

the α6, α1 and α2 null mice are normal there does not appear to be a major αβ1 integrin 

that regulates UB morphogenesis. This contrasts with the glomerulus, where deleting the α3 

or β1 integrin subunit causes very similar phenotypes [26–29].

The kidney collecting system in both the Hoxb7cre:Itga6flox/flox and Hoxb7cre:Itgb4flox/flox 

mice become dilated and dysmorphic over time. This phenotype is worse in the α6-null 

mice, suggesting that both integrin α6β1 and α6β4 play a role in this process. Both mice 

were equally susceptible to injury after UUO where they exhibited excessive tubular 
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dilatation and epithelial cell apoptosis. These data are consistent with the primary role of 

α6β4 as an integrin that mediates tight adhesion to a basement membrane. Integrin α6β4 is 

a major component of both the type I and II hemidesmosome structures [30, 31]. Type I are 

found in stratified and pseudostratified epithelia such as the skin, while type II are found in 

simple epithelia such as the uroepithelial layers [32–34]. There are reports of junctional 

epidermolysis bullosa patients with either α6 or β4 mutations that have a dilated renal pelvis 

and hydronephrosis[16, 23–25], features similar to those seen in the aged mice. 

Interestingly, the urinary tract signs in patients do not always correlate with the skin 

manifestations. Thus our mouse data provides mechanistic insights as to why patients with 

epidermolysis bullosa caused by α6β4 integrin mutations have kidney collecting system 

defects. Furthermore, it suggests these patients are potentially susceptible to exacerbated 

injury in conditions with excessive intraluminal tubular pressure such as obstruction or after 

the passage of renal stones.

Deleting the integrin α6 subunit from CD cells resulted in a mild adhesion and migration 

defect as well as decreased adhesion strength on LM-332. Surprisingly, α6 integrins do not 

play a role in CD cell interactions with LM-511, nor do they regulate any form of ligand-

dependent cell signaling. These results are consistent with findings that LM-332 supports 

stable adhesion of many cell types by interacting with both integrin α6β4 and α3β1, while 

the latter is the principal integrin that promotes CD cell adhesion to LM-511[9–11]. Thus in 

CD cells that express α3β1 at high levels, α6 integrins play a minor role in supporting 

adhesion to LM-332 and do not alter adhesion to LM-511. These data suggest that the 

principal role of integrin α6β4, like in the skin, is probably to mediate tight adhesion and 

adhesive strength of CD cells to the tubular basement membrane.

Our results showing that integrin α6β4 is required for normal maintenance of the kidney 

collecting system adds to its described functions. Other than the severe blistering of the skin 

despite normal morphogenesis, all the phenotypes are subtle and occur postnatally in an 

organ specific manner. The only other branching organ where integrin α6β4 was shown to 

be important is the mammary gland. Deleting β4 resulted in small glands that had increased 

apoptosis in the surrounding mesenchyme due to decreased PTHrP expression and 

signaling[35], however these results contrast with another study where mammary glands 

were shown to develop normally in integrin α6-null mice[36]. Similar to our results, 

deleting the β4 integrin subunit in Schwann cells in peripheral nerves resulted in abnormal 

myelin folding and slower nerve recovery after injury because integrin α6β4 is required to 

anchor Schwann cells to the basal lamina[37, 38]. Other defects in the nervous system 

associated with the loss of α6, but not β4, have also been described. Deletion of the α6 

subunit in the brain using the nestin-Cre mouse, did not result in major abnormalities in the 

laminar organization of the cerebral cortex and only mild defects in the cerebellar foliation. 

Compensation by other LM-binding proteins was advanced as the reason for this 

surprisingly subtle phenotype [39]. Similarly, when the α6 subunit was specifically deleted 

from Schwann cells using the mP0TOT-Cre mice, there were no abnormalities in axonal 

sorting and only minor ensheathment and myelin anomalies. The LM receptor, integrin 

α7β1, partially compensated for α6β1 in Schwann cells [40]. Integrin α6 was also shown to 

play a role in the development of the olfactory bulb where it is required for neural 

migration[41]. Thus, with the exception of the skin where it is absolutely required for the 
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tight adhesion of the epidermis to the basement membrane, it appears that other organs can 

compensate for the lack of integrin α6.

