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Hypertension (HTN) accounts for 6% of death worldwide. The
prevalence of HTN varies being lowest in rural India (3.4% in
men and 6.8% inwomen), and highest in Poland (68.9% inmen
and 72.5% in women).1 Prevalence of HTN was 27.1% in men
and 30.1% inwomen in the adult population of United States.1

HTN is a risk factor for cardiovascular diseases including
stroke and myocardial infarction.

There are two types of HTN. Primary or essential which
accounts for 90 to 95% and its etiology is not known. Secondary
HTN which accounts for 5 to 10% and its etiology is known.

Advancedglycation end products (AGEs) and its cellular receptor
(RAGE) may play a role in the pathophysiology of HTN. Interac-
tion of AGEs with RAGE increases the expression and release of
inflammatory cytokines, generation of reactive oxygen species
(ROS), and activates nuclear factor kappa-B (NF-κB).2–4 These
agentsmight affect the structures of arterialwall and/or produce
contraction of the arterial wall. Various measures are available
for the prevention and treatment of HTN.5 However, very little
attention has been given to the role of AGEs and its receptors in
initiation and maintenance of arterial stiffness and HTN.
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Abstract There is a close relationship between arterial stiffness and blood pressure. The studies
suggest that the advanced glycation end products (AGEs) and its cell receptor (RAGE)
are involved in the arterial stiffness in two ways: changes in arterial structure and
vascular function. Plasma levels of AGEs and expression of RAGE are elevated, while the
levels of soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) are lowered in
patients with hypertension (HTN). There is a positive correlation between plasma levels
of AGEs and arterial stiffness, and an inverse association between arterial stiffness/HTN,
and serum levels of sRAGE and esRAGE. Various measures can reduce the levels of AGEs
and expression of RAGE, and elevate sRAGE. Arterial stiffness and blood pressure could
be reduced by lowering the serum levels of AGEs, and increasing the levels of sRAGE.
Levels of AGEs can be lowered by reducing the consumption of AGE-rich diet, short
duration of cooking in moist heat at low temperature, and cessation of cigarette
smoking. Drugs such as aminoguanidine, vitamins, angiotensin-converting enzyme
(ACE) inhibitors, angiotensin-II receptor blockers, statins, and metformin inhibit AGE
formation. Alagebrium, an AGE breakers reduces levels of AGEs. Clinical trials with some
drugs tend to reduce stiffness. Systemic administration of sRAGE has beneficial effect in
animal studies. In conclusion, AGE–RAGE axis is involved in arterial stiffness and HTN.
The studies suggest that inhibition of AGEs formation, reduction of AGE consumption,
blockade of AGE–RAGE interaction, suppression of RAGE expression, and exogenous
administration of sRAGE may be novel therapeutic strategies for treatment of arterial
stiffness and HTN.
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This review focuses on the mechanism of HTN especially
systolic HTN, AGEs and RAGE axis, mechanism of AGE–RAGE
axis in the development of HTN and arterial stiffness, effects
of AGE and soluble receptors for AGE (sRAGE) on the elasticity
of blood vessels, and measures to lower levels of AGEs and
elevate the levels of sRAGE in blood in the management of
arterial stiffness and HTN.

Hypertension

In each cardiac cycle, the highest pressure is called systolic
and the lowest pressure is called diastolic pressure. Systolic
pressure is determined by stroke volume, peak systolic rate of
cardiac ejection, and arterial compliance. The factors that
determine the diastolic pressure include total peripheral
vascular resistance, heart rate, systolic pressure, and arterial
elastic recoil. Pulse pressure (PP) is the difference between
systolic and diastolic pressures and is approximately half of
the diastolic pressure.6 PP depends on cardiac output, com-
pliance of the central artery, and wave reflection. Both
systolic and diastolic pressures increase with age. Diastolic
pressure beyond the age of 50 to 60 years tends to plateau and
even decrease with increasing age.7 PP used as indicator of
arterial stiffness has two problems: (1) PP is dependent on
cardiac output and wave reflection and (2) physiological
amplification occurs as the central arterial pressure wave
propagates downward. High PP reflects systolic HTN and
increased central arterial stiffness. Arterial stiffness increases
systolic blood pressure that in turn increases left ventricular
afterload and mass. It also lowers diastolic pressure resulting
in decreased coronary artery perfusion. In adults older than
60 years of age, the PP of > 60 mm Hg is predictor of heart
attack or other cardiovascular diseases. Wide PP is an indica-
tor of not only the stiffness of artery but various other
conditions.6 High systolic and diastolic pressures 160/
120 mm Hg indicate high risk than a pressure of 110/
70 mm Hg even though the PP is similar (40 mm Hg) in
both cases.

