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Abstract

Large amounts of metabolomics data have been accumulated to study metabolic alterations in 

cancer that allow cancer cells to synthesize molecular materials necessary for cell growth and 

proliferation. Although metabolic reprogramming in cancer was discovered almost a century ago, 

the underlying biochemical mechanisms are still unclear. We show that metabolomics data can be 

used to infer likely biochemical mechanisms associated with cancer. The proposed inference 

method is data-driven and quite generic; its efficacy is demonstrated with the analysis of changes 

in purine metabolism of human renal cell carcinoma. The method and results are essentially 

unbiased and tolerate noise in the data well. The proposed method correctly identified and 

accurately quantified primary enzymatic alterations in cancer, and these account for over 80% of 

the metabolic alterations in the investigated carcinoma. Interestingly, the two primary action sites 

are not the most sensitive reaction steps in purine metabolism, which implies that sensitivity 

analysis is not a valid approach for identifying cancer targets. The proposed method exhibits 

statistically high precision and robustness even for analyses of moderately incomplete 

metabolomics data. By permitting analyses of individual metabolic profiles, the method may 

become a tool of personalized precision medicine.
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Introduction

Cancer cells frequently alter their metabolism to facilitate rapid growth and proliferation1, 2, 

a phenomenon that was noticed as early as 1926 by Otto Warburg 3, 4. Particularly affected 

are aerobic glycolysis, pentose phosphate pathway, Krebs cycle, nucleotide synthesis, and 

amino acid metabolism, as well as lipid metabolism 2, 5. Some of these changes may be due 
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to oncogenes or tumor suppressor genes, but oncogenesis can also be promoted by the 

accumulation of metabolites such as succinate, fumarate, and 2-hydroxyglutarate 4, 6-8. 

While the changed molecular signatures can be considered as one of cancer hallmarks, they 

can also potentially suggest specific therapeutic targets. However, the most effective targets 

are seldom metabolites but enzymes that are associated with their dynamics. For example, 

drugs like 5-fluorouracil, methotrexate, and gemcitabine exert their anti-cancer function 

through inhibition of metabolic enzymes 9. It is therefore necessary to translate observed 

changes in molecular signatures into functional changes at the level of enzymes.

Although molecular alterations in cancer have been studied for decades, it is still not clearly 

understood how metabolic reprogramming is mechanistically achieved. In other words: 

Which changes in processes are responsible for the metabolic alterations? This important 

question leads directly to the task of inferring the biochemical mechanisms associated with 

cancer from metabolomics data. We address this task here, building upon and expanding 

earlier, preliminary approaches using kinetic models and an inference algorithm 10, 11. 

Specifically, we focus on biochemical pathways, which we represent with nonlinear systems 

models, and target biochemical mechanisms underlying metabolic alterations in cancer. The 

method is implemented as a robust inference algorithm that efficiently explores the huge 

space of all possible combinations of altered kinetic parameters within the selected pathways 

and robustly identifies those combinations that are most likely associated with the cancer in 

question.

The algorithm involves a large number of comparisons of metabolic profiles (simulated vs. 

observed), which implies a need for intensive computations and metrics for assessing the 

similarity between profiles. In addition, metabolomics data are typically noisy as well as 

incomplete, as it is rare that all metabolites in a pathway can be measured. Furthermore, 

almost all biomedical systems are nonlinear and complex, which renders analytical solutions 

difficult if not impossible. These challenges have to be taken into consideration by our 

method.

Experimental

The proposed inference method for biochemical mechanisms associated with cancer 

contains three components: 1. One or more kinetic models of a metabolic system associated 

with cancer; 2. Suitable metabolomics data; and 3. An efficient inference algorithm. Our 

illustration example is purine metabolism in human renal cell carcinoma. This cancer 

accounts for 2% of all new cancer cases worldwide. In 2015, about 62,000 new cases were 

diagnosed in the US and about 14,000 individuals died from it 12.