In conclusion our data suggests that α6 integrins provide adhesion strength for CD cell 

attachment to BMs and that deleting α6 containing makes the kidney collecting system 

susceptible to age related degeneration and injury due to increased intraluminal pressure of 

the tubules. These data provide a molecular explanation for the increased incidence of 

urogenital abnormalities in patients with epidermolysis bullosa due to integrin α6β4 

mutations and suggests physicians should protect the kidney collecting system of these 

patients from trauma and injury.

Concise Methods

Reagents and antibodies

Human LMs 332 and 511 were produced as previously described[42, 43]. Collagen I was 

purchased from BD Biosciences (San Jose, CA, USA); fibronectin and vitronectin were 

purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). The following antibodies were 

used in Western immunoblot analyses: integrin α3 (AB1920, Millipore, Temecula, CA, USA 

and AF2787, R&D Systems); integrin β1 (AB1952, Millipore); integrin β1 (MAB1997, 

Millipore); integrin β4 (AF4054, R&D Systems); integrin α6 (3750), phospho-AktThr308 

(9275), phospho-AktSer473 (9271), total Akt (9272), phospho-p38Thr180/Tyr182 (9211) 

and total p38 (9212), phospho-ERK1/2Thr202/Tyr204 (9101), total ERK1/2 (9102), (all 

from Cell Signaling Technologies) and collagen I (MD Biosciences). Antibody to β-actin 

(A4700, Sigma-Aldrich) and alpha-tubulin (3873, Cell Signaling Technologies) were used to 

evaluate protein loading. Anti-mouse β1 (550530), α1 (555001), α2 (553819), α5 (553350), 

α6 (555734) and αv (550024) integrin antibodies were purchased from BD Biosciences. R-

phycoerythrin-conjugated secondary antibodies were bought from Invitrogen (Carlsbad, CA, 

USA).

Generation of Hoxb7cre:Itgα6flox/flox and HoxB7cre:Itgβ4flox/flox mice

Integrin α6flox/flox (Itgα6flox/flox) mice [13, 39], 1996) and integrin β4flox/flox (Itgβ4flox/flox) 

mice[15] were crossed with the HoxB7cre mice (generous gift of Dr. A. McMahon)[44]. 

Age-matched littermates homozygous for the integrin Itgα6flox/flox or Itgβ4flox/flox gene but 

lacking cre were used as controls. The expression of integrin α6 and β4 in the developing 

mouse collecting ducts was determined using Western immunoblot analysis.

Unilateral ureter obstruction

All procedures using animals were conducted in accordance with the National Institutes of 

Health Guide for Care and Use of Laboratory Animals and approved by the Institutional 

Animal Care and Use Committee of Vanderbilt University. Unilateral ureteric obstruction 

was performed on mice aged 8 weeks. Mice were anesthetized with ketamine and 

administered pre-operative buprenorphine and isotonic saline. The right ureter was ligated 

with 4.0 silk tie sutures. Mice were euthanized 2, 3, 5, 7, 10 and 14 days’ post-surgery and 

obstructed kidneys were collected for histology and western blot analysis. Tubular dilatation 

was quantified using the ImageJ NIH software (Rasband, W.S., ImageJ, U. S. National 
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Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2014). At 

least 10 different animals were analyzed per each group.

Protein extraction and immunoblotting

Protein from the renal papilla of individual 3-day old pups or the whole kidney after UUO 

was isolated and lysed using a Polytron homogenizer in T-PER reagent (Thermo Scientific, 

Waltham, MA, USA) with protease inhibitors (P8340 Sigma-Aldrich, St. Louis, MO) and 

phosphatase inhibitors cocktails 1 and 2 (P5726 and P0044, Sigma-Aldrich). The 

homogenate was centrifuged at 17,000×g for 20 min at 4°C. The supernatant was collected 

and stored at 80°C. Cell lysates were prepared using M-PER reagent (Thermo Scientific, 

Waltham, MA, USA). Lysates were centrifuged at 17,000×g for 15 min at 4°C. Protein 

concentration in the supernatants was measured using BCA reagent (Thermo Scientific). 