HTN is defined as systolic pressure of > 140 mm Hg and
diastolic pressure of > 90 mm Hg. Isolated systolic HTN is
defined as systolic pressure of > 140 mm Hg and diastolic
pressure of < 90 mm Hg. It is most common form of HTN in
people older than 50 years of age. Risk of high blood pressure
increases with age and sex. Risk increases in men older than
45 years of age and women older than 55 years of age. Over
half of Americans older than 60 years of age have HTN.

There are two types of HTN:

1. Essential, idiopathic, or primary HTN without known
etiology. This type of HTN accounts for 90 to 95% of all
HTN. The mechanism(s) of essential HTN is very complex
because of numerous involved factors.

2. SecondaryHTNwith known causes comprise 5 to 10% of all
HTN.

Mechanism of Vascular Stiffness

Arterial stiffness depends on structural and functional com-
ponents of artery. The arterial wall is composed of intima,

media, and adventitia. The intima consists of endothelium
and thin basement membrane. Internal elastic lamina com-
posed primarily of type IV collagen.8 It very little adds to the
elastic properties of the artery. The media is composed of
elastin, collagen, smooth muscles, and ground substance
calledmucopolysaccharide gel. The ratio of elastin to collagen
is highest in the aorta and decreases as one goes away from
the heart to peripheral arteries. Smooth muscle cells in the
artery increases as one goes away from theheart to peripheral
arteries. The adventitia is composed of fibrous tissue. At low
to normal arterial pressures, the stiffness is due to elastin
fibers. However, at pressures (systolic > 200 mm Hg), colla-
gen fibers contribute to stiffness.9 Low ratio of elastin to
collagen makes artery stiffer and vice versa. Endothelial
signaling and vascular smoothmuscle cell also affect vascular
stiffness.10 Clinical manifestation of arterial stiffness includes
isolated systolic HTN (systolic pressure > 140 mm Hg and
diastolic pressure < 90 mm Hg) and elevated PP.11

Collagen and elastin are regulated by matrix metallopro-
teinases (MMPs). MMPs degrade extracellular matrix by
creating uncoiled less effective collagen’ and broken and
frayed elastin molecules. Vascular cells and inflammatory
cells including macrophages and polymorphonuclear leuko-
cytes produce collagenases (MMP-1, MMP-8, and MMP-13)
and elastases (MMP-7).12 Structural changes including frag-
mentation of elastin, increased amount of collagen, arterial
calcification, glycation of elastin and collagen, and cross-
linking of collagen with AGEs leads to the stiffness of the
artery.13,14 Isolated systolic HTN, elevated PP, and increased
pulse wave velocity (PWV) are risk for strokes, myocardial
infarction, heart failure, and overall mortality rate in older
adults.9 For every 2 mm Hg increase in systolic pressure,
there is an increase in the risk of fatal stroke by 7% and fatal
coronary heart disease event by 5%.15 Besides structural
changes in the central arteries, there are other factors that
contribute to the stiffness of the central arteries. These
factors include endothelial dysfunction, neuroendocrine sig-
naling, high glucose, insulin resistance, and genetic predis-
position. Endothelial dysfunction contributes to the arterial
stiffness through imbalance between vasodilator nitric oxide
(NO) and vasoconstrictors (hormones, cyclooxygenase, nic-
otinamide adenine dinucleotide phosphate oxidase, and
xanthine oxidase).10,16 Zieman et al10 have suggested that
the compliance of the arterial wall affects endothelial me-
chanotransduction and that the rigidity of wall might de-
crease the endothelial NO synthase (eNOS) activity resulting
in arterial stiffness.