Kinetic model

Human renal cell carcinoma is driven by uncontrolled cell growth in a kidney. This growth 

requires large amounts of nucleotides for DNA and RNA synthesis and points to purine and 

pyrimidine metabolism as main sources. For our illustration we focus on the former. Purine 

metabolism is a complex metabolic pathway (Fig. 1) that consists of a de novo synthesis 

pathway (red arrows) and a salvage pathway (green arrows). As a computational platform 

we use a detailed kinetic model of human purine metabolism 13, 14 consisting of 16 ordinary 
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differential equations with 37 fluxes. This kinetic model is used as a computational platform 

and provides the functional connections between changes in proteins/enzymes and metabolic 

alterations. Further details of the model are described in the Supplements.

Metabolomics data

Weber discovered several changes in the enzyme activities of purine metabolism in human 

renal carcinoma cells 15. The affected enzymes (and their fold changes compared to normal 

kidney cells; in parentheses) are: amidophosphoribosyltransferase (ATASE, 1.58), IMP 

dehydrogenase (IMPD, 2.53), adenylosuccinate synthetase (ASUC, 1.49), adenylosuccinate 

lyase (ASLI, 1.76), AMP deaminase (AMPD, 2.07), xanthine oxidase or xanthine 

dehydrogenase (XD, 0.25).

Unfortunately, the corresponding metabolite levels were not measured in these samples. 

Thus, we created an artificial “dataset” by implementing the measured enzymatic changes in 

the dynamic purine model and thereby obtaining the resulting metabolic alterations at the 

steady state of the model. These alterations are considered our “data” (Table 1). They consist 

of concentrations [μM] of 16 metabolites in normal and cancer cells, from which differences 

between these two types of cells were computed. In this demonstration, the “data” are 

artificially generated, which permits precise analyses and interpretations of results, whereas 

they would consist of actual experimental or clinical findings in a true analysis.

In reality, metabolomics data are noisy and incomplete. In order to evaluate the efficacy and 

accuracy of our method, we first analyze this ideal metabolomics (i.e., noise-free and 

complete) dataset, and later assess the tolerance of our method to incomplete and noisy data.

Inference algorithm

Using the metabolomics data as input and the kinetic model of purine metabolism as a 

computational platform, the proposed algorithm employs a multi-step strategy to screen out 

kinetic parameters that are probably not affected by cancer and to home in on the most likely 

alterations (Diagram 1). The core idea is to identify combinations of changes in enzyme 

activities that result in metabolic profiles most similar to those observed in the metabolomics 

data. However, instead of targeting the one singly best solution, the method is designed to 

identify large feasible ensembles of solutions and thereby to obtain statistically robust 

conclusions. This goal is achieved with millions of Monte Carlo simulations and an 

optimization process for filtering (Fig. 2).

As one component, the filtering process requires the objective comparison of metabolic 

profiles. Each profile is represented as a vector, and the similarity between two vectors is 

assessed with their Euclidean distance. If a simulated vector is close enough to the observed 

profile, with a smaller Euclidean distance than a predefined threshold, it is kept; otherwise it 

is discarded. All vectors surviving this filtering will have their corresponding changes in 

enzyme activities been stored as admissible sets of perturbations. These admissible sets are 

collectively analyzed to obtain statistically robust conclusions. The details of the two-phase, 

multi-step inference algorithm are described in the Supplement.
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Results

The proposed two-phase, multi-step method discovers primary and secondary mechanisms 

separately. Accordingly, we divide the results of inferred mechanisms into two parts.