Protein extracts were subjected to Western immunoblot analysis and developed using the 

Western Lightning Chemiluminescence Plus detection system (Perkin Elmer-Cetus, 

Wellesley, MA) according to the manufacturer’s protocol. Densitometry was performed 

using the ImageJ program. Normalization of each protein of interest was performed relative 

to α-tubulin or β-actin value.

Analyses of kidney tissue morphology, apoptosis and fibrosis

Kidneys were cut in half, fixed on 10% formalin and embedded in paraffin. Severity of 

tubular injury was assessed on hematoxylin and eosin (H&E) sections. The percentage of 

tubules with cell necrosis, loss of brush border, cast formation, and tubular dilation as 

follows: 0, none; 1, 10%; 2, 11 to 25%; 3, 26 to 45%; 4, 46 to 75%; and 5, >76%. At least 10 

fields (×200) were reviewed for each slide in a blinded manner. Terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL) assay was performed as described by the 

manufacturer’s instructions (Promega Corporation, Madison WI). TUNEL-positive 

(apoptotic) cells were counted from 10 randomly selected high-power fields using five 

kidney samples per genotype. All slides were analyzed in a blinded fashion. Trichrome 

staining was performed according to the kit’s instructions (Sigma-Aldrich).

Generation of Itgα6f/f and Itgα6 / CD cells

CD cells were isolated from 5- to 6-wk-old Itgα6flox/flox mice as previously described[45] 

and immortalized with pSV40 plasmid. Loci for the α 6 integrin subunit in CD cells were 

deleted with adenovirus expressing cre recombinase. CD cells were grown in DMEM/F12 

medium containing 10% fetal bovine serum and 1% penicillin/streptomycin.

Flow cytometry

Flow cytometry analysis was performed as previously described[21]. CD cells were 

incubated with anti-mouse β1, β4, α1, α2, α6 and αv integrin antibodies followed by FITC-

conjugated secondary antibodies.

Cell adhesion

Cell adhesion assays were performed in 96-well plates as previously described [46]. Cells 

(1×105) were seeded in serum-free medium onto plates containing different concentrations 
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of ECM for 60 min. Non-adherent cells were removed and the remaining cells were fixed, 

stained with crystal violet, and solubilized, and the optical densities of the cell lysates were 

read at 570 nm (OD570). Adhesion was calculated as percent of positive control (adhesion 

to serum).

Cell migration

Cell migration was assayed as previously described [46]. Transwells with 8-μm pores were 

coated with different ECM components, and 1×105 cells were added to the upper well in 

serum-free medium. Cells that migrated through the filter after 8 h were counted.

Cell proliferation

Cell proliferation was assessed by measuring incorporation of 5-bromodeoxyuridine (BrdU) 

in an enzyme-linked immunosorbent assay–based 5-Bromo-2′-deoxy-uridine Labeling and 

Detection Kit III (Roche Applied Science, Indianapolis, IN) as previously described [47]. 

BrdU incorporation was quantified by a change of absorbance (optical density) at 405 nm.

Cell replating assay

Cell replating assays were performed on CD cells that were trypsinized, washed, suspended 

in serum-free DMEM, plated on LM-332 or LM-511 (1 μg/ml) and harvested at 0, 30 and 60 

min later. Cells were washed in PBS and lysed using M-PER reagent with protease and 

phosphatases inhibitor cocktails (Sigma). Protein extracts (20–40 μg) were subjected to 

Western immunoblot analysis.

Spinning disk adhesion assay

Mean cell adhesion strength was measured using a spinning disk system as previously 

described[48, 49]. Briefly, coverslips with adherent cells were mounted on the spinning 

platform and spun. After spinning, remaining cells were fixed in 3.7% formaldehyde, 

permeabilized in 0.1% Triton X-100, stained with ethidium homodimer-1, and counted. Cell 

counts were normalized to the number of cell counts at the center of the disk, where the 

applied force is zero. The shear stress for 50% detachment (τ50) was used as the mean cell 

adhesion strength.