Neuroendocrine factors include angiotensin II and aldo-
sterone. Angiotensin II increases the formation of collagen,
triggers matrix remodeling and vascular hypertrophy, sup-
presses NO-dependent signaling, increases ROS generation,
and reduces synthesis of elastin,16,17 ROS has been suggested
to be involved in the angiotensin II–induced HTN.18 Aldoste-
rone induces stiffness in the arterial wall through fibrosis and
expression of fibronectin, and hypertrophy of vascular
smooth cells.19

Clinically, arterial stiffness is measured by PWV and
augmentation index (AIx). PWV is the rate at which pressure
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wave moves downward along the artery. This measurement
gives arterial compliance/stiffness. An increase in the PWV
indicates an increase in the arterial stiffness. PWV depends
on arterial stiffness, ventricular ejection length, and periph-
eral vascular resistance. PWV is calculated as distance
traveled by the arterial pulse wave divided by the time
delay between two arterial points. AIx is a measure of
enhancement of central aortic pressure by reflective wave
and is a measure of arterial stiffness. It is calculated by the
ratio of augmentation pressure to PP and expressed as
percentage (%). Increase in AIx indicates an increase in
arterial stiffness.

AGE–RAGE Axis

AGEs are heterogenous group of irreversible adducts formed
by the nonenzymatic glycation and glycoxidation of pro-
teins, nucleic acid, and lipids with reducing sugars.20,21

There are three receptors for AGEs: full length RAGE, N-
truncated RAGE, and C-terminal RAGE which has two iso-
forms, cleaved RAGE (cRAGE) and endogenous secretory
RAGE (esRAGE). cRAGE is proteolytically cleaved from full
length RAGE.22 esRAGE is produced from alternative mes-
senger RNA splicing of full length RAGE.23 Total soluble
RAGE (sRAGE) includes cRAGE and esRAGE. esRAGE is
approximately 20 to 30% of the total sRAGE.24,25 Full length
RAGE is a multiligand cell bound receptor, while esRAGE and
sRAGE circulate in the blood. Interaction of AGEs with full
length RAGE activates NF-κB, increases the gene expression
and release of inflammatory cytokines, and increases pro-
duction of ROS.3,4,26 sRAGE and esRAGE act as a decoy for
RAGE by binding with RAGE ligand, and thus have protective
effects against deleterious effects of interaction of AGEs with
RAGE.27 Hyperglycemia in diabetes increases the levels of
AGEs in the serum and tissue.28 Oxidative stress increases
the formation of AGEs.29 Certain diets, cooking at high
temperature and cigarette smoking also increase the serum
levels of AGEs.30,31

Mechanism of AGE-Induced Hypertension

AGEs can induce HTN in two ways: alteration in arterial
compliance/stiffness and interaction of AGEs with RAGE on
cell surface resulting in changes in cell function.

Alteration in Arterial Stiffness
Causes of increased stiffness are fragmentation of elastin,
increased amount of collagen, glycation of elastin, collagen,
and cross-linking of collagen with AGEs. Arterial stiffness is
composed of two components: structural and dynamic.
Structural component comprises extracellular matrix (elastin
and collagen). The dynamic component is the tone in the
arterial smooth muscle which is dependent on endothelial
cell function. Endothelium releases vasoactive substances
such as NO and endothelin-1.

AGEs are formed in the proteins of extracellular matrix.
Accumulation of AGEs on protein of extracellular matrix leads
to the formation of cross-links, which trap other local macro-

molecules.32 The properties of collagen are altered through
AGE–RAGE intermolecular covalent bond or cross-linking.33

Cross-linking of AGE on collagen and elastin increases the
extracellular matrix area which increases the stiffness of the
artery.34 Glycation increases the synthesis of collagen.35

Cross-linking make the collagen insoluble to hydrolytic en-
zymes.36 AGE-linked collagen is less susceptible to hydrolytic
turn over and is stiffer. There is a cross-linking of AGE with
elastinwhich reduces the elasticity of the arterial wall. Cross-
linking increases the amount of collagen and decreases the
amount of elastin in the arterial wall.

Other mechanisms such as reduced NO and increased
endothelin-1, neuroendocrine signaling, and impaired glu-
cose tolerance besides structural changes in the artery (col-
lagen and elastin fibers) may be involved in the arterial
stiffness by AGEs.

AGEs reduce the bioavailability and activity of NO through
various mechanisms. Matrix-bound AGEs inhibit antiprolifer-
ative activity of NO,37 reduce the half-life of NO synthase
(eNOS),38 impair NO production,39 quench and inactivate
NO,40 reduce production of prostacyclin,41 and increase the
expression of endothelin-1.42 Impaired glucose tolerance
enhances nonenzymatic glycation of proteins with covalent
cross-linking of collagen and alters themechanical properties
of interstitial tissue of arterial walls.10

Neuroendocrine signaling can also affect the arterial
stiffness. Angiotensin-II increases the formation of AGE
and vice versa.43 Increased levels of angiotensin can then
increase the arterial stiffness through AGE or through
release of oxygen radicals by interaction of AGE with
RAGE. Angiotensin can increase oxygen radicals through
various ways.18 ROS degrades the elastin molecules in
vitro.44 ROS can modify newly synthesized tropoelastin
and impair the assembly of tropoelastin into elastin fibers.45

AGEs may contribute to endothelial dysfunction and vascu-
lar stiffness.