Phase 1 - Step 1

Out of five million Monte Carlo simulations, we only retain those combinations of enzyme 

alterations that cause the same direction of changes in metabolites (increased (+); decreased 

(−)) between tumor and normal cells as the metabolomics data (Table 1). Although coarse, 

this qualitative filtering results in an enormous reduction (> 99%) from all simulated 

combinations to an admissible subpopulation of about 30,000 sets. From this admissible 

subpopulation, we generate a distribution of disease actions at each candidate site (Fig. 3) 

and compute its skewness coefficients. Candidate sites with essentially symmetric 

distributions (uniform, Gaussian, etc.), as judged by the predefined threshold of 0.4 for the 

skewness coefficient, are excluded from further consideration. Specifically, a high index 

(close to 0.5) suggests that there is not likely an imposed biological constraint on the 

parameter (i.e., on a relevant enzyme) in question and that cancer is therefore not likely to 

affect this enzyme. Table S1 shows the list of all 27 candidate target sites.

The 17 sites remaining as candidates after this step of filtering are: 

phosphoribosylpyrophosphate synthetase (P1), amidophosphoribosyltransferase (P2), 

adenine phosphoribosyltransferase (P4), pyrimidine synthesis (P5), inosine monophosphate 

dehydrogenase (P6), guanosine monophosphate synthetase (P7), adenylosuccinate 

synthetase (P8), adenylosuccinate lyase (P9), adenosine monophosphate deaminase (P11), 

methionine adenosyltransferase (P12), protein O-methyltransferase (P13), s-

adenosylmethionine decarboxylase (P14), adenosine deaminase (P18), RNases (P20), 

xanthine oxidase/xanthine dehydrogenase (P23), guanine hydrolase (P24), ‘uric acid 

excretion’ (P27). These 17 candidate sites were kept for the consideration in the next step, 

while the other 10 sites were henceforth excluded.

Phase 1 - Step 2

For the second step, we randomly sample one million sets of enzyme combinations 

involving only the remaining 17 sites. For each set, we compare the simulated and observed 

metabolic profiles and compute the Euclidean norm between them. The one million sets are 

sorted according to their norms in ascending order. The top one thousand sets are selected; 

their corresponding metabolic differences have a mean Euclidean distance of 634.0 (±94.5), 

which is enormously improved over the corresponding value of 10,111 (±20,205) for the 

entire one million sets of random alterations. This step shrinks the space of possible 

combinations of alterations based on quantitative information.

Phase 1 - Step 3

A genetic algorithm optimization is run with the selected top one thousand combinations of 

hypothesized enzyme alterations from the second step as the initial values. Among the 

optimized sets, we choose the best subset (833 sets) with differences of 85.8±51.9 (Fig.4), 
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which is much smaller than the best set from the second step. The skewness coefficient for 

each candidate site is shown in Table 2.

The results statistically and clearly suggest that two enzymes emerge as most likely primary 

targets in human renal cell carcinoma, namely: inosine monophosphate dehydrogenase 

(IMPD) and xanthine oxidase/xanthine dehydrogenase (XD). The intensities of changes in 

these enzymes, expressed as median fold changes in cancer with respect to their nominal 

values in normal tissue, were inferred as: 2.439 (activation at IMPD) and 0.236 (inhibition at 

XD). From Weber's work, we know the exact enzymatic changes in human renal cell 

carcinoma and, indeed, the predicted sites are among the six cancer targets identified by the 

enzymological study. The predictions of intensities of these two alterations are surprisingly 

accurate: 2.439 vs. 2.53 (prediction vs. IMPD data); 0.236 vs. 0.25 (prediction vs. XD data).

Validity of predicted primary cancer sites

Although these two cancer sites are correctly identified, validation is needed to affirm that 

they are primary mechanisms of human renal cell carcinoma. Among all possible 

combinations of six enzymatic alterations that were experimentally measured by Weber, it 

could theoretically be possible that a different combination could contribute more 

significantly to the cancer metabolic profile. To test this possibility, and quasi as a 

computational validation of our results, we implemented, one at a time, all possible 

combinations of the six known cancer-associated enzyme alterations in the model of purine 

metabolism. These simulations accounted for alterations of only one enzyme up to 

alterations in all six enzymes simultaneously.