Statistical analyses

The mean and SEM of each treatment group were calculated for all experiments. At least 4 

independent experiments (some in triplicates each) were performed. Student’s t test was 

used to compare two groups. All statistical tests were two-sided and statistical analysis was 

done with the use of SigmaStat software (Systat Software Inc., San Jose, CA). Statistical 

significance was defined as p less than or equal to 0.05.
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Highlights

This manuscript highlights the fact that although integrins α6β1 and α6β4 are highly 

expressed in the ureteric bud if the kidney, they are not required for its normal 

development. However, these integrins are vital in protecting the kidney collecting 

system against injury and deterioration with the ageing process. It also highlights the 

possibility that patients with mutations in the α6 or β4 integrins that develop bullous skin 

diseases are more susceptible to injury of the kidney collecting system.
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Figure 1. The integrin α6 subunit is not required for normal UB morphogenesis but is necessary 
to maintain normal kidney collecting duct morphology
(A) Expression of integrin α6 in papillary lysates from a 3-day old Itga6flox/flox and 

Hoxb7cre:Itga6flox/flox mice was analyzed by Western blotting analysis. α6 is indicated by 

the arrowhead. (B–I) Morphology of H&E stained kidney sections from Itga6flox/flox and 

Hoxb7cre:Itga6flox/flox mice at 2 months (magnification 40×, scale bar =500um) (B, C), 6 

months (magnification 40×, scale bar =500um), (D, E) and 10 months of age (F, G) 

(magnification 40×, scale bar =500um) and (H, I) (magnification 200×, scale bar =100um).
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Figure 2. The integrin β4 subunit is not required for normal UB morphogenesis but is necessary 
to maintain normal kidney collecting duct morphology
A) Expression of integrin β4 in papillary lysates from a 3-day old Itgb4flox/flox and 

Hoxb7cre:Itgb4flox/flox mice analyzed by Western blotting analysis. (B–I) Morphology of 

H&E stained kidney sections from Itgb4flox/flox and Hoxb7cre:Itgb4flox/flox mice at 2 months 

(magnification 40×, scale bar =500um) (B, C), 6 months (magnification 40×, scale bar 

=500um), (D, E) and 12 months of age (F, G) (magnification 40×, scale bar =500um) and 

(H, I) (magnification 200×, scale bar =100um).
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Figure 3. Hoxb7cre:Itga6flox/flox mice have increased injury after UUO
(A–F) Morphology of H&E stained kidney sections from Itga6flox/flox (A, C, E) and 

Hoxb7cre:Itga6flox/flox (B, D, F) 2 month old mice subjected to UUO for 3 (A, B), 5 (C, D) 

or 10 (E, F) days (magnification 200×, scale bar =100um). (G, H) Fibrillar collagen was 

detected 7 days after UUO by Trichrome staining. (I, J) Levels of collagen I in kidney 

lysates of Itga6flox/flox and Hoxb7cre:Itga6flox/flox mice at 7 days after UUO was assessed by 

Western analysis and quantified by densitometry, normalized to α-tubulin and reported as 

mean measurements ±SEM. (K) Quantitative analysis of tubular dilatation in renal sections 

of Itga6flox/flox (black bars) and Hoxb7cre:Itga6flox/flox (white bars) mice subjected to UUO 

for 3, 5 or 10 days. Values are means with SEM from 6 mice; *p<0.01between Itga6flox/flox 

and Hoxb7cre:Itga6flox/flox mice. (L, M) Kidney papilla sections from UUO-treated 

Itga6flox/flox and Hoxb7cre:Itga6flox/flox mice for 2 days were stained for TUNEL 