Interaction of AGEs with RAGE Resulting in Changes in
Vascular Functions
Asmentioned earlier, interaction of AGEwith RAGE increases
the production of ROS, such as superoxide anion (O2

�),
hydrogen peroxide (H2O2) and hydroxyl radicals (•OH). Su-
peroxide anions produces contraction of the isolated rabbit
aorta that is endothelium dependent and is partially mediat-
ed by an arachidonic acid metabolism.46 H2O2 in lower
concentration produces contraction, while in higher concen-
tration, it produces transient relaxation followed by contrac-
tion of isolated rabbit aorta.47 In vivo, in canine model, ROS
generated by polymorphonuclear leukocytes and administra-
tion of oxygen radical increase total peripheral vascular
resistance.48,49 These data suggest that AGEs, through pro-
duction of ROS, may induce HTN irrespective of arterial
stiffness.

Consequences of Arterial Stiffness with AGEs

Although arterial stiffness, length of ejection of stroke
volume, and peripheral vascular resistance contribute to
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systolic pressure, this pressure is mostly affected by arterial
stiffness. Stiffness of large arteries has numerous conse-
quences. Arterial stiffness with aging leads to isolated
systolic HTN. Systolic pressure increases, while diastolic
pressure increases till the age of 50 years after which
diastolic pressure decreases.50 Systolic HTN affects more
than 50% individuals older than 60 years of age. Isolated
systolic HTN is most common type of HTN among the
elderly individuals. High systolic pressure induces left ven-
tricular hypertrophy (LVH) and diastolic dysfunction. The
incidence of these complications of systolic HTN doubles in
individuals with isolated systolic HTN.51 It is a major risk
factor for stroke and ischemic heart disease.51 Low diastolic
pressure decreases the coronary artery perfusion and hence
can induce ischemia in the heart. Lewington et al15 have
reported that for every 2 mm Hg increase in systolic
pressure increases the risk of stroke by 7% and fatal ische-
mic heart disease events by 5%.

Levels of AGEs, sRAGE, and esRAGE in Arterial
Stiffness/Hypertension

Since AGEs have been reported to increase the stiffness of
arterial wall and systolic blood pressure, and since the ROS
produced by interaction of AGEs with RAGE produces vascu-
lar contraction, one would expect increases in the serum
levels of AGEs, and decreases in the levels of sRAGE and
esRAGE.

Serum Levels of AGEs and Arterial Stiffness/
Hypertension
Plasma levels of methylglyoxal (MG), a source of AGE, were
elevated in spontaneously hypertensive rats (SHR) in com-
parison to normotensiveWistar-Kyoto rats.52 The increases in
MG were positively correlated with the age of the SHR.
McNulty et al53 have reported that the plasma levels of
AGEs were significantly higher in untreated hypertensive
patients than in normotensive subjects (7.84 � 0.94 vs.
2.97 � 0.94 µg/mL).

Serum Levels of sRAGE and Arterial Stiffness/
Hypertension
Liu et al50 measured the serum levels of sRAGE in 209
patients with essential HTN and showed that these pa-
tients had lower serum levels of sRAGE those with LVH
than without LVH. Serum sRAGE levels were measured in
1,077 subjects from general population by Mayer et al.54

They showed that the levels of sRAGE were lower in
nondiabetic hypertensive patients. Heidland et al55 have
reported that plasma levels of sRAGE are lower in patients
with essential HTN. Geroldi et al,56 on the contrary, in a
cross-sectional case–control study with never treated
patients of essential HTN and normotensive, showed a
weak association between sRAGE and systolic blood pres-
sure. The association between sRAGE and PP, however,
was very strong. The data on the whole suggest that
serum sRAGE levels are low in patients with HTN /arterial
stiffness.

Serum Levels of esRAGE and Arterial Stiffness/
Hypertension
Koyama et al57 have shown that the levels of esRAGE are lower
in patients with HTN.