For each combination, the computed and observed metabolic profiles were compared and the 

computed distance was normalized and assessed. If only one out of the six enzymatic 

alterations is implemented, there are six choices, which are put into one group. Similarly, we 

construct scenarios of two-enzyme alterations (15 different combinations of exact 

perturbations), three-enzyme alterations (20 different combinations), four-enzyme alterations 

(15 different combinations), and five-enzyme alterations (6 different combinations). Figure 5 

shows the Jeffreys & Matusita metrics for these scenarios (other metrics show similar 

results, data not shown; but see Qi et al. 2016)16. The left-most symbol is the control, which 

corresponds to the distance between the healthy and cancer profiles and by definition has a 

normalized distance of 100. The next set of symbols (red) corresponds to a single alteration, 

the following set (green) corresponds to two simultaneous alterations, and so forth. As 

shown, the activation at IMPD accounts for 68% of the metabolic alterations found in human 

renal cell carcinoma. The combination of activating IMPD and inhibiting XD explains 81% 

of the alterations. Therefore, the predicted alterations at IMPD and XD are computationally 

confirmed as primary cancer actions.

Phase 2 - Steps 4 and 5

81% of the observed metabolic alterations are already explained by the two primary 

alterations (IMPD and XD). These two are implemented in the model, which subsequently 

allows an assessment of secondary mechanisms of human renal cell carcinoma. This 

assessment is achieved with steps 4 and 5 of our algorithm (Table S2).
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The algorithm predicted three secondary mechanisms: inhibition of adenylosuccinate 

synthetase (ASUC), activation of amidophosphoribosyltransferase (ATASE), and inhibition 

of uric acid excretion (VUA). Compared to actually observed enzymatic changes in human 

renal cell carcinoma from the enzymological study 15, two cancer targets (ASUC and 

ATASE) are correctly identified and the action mode at the site ATASE is correctly 

predicted. However, the algorithm suggests an inhibition of ASUC instead of the observed 

activation. The algorithm furthermore missed two secondary mechanisms: activation of 

adenylosuccinate lyase (ASLI) and adenosine monophosphate deaminase (AMPD). In 

addition, uric acid excretion (VUA) is wrongly predicted as a step associated with cancer. 

Thus, these secondary inferences are by far not as strong as the primary inferences.

Incomplete metabolomics data

We used for our analysis a constructed, ideal metabolomics dataset, which is complete and 

noise free. In reality, experimental and clinical measurements are noisy and typically 

incomplete. Since our results showed that only the primary cancer actions can be reliably 

and robustly discovered even if the metabolomics data are ideal, it is useful to assess the 

robustness of our method for the inference of primary cancer actions when the metabolomics 

data are incomplete. In the metabolomics data for the sixteen metabolites in purine 

metabolism, nine metabolites show more than 10% relative change from normal cells to 

human renal cell carcinoma. Suppose that experiments only monitor four out of these nine 

metabolites and that the selection of these four measurements is random. If so, there are 126 

possible combinations for random selections of four metabolites out of nine. For each of 

these, we used our method to infer primary cancer alterations. Table S3 shows statistical 

measures of robustness of our method for the inference of primary cancer actions when the 

metabolomics data are incomplete.

The results indicate that our method has a precision (or positive predictive value) as high as 

92%. However, it performs rather poorly in terms of sensitivity (or true positive rate), which 

is 19.2%, when randomly incomplete metabolomics data are used. Here, precision is defined 

as the quotient between true positive and (true positive + false positive), while sensitivity is 

the quotient between true positive and (true positive + false negative). These statistical 

measures (high precision and low sensitivity) indicate that our method may exhibit low 

sensitivity when the metabolomics data have low metabolite coverage; in other words, it 

may not be able to predict primary cancer associated alterations in this case. Nonetheless, 

the strength of the method is its high precision, which gives us high confidence that any 

prediction of primary actions is true. Not surprisingly, further tests showed that the 

sensitivity can be greatly improved when the metabolite coverage of data is increased (data 

not shown).