(apoptosis) (scale bar= 100um). (N) Quantitative analysis of apoptosis in renal papilla 

sections of UUO-treated Itga6flox/flox and Hoxb7cre:Itga6flox/flox mice. Apoptosis was 

quantified and expressed as percent of apoptotic cells per microscopic field (9 fields of 9 

kidneys from either genotype were analyzed. *p<0.01 between Itga6flox/flox and 

Hoxb7cre:Itga6flox/flox mice.
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Figure 4. Hoxb7cre:Itgb4flox/flox mice have increased injury after UUO
(A–F) Morphology of H&E stained kidney sections from Itgb4flox/flox (A, C, E) and 

Hoxb7cre:Itgb4flox/flox (B, D, F) 2 month old mice subjected to UUO for 3 (A, B), 5 (C, D) 

or 10 (E, F) days (magnification 200×, scale bar =100um). (G, H) Fibrillar collagen was 

detected 7 days after UUO by Trichrome staining. (I, J) Levels of collagen I in kidney 

lysates of Itgb4flox/flox and Hoxb7cre:Itgb4flox/flox mice at 7 days after UUO was assessed 

by Western analysis and quantified by densitometry, normalized to α-tubulin and reported as 

mean measurements ±SEM. (K) Quantitative analysis of tubular dilatation in renal sections 

of Itgb4flox/flox (black bars) and Hoxb7: Itgβ4flox/flox (white bars) mice subjected to UUO 

for 3, 5 or 10 days. Values are means with SEM from 6 mice;a significant *p<0.01 between 

Itgb4flox/flox and Hoxb7cre:Itgb4flox/flox mice. (L, M) Kidney sections from UUO-treated 

Itgb4flox/flox and Hoxb7cre:Itgb4flox/flox mice for 2 days were stained for TUNEL 

(apoptosis)( scale bar =100um). (N) Quantitative analysis of apoptosis in renal sections of 

UUO-treated Itgb4flox/flox and Hoxb7cre:Itgb4flox/flox mice. Apoptosis was quantified and 

expressed as percent of apoptotic cells per microscopic field (9 fields of 9 kidneys from 

either genotype were analyzed *p<0.01 between Itgb4flox/flox and Hoxb7cre:Itgb4flox/flox 

mice.
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Figure 5. Itgα6−/− CD cells adhere, migrate, proliferate and signal normally on LM-511
(A) Surface expression of integrin α6, β1 and β4 subunits were determined on Itgα6f/f and 

Itgα6−/− CD cells by flow cytometry using R-phycoerythrin (PE) conjugated secondary 

antibodies. (B) Lysates from Itgα6f/f and Itgα6−/− CD cells (20 μg total protein/lane) were 

immunoblotted for integrin α3 subunits or β-actin (loading control). Adhesion (C), 

migration (D) and proliferation (E) on LM-511 were evaluated as described in the Methods. 

For migration and proliferation, 1 μg/ml LM-511 was used. Shown are mean measurements 

±SEM of 4–6 independent experiments. (F) Itgα6f/f and Itgα6−/− CD cells were plated in 

serum-free medium on LM-511 (1 μg/ml). Cells were lysed at 30, 60 and 90 min after 

plating and lysates (20 μg total protein/lane) were analyzed by Western blot for levels of 

phosphorylated and total Akt, p38, and ERK1/2 or β-actin (loading control).
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Figure 6. Itgα6−/− CD cells show adhesion, migration and adhesion strength defects on LM-332
Adhesion (A), migration (B), proliferation (C), and replating assay (D) on LM-322 (1 μg/ml) 

were evaluated as described in the Methods and in Fig. 5. Shown are mean measurements 

±SEM of 4–6 independent experiments; *p<0.01between Itgα6−/− and Itgα6f/f CD cells. (E) 

The shear stress for 50% detachment (τ50), which represents the mean cell adhesion 

strength, was determined for Itgα6−/− and Itgα6f/f CD cells on LM-332 and fibronectin 

(which is not a ligand of a6 containing integrin) coated cell culture plates. Shown are the 

averaged τ50 values of 3 independent experiments; *p<0.01between Itgα6−/− and Itgα6f/f 

CD cells.
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