Relationship between Serum AGEs and
Hypertension/Arterial Stiffness

In the previous section, we have described that the serum
levels of AGEs are elevated in the hypertensive patients or
in the patients with arterial stiffness. In this section, we
assess if there is a correlation between the levels of
serum AGEs and HTN/arterial stiffness. McNulty et al53

reported that there was a positive correlation between
the plasma levels of AGEs and aortic PWV, an indicator of
arterial stiffness in hypertensive patients. However, there
was no correlation between plasma AGEs and AIx. This
may be because of the fact that AIx reflects not only the
stiffness of smaller muscular arteries but also the micro-
vascular density, and number and location of terminal
arterioles that contribute to reflected waves, in addition
to velocity of pressure wave and left ventricular ejection
pattern. Semba et al58 reported that PP was positively
associated with AGEs in young type 1 diabetics. They also
showed that the plasma levels of N-epsilon-carboxy-
methyl-lysine (CML) and N-epsilon-carboxyethyl-lysine
were positively associated with systolic pressure and
negatively associated with diastolic pressure. However,
there was no association of AGEs with mean arterial
pressure. This could be because of increased PP. Semba
et al,59 in a longitudinal study of aging 493 subjects,
showed that serum levels of AGEs are associated with
increased aortic stiffness (PWV and PP). Llauradó et al60

investigated the relationship of AGEs with arterial stiff-
ness in patients with type 1 diabetes without clinical
cardiovascular disease. They showed that elevated levels
of AGEs were associated with arterial stiffness indepen-
dent of cardiovascular risk factors, glycemic control, dis-
ease duration, and low grade inflammation. Sourris et al61

reported that plasma levels of CML (AGE) were inversely
related to the diastolic pressure after adjustment for age,
sex, body mass index, and waist–hip ratio. AGEs levels
were positively correlated with PP. However, there was no
correlation between AGE and systolic pressure. Huang
et al62 investigated the relationship between AGEs and
arterial stiffness in 1,051 Chinese participants which
include 390 hypertensive patients. They showed that
the plasma levels of AGEs were associated with stiffness
in the carotid and femoral arteries assessed by PWV. This
association of AGEs with PWV was stronger in hyperten-
sive patients. They also showed that the levels of AGEs
were significantly associated with central and peripheral
AIx. However, Won et al63 reported no association be-
tween serum AGEs and brachial-ankle PWV. These differ-
ences might be due to differences in the study
population. In general, the data suggest that there is a
positive association between serum levels of AGEs and
arterial stiffness/HTN.
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Relationship between Serum sRAGE and
Hypertension/Arterial Stiffness

Mayer et al54 in general population showed that low levels of
serum sRAGE were independently associated with increased
arterial stiffness (increased PWV). This association was sig-
nificant in nondiabetic patients with HTN.

Dimitriadis et al64 in a study of untreated newly diagnosed
430 patients with essential HTN reported that there was an
inverse relationship between serum sRAGE and carotid–
femoral PWV. Geroldi et al56 reported an inverse correlation
between sRAGE and systolic pressure, and sRAGE and PP in
nondiabetic essential hypertensive patients. However, there
are few reports that show a positive correlation between
sRAGE and arterial stiffness in type 2 diabetic patients.65 In a
study of 415 hypertensive patients with diabetes (107 pa-
tients), there was a positive correlation between serum
sRAGE and arterial stiffness.66 These data suggest that there
is an inverse association between sRAGE and arterial stiffness
in patients with HTN without diabetes, and a positive corre-
lation between sRAGE and arterial stiffness in hypertensive
patients with diabetes. This discrepancy could be due to the
presence of diabetes in hypertensive patients. It is known that
the levels of AGEs67,68 and sRAGE69,70 are elevated in patients
with diabetes. It is possible that levels of AGEs are elevated
more than the levels of sRAGE. If that is the case, then AGEs
will have effect on structural changes in extracellular matrix
and hence arterial stiffness in spite of increased levels of
sRAGE in diabetic patients. A consideration should be given to
both AGEs and sRAGE (or esRAGE) in the assessment of
arterial stiffness instead of low sRAGE or high AGEs level
alone. It has been suggested by Prasad71 that the ratio of
AGEs/sRAGE and AGEs/esRAGE should be considered as
universal risk marker for diseases.