Conclusions and Discussion

High-throughput methods and instruments have greatly accelerated the accumulation of – 

omics data. Among these, metabolomics data are intriguing because they form the bridge 

between enzymes, which govern biochemical mechanisms, with metabolites, which are 

directly tied to physiological function. This connection is important because the specific 

Qi and Voit Page 6

Mol Biosyst. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms of a disease or physiological perturbation are often unclear. The scientific 

community realizes the importance of metabolomics data and is investing considerable 

funding, e.g., in the effort of the Common Fund Metabolomics Program at NIH (http://

commonfund.nih.gov/metabolomics/index). While the amount of metabolomics data is 

growing quickly, their analysis lags behind and poses challenges.

Many diseases result in metabolic alterations. A good example is cancer, leading to 

metabolic reprogramming, which may be attributed to the activation of oncogenes, inhibition 

of tumor suppressor genes, or changes in metabolic enzymes, such as RAS, BRAF, p53, 
PTEN, succinate dehydrogenase, and fumarate hydratase 17-21. Traditionally, 

experimentalists have been assessing the role of each potential contributor individually, 

thereby generating new and relevant hypotheses. This reductionistic approach has achieved 

great success and generated rich data and knowledge about cancer.

As a complementary approach, we propose here a systemic way of analyzing metabolomics 

data with the aim of obtaining new insights into biochemical mechanisms that are altered in 

cancer. The rationale is that metabolic alterations in cancer are to be attributed to enzymatic 

changes and that the connection between underlying mechanisms and the observed 

metabolic alterations can therefore be computationally and systematically inferred. As we 

demonstrated here, primary alterations in cancer, which account for over 80% of changes in 

metabolic profiles, can be correctly and accurately identified and quantified if the data are of 

sufficiently high quality. Interestingly, the two identified primary enzymatic sites for purine 

metabolism in human renal cell carcinoma are not the most sensitive components of purine 

metabolism, which suggests that sensitivity analysis is not a valid approach toward the 

inference of cancer targets. Some enzymes may have very high sensitivities, but that does 

not mean that they are altered or varied as much as some of the less sensitive enzymes. 

Nonetheless, our study shows that the mechanistic information that underlies changes in 

metabolic profiles is stored in the kinetic features of the metabolic pathway and can 

therefore be extracted by our proposed method.

One challenge is that there is no a priori knowledge regarding how many enzymes are 

targeted, what the mode of each cancer alteration is, and how strong each alteration is. 

Therefore, our method needs to treat each candidate site equally and must quantify possible 

cancer-associated alterations at each action sites in the pathway system. While this 

complexity may seem overwhelming, our method correctly inferred two primary alterations 

in human renal cell carcinoma and even predicted the intensities of change with surprising 

accuracy: 2.439 vs. 2.53 for the change in IMPD (prediction vs. enzymological data) and 

0.236 vs. 0.25 for the change in XD (prediction vs. enzymological data). These primary 

alterations account for over 80% of the observed metabolic alterations.

Our method did not correctly identify all secondary cancer mechanisms, which account for 

less than 20% of the observed metabolic alterations, even though the method suggested 

some of them. Further analyses showed that synergisms and antagonisms among these 

candidates compensate for each other and thereby obscure the connections between 

biochemical mechanisms and metabolic alterations. Therefore, additional data or 

information may be needed for the correct interpretation of secondary disease actions.
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By design, the proposed method intrinsically tolerates noise in the data. In addition, it 

exhibits high precision and robustness of inferring primary cancer alterations from 

incomplete metabolomics data. Although all candidate sites of cancer action are treated 

equally and without bias, the new method does not only correctly infer primary target sites 

but also accurately quantifies cancer-associated alterations with statistical confidence. 