Relationship between esRAGE and
Hypertension/Arterial Stiffness

Ghanayem et al72 showed that there was a significant corre-
lation between the serum levels of esRAGE and systolic and
diastolic blood pressure in patients with HTN. Koyama et al24

showed that the plasma levels of esRAGE were inversely
related to blood pressure in diabetic patients with metabolic
syndrome. Humpert et al73 reported that there was no
correlation between serum levels of esRAGE and carotid
intima–media thickness (IMT). However, koyama et al24

showed a weak association between serum levels of esRAGE
and IMT. Choi et al74 showed a negative correlation between
serum levels of esRAGE and systolic and diastolic blood
pressure in diabetic patients treated with diet alone and
metformin or sulfonylurea. esRAGE did not show any corre-
lationwith ankle-brachial PWV. It has also been reported that
esRAGEwas inversely related to IMT.75 It has been shown that
the serum levels of esRAGE are inversely associated with the
blood pressure, especially systolic in male nondiabetic pa-
tients with obstructive sleep apnea.

These data suggest that, in general, low levels of esRAGE
are associated with arterial stiffness and HTN.

Therapeutic Interventions for Arterial
Stiffness/Hypertension

HTN and arterial stiffness interact with each other in a
bidirectional manner.76,77 Arterial stiffness and HTN are
closely associated with age.8 Considering the above concept,
reduction in the levels of AGEs, suppression of expression of
RAGE, and elevation of the levels of sRAGE and esRAGEwould
decrease the arterial stiffness and blood pressure. Since the
interaction of AGEswith RAGE increases the formation of ROS
which constricts the blood vessels, the lowering of the levels
of AGEs and increasing the levels of sRAGE or esRAGE would
reduce the blood pressure. The following measures should be
taken to reduce the levels of AGEs, suppress the expression of
RAGE, and increase the levels of sRAGE and esRAGE.

1. Reduction in consumption of AGEs

(a) Reduction in consumption of AGE-rich diet

The consumption of glucose should be reduced because
glucose is involved in the formation of AGEs.20 Consumption
of some foods such as red meat, cheese, cream, butter, animal
fat, and sweetened fatty cookies which are high in AGEs
should be reduced.78 It has been reported that diets such as
butter, cream, cheese, margarine, and mayonnaise have high-
est amount of AGEs than oil and nuts.79 Uribarri et al79 also
reported that among the meat group, beef has the highest
amount of AGEs, followed by poultry, pork, fish, and eggs. The
lowest amounts of AGEs are present in grains, legumes,
breads, vegetables, fruits, and milk. Fat-free milk has lower
AGEs than the whole milk.

(b) Cooking

Uriharri et al79 reported that cooking at high temperature
in dry heat increases the formation of AGEs. Frying, boiling,
grilling, and roasting produce more AGEs than poaching,
stewing, steaming, and boiling. Uribarri et al79 also showed
that short duration cooking in moist heat at low temperature
reduces the formation of AGEs.

Only 10% of the diet-derived AGEs are absorbed from gas-
trointestinal tract and a significant amount remains in thebody
for 3 days after ingestion.80 Short-term restriction of consump-
tion of AGEs in diet in healthy or diabetic individuals signifi-
cantly decreased the serum levels of AGEs.81 Diet low in AGEs
given for 2 months to mice reduced the serum levels of AGEs.82

(c) Cessation of cigarette smoking is beneficial because
cigarette smoking increases the levels of AGEs.31

2. Prevention of formation of AGEs

(a) Acidic ingredients (lemon juice, vinegar)83 and pome-
granate84 inhibits AGE formation.
(b) Pharmacological agents to prevent AGE formation:

(i) Aminoguanidine

Aminoguanidine (pimagedine), a hydralazine com-
pound inhibits formation of AGE by acting as nucleo-
philic trap for carbonyl intermediates.85 It has been
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shown to prevent diabetic vascular complications in
animal model of diabetes.86 It reduces AGE hemoglobin
independent of reduction of HbA1C in clinical trial.87 In a
placebo controlled clinical trial, aminoguanidine re-
duced glomerular filtration rate and urinary protein-
uria, and prevented deterioration of retinopathy.88

Further clinical trials of aminoguanidine were termi-
nated due to concerns over long-term toxicity such as
patients developing myeloperoxidase and antineutro-
phil antibodies and glomerulonephritis.89

(i) Vitamins

Vitamins may be potential therapeutic agents to
inhibit the formation of AGEs. Pyridoxamine, a natural
form of vitamin B6,90 benfotiamine (vitamin B1),91

vitamin C,92 vitamin D,93 and vitamin E94 decrease
the formation of AGEs. Pyridoxamine is effective in
suppression of renal disease in streptozotocin-induced
type 1 diabetes.90 Vitamin E reduces the serum levels of
AGEs in patients on dialysis.94 Individuals with vitamin
D deficiency have higher blood pressure.95 It is possible
that vitamin D–induced lowering of blood pressure is
due to lowering of AGE formation.