Without depending on a priori knowledge about number, location, mode, and intensity of 

cancer alterations, the method is entirely data driven and therefore rather generic and 

unbiased.

Previously, flux balance analysis was used to quantify the relationships between gene 

expression and metabolite levels in yeast 22 and between gene expression and kinetic rate 

constants in human plasma and erythrocytes 23. In a different approach, Diener and 

colleagues used k-cone analysis to quantify enzyme regulation in HeLa cells from the 

intracellular metabolome 24. This strategy assumes that the metabolic network is at a steady 

state and uses stoichiometric models to characterize the relationship between fluxes, which 

are represented by mass action laws. Compared to our method, Diener's method requires less 

computation, but its limitation is that it assumes steady-state operation in both normal and 

cancer cells and that it is governed by mass action functions, which are difficult to expand to 

allow for regulation. Our method uses more realistic kinetic models as computational 

platforms and can be applied to analyze dynamic features of cancer. In our case study here, 

we do focus on steady-state operation, but a steady state is not required in our method. In 

addition, our method is quite tolerant toward incomplete metabolomics data and does not 

require the imputation of unmeasured metabolites, which is necessary in Diener's method. 

While our study uses a complex kinetic model of purine metabolism to demonstrate the 

power of the proposed method, the generic applicability of the proposed method easily 

permits other kinetic models such as mass action law models.

In the current implementation of the proposed method, all metabolites are equal and have the 

same weight in the comparison of metabolic profiles. However, metabolites can differently 

contribute to cancer initiation, progression, or metastasis, as, for instance, the significant 

association of succinate and fumarate with some types of cancer. Therefore, future work 

should incorporate such information into new versions of our method and permit different 

weights of different metabolites.

Even without these extensions, the proposed method may become a valuable tool for 

personalized precision medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Diagram 1. Flowchart describing the proposed algorithm
The input consists of two components, namely, suitable metabolomics data and a 

mathematical model of the system under consideration. Phase 1 of the algorithm is dedicated 

to inferring primary disease actions in the system; it uses different screening techniques, as 

well as optimization and statistical evaluation of the screening results. In Phase 2, the 

alterations inferred in Phase 1 are implemented in the model, and further screening and 

statistical assessments yield information regarding secondary disease actions. An intrinsic 

validation of the results is possible through simulations, while an extrinsic validation would 

require additional data that had not been used in the screening process.
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Figure 1. Simplified diagram of human purine metabolism
Purine metabolism consists of a de novo synthesis pathway (red arrows) and a salvage 

pathway (green arrows) for purine bases. Reactions are represented with arrows. Metabolites 

are shown in dashed boxes and enzymes are indicated by italics. Table S1 lists enzyme 

names and their abbreviations. The map was adapted from Curto's work 13, 14, 25. Regulatory 

signals are omitted for clarity but accounted for in the model. Metabolites and their 

abbreviations are: phosphoribosylpyrophosphate (PRPP), inosine monophosphate (IMP), 

adenylosuccinate (S-AMP), adenosine + adenosine monophosphate + adenosine diphosphate 

+ adenosine triphosphate (Ado_AMP_ADP_ATP), S-adenosyl-L-methionine (SAM), 

adenine (Ade), xanthosine monophosphate (XMP), guanosine monophosphate + guanosine 

diphosphate + guanosine triphosphate (GMP_GDP_GTP), deoxyadenosine + 

deoxyadenosine monophosphate + deoxyadenosine diphosphate + deoxyadenosine 

triphosphate (dAdo_dAMP_dADP_dATP), deoxyguanosine monophosphate + 

deoxyguanosine diphosphate + deoxyguanosine triphosphate (dGMP_dGDP_dGTP), 

ribonucleic acid (RNA), deoxyribonucleic acid (DNA), hypoxanthine + inosine + 

deoxyinosine (HX_Ino_dIno), xanthine (Xa), guanine + guanosine + deoxyguanosine 

(Gua_Guo_dGuo), uric acid (UA), ribose-5-phosphate (R5P).
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Figure 2. Flow chat of the proposed algorithm for the inference of biochemical mechanisms from 
metabolomics data
The algorithm is composed of two phases and five steps. The first three steps belong to 