(iii) Drugs

Angiotensin converting enzyme (ACE) inhibitor ram-
ipril used for 2 months in patients with diabetes re-
duced fluorescent AGEs.96 Angiotensin II receptor
blockers telmisartan and losartan suppressed the for-
mation of AGEs in cell culture.97 Valsartan administrat-
ed for 1 year in patients with HTN and diabetes reduced
the serum levels of AGEs.98 Candesartan administered
to patients with HTN with diabetes for 3 months
reduced the levels of AGEs (CML).99

Cerivastatin administered to patients with diabetes
or prediabetes for 3 months reduced the serum levels of
AGEs.100 Atorvastatin treatment reduced the serum
levels of AGEs.101

Thiazolidine-derivative metformin reduces the lev-
els of AGEs in women with polycystic ovary syn-
drome.102 Other potential inhibitor for AGE formation
include α lipoic acid,103 taurine,104 aspirin,105 pioglita-
zone,106 pentoxifylline,106 resveratrol,107 and
curcumin.108

3. AGE breakers

Alagebrium (3-phenacyl-4,5-dimethylthiazolium chlo-
ride, ALT-711) nonenzymatically breaks the established
cross-linking of AGE with adjacent long lived collagen and
elastin.109 Studies in animals have shown the beneficial
effects of alagebrium on arterial stiffness. Wolffenbuttel
et al110 have shown that large artery stiffness in streptozo-
tocin-induced diabetic rats was reversed by alagebrium.
Alagebrium reduced both aortic stiffness and AIx in old
normotensive monkey.111 Alagebrium reduced PWV and PP
without reduction in mean arterial pressure.112

Clinical trial in human with alagebrium has positive re-
sults. Alagebrium, 200 mg twice daily for 8 weeks in men

with HTN on antihypertensive therapy reduced arterial stiff-
ness by 37% and blood pressure by 6.8 mm Hg and these
changes were associated with reduction in fibrosis of the
blood vessels.10,113 Kass et al112 reported that in a double-
blind clinical trial, alagebrium (210 mg/d for 8 weeks) ad-
ministered to patients with systolic HTN increased total
arterial compliance by 15% and reduced PP by 5.3 mm Hg.
Systolic and Pulse Pressure Hemodynamics Improvement by
Restoring Elasticity (SAPPHIRE) study has also shown the
beneficial effects of alagebrium in systolic HTN.113

Downregulation of RAGE Expression

Downregulation of expression of RAGE would reduce the
arterial stiffness and blood pressure. There are numerous
agents that can downregulate the expression of RAGE. Sim-
vastatin inhibits the expression of RAGE through a decrease in
myeloperoxidase-dependent production of AGEs.114Atorvas-
tatin downregulates the expression of RAGE in vitro.115

Angiotensin II receptor blockers, telmisartan, and candesar-
tan downregulates the RAGE expression.116,117 Thiazolidine-
diones reduce the expression of RAGE in the endothelium.118

Curcumin downregulates the expression of RAGE in cultured
hepatic cells.119 Calcium channel blocker, nifedipine sup-
presses the expression of RAGE in the endothelial cells
exposed to AGEs.120

Elevation of the Levels of sRAGE and esRAGE

Statins
Treatment with pitavastatin and pravastatin increased the
serum levels of sRAGE in humans.101 Atorvastatin, fluvasta-
tin, and lovastatin increase the serum levels of sRAGE in
isolated cell lines.121 Atorvastatin increases the levels of
sRAGE and esRAGE in vitro.121,122

ACE Inhibitors
Ramiprilat increased the expression of sRAGE in the aorta of
streptozotocin-induced diabetic rats.123 Forbes et al123 also
reported that ramipril significantly increased the serum, a
level of sRAGE in diabetic rats. Perindopril elevated the levels
of serum sRAGE in patients with type 1 diabetes.123

Angiotensin II Receptor Blocker
Telmisartan reduces the serum levels of sRAGE by decreasing
its secretion.116

Antidiabetic Drug
Tan et al124 reported an increase in the serum levels of sRAGE
and esRAGE with rosiglitazone in patients with type 2
diabetes.

Systemic Administration of Recombinant sRAGE
The studies indicate that the elevated levels of serum sRAGE
are associated with an improvement in arterial stiffness and
isolated systemic HTN. Exogenous administration of recom-
binant sRAGE should ameliorate the arterial stiffness and
HTN. Tang et al125 have reported that administration of
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recombinant sRAGE protected ischemic stroke in animal
model. Administration of exogenous sRAGE reduced the
carotid artery restenosis in mice,126 AGE-induced vasculop-
athy in diabetic rats,127 and completely suppressed athero-
sclerosis in apolipoprotein E–deficient mice.128

These observations suggest the possibility of exogenous
administration of recombinant sRAGE is to raise the serum
levels of sRAGE and reduce the arterial stiffness and high
blood pressure especially old age isolated systemic HTN.
However, till now, no data are available on the exogenous
administration of recombinant sRAGE in patients with arte-
rial stiffness and HTN.

Effects of Therapeutic Interventions on
Arterial Stiffness/Hypertension

Statins, which reduces the levels of AGEs and raises the levels
of sRAGE, also reduces the arterial stiffness. Atorvastatin (10
mg/daily) produced improvement in arterial stiffness in
hypertensive and hypercholesteremic subject.129 Atorvasta-
tin improved the arterial stiffness in patients with ischemic
heart disease.130 Fluvastatin had variable effects on arterial
stiffness. Rizos et al131 reviewed nine control randomized
trials with fluvastatin on arterial stiffness. Fluvastatin in two
studies showed a decrease in central aortic PWV (caPWV), in
one study, there was no change in caPWV and in other study,
there was an increase in caPWV. In other five studies,
fluvastatin reduced the brachial artery PWV.

Antidiabetic drug, pioglitazone, reduced arterial stiffness
in diabetic patients.132 Rosiglitazone had variable effects on
PWV, decreases133 in one and no improvement in the oth-
er.134 Metformin reduced arterial stiffness in young women
with polycystic ovary syndrome.135

Aminoguanidine decreased arterial stiffness in old rats,136

streptozotocin-induced diabetic rats,137 and in humans.138

Alagebrium reduced arterial stiffness in older monkeys,111 in
older patients with isolated systolic HTN,112 and in rat aging
model.139

Perspectives

Arterial stiffness and blood pressure pulsation are related. It
is, however, not fully understood if there is a temporal
relationship between arterial stiffness and elevation of blood
pressure. Kaess et al140 have shown that high aortic stiffness
was associated with higher risk of incident HTN. These
investigators also reported that initial blood pressure was
not associated with progressive aortic stiffness. It has been,
however, reported that aortic stiffness is greatly associated
with age, HTN, obesity, impaired glucose tolerance, and
dyslipidemia.141,142 As mentioned earlier76,77 HTN and arte-
rial stiffness functionally interact bidirectionally. It has been
suggested that arterial stiffness should be taken into consid-
eration in the management of HTN.143 Arterial stiffness may
be causal factor for HTN because PWV is elevated even when
the arterial pressure is at borderline of HTN.144

Traditional antihypertensive drugs such as ACE inhibitors,
angiotensin II type 2 receptor antagonists, and β blockers

reduce the arterial stiffness indirectly by lowering blood
pressure but not through changes in the extracellular matrix.
AGE–RAGE axis may be involved in the pathogenesis of essen-
tial HTN, and hence, the treatment target for essential HTN
should include the agents that prevent the AGE-induced
degradation of elastic fibers and formation of collagen fibers.
Inhibition of AGE formation, blockade of AGE–RAGE inter-
action, and suppression of RAGE expression may be novel
therapeutic strategies for treatment of arterial stiffness and
HTN.

Conclusion

In conclusion, the data suggest that AGE–RAGE axis is in-
volved in the development of arterial stiffness and HTN
especially isolated systolic HTN. The studies also suggest
that reduction of AGE formation and consumption, suppres-
sion of RAGE expression, elevation of sRAGE, and exogenous
administration of recombinant sRAGE may be novel thera-
peutic strategies for the management of arterial stiffness/
HTN. It will be of benefit to add these new therapeutic agents
in addition to traditional antihypertensive agents in the
management of arterial stiffness, increased PP, and HTN.
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