Phase 1, while Phase 2 is composed of the remaining two steps (the 4th and 5th steps). Each 

step is discussed in the text. The first phase is designed to discover the primary actions of a 

disease, while the second phase targets secondary actions.
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Figure 3. Distributions of hypothesized cancer actions from admissible sets for each candidate 
site
Hypothesized cancer actions are identified by causing the same sign of change (either 

increased (+) or decreased (−)) in metabolites between normal cells and tumor represented 

by metabolomics data. Out of five million Monte Carlo simulations, a very small 

subpopulation (31,497 sets) remained after filtering according to the first, qualitative 

criterion and was retained in the form of admissible sets. X-axes are fold changes at each 

candidate site with respect to their nominal levels. The list (P1 – P27) is composed of: 

phosphoribosylpyrophosphate synthetase (P1), amidophosphoribosyltransferase (P2), 

hypoxanthine-guanine phosphoribosyltransferase (P3), adenine phosphoribosyltransferase 

(P4), ‘pyrimidine synthesis’ (P5), inosine monophosphate dehydrogenase (P6), guanosine 

monophosphate synthetase (P7), adenylosuccinate synthetase (P8), adenylosuccinate lyase 

(P9), guanosine monophosphate reductase (P10), adenosine monophosphate deaminase 

(P11), methionine adenosyltransferase (P12), protein O-methyltransferase (P13), s-

adenosylmethionine decarboxylase (P14), 5'-Nucleotidase (P15), 5'(3') Nucleotidase (P16), 

diribonucleotide reductase (P17), adenosine deaminase (P18), RNA polymerase (P19), 

RNases (P20), DNA polymerase (P21), DNases (P22), xanthine oxidase/xanthine 

dehydrogenase (P23), guanine hydrolase (P24), ‘hypoxanthine excretion’ (P25), ‘xanthine 

excretion’ (P26), ‘uric acid excretion’ (P27).
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Figure 4. Differences between simulated metabolic profiles and observed metabolomics data
The red bar shows the differences between simulated metabolic profiles and the observed 

metabolomics data. Only the top one thousand sets of hypothesized actions were selected 

from the 2nd step, which results in a mean difference of 634.0 (±94.5). The green bar 

represents a mean difference of 85.8 (±51.9) from the selected 833 sets of hypothesized 

actions after an optimization procedure in the 3rd step, which yields a significant 

improvement.
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Figure 5. Contributions of different enzymes to the observed metabolic alterations
Out of six known enzymatic changes, different combinations are implemented. When only 

one enzyme activity is altered, there are six different choices and the corresponding results 

are put into the column next to the control, which corresponds to a healthy system. 

Subsequent columns show the results of two (15 different combinations), three (20 different 

combinations), four (15 different combinations), and five combinatory alterations (6 

different combinations). The y-axis represents Jeffreys & Matusita distances, which are 

normalized to the distance between the true health and disease profiles (see Supplements). 

Each red horizontal line shows the smallest distance in the corresponding column.
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Table 1

Metabolic profiles in normal human cells and human renal cell carcinoma
%

Metabolite
^ Normal Cell (μM) Cancer Cell (μM) Absolute Change (μM) Relative Change (%)

PRPP 5.017 4.698 −0.320 −6.376

IMP 98.264 82.785 −15.479 −15.752

S_AMP 0.198 0.156 −0.043 −21.484

Ado/AMP/ADP/ATP 2475.379 2177.100 −298.309 −12.051

SAM 3.992 3.887 −0.105 −2.618

Ade 0.985 0.878 −0.107 −10.851

XMP 24.793 925.311 900.518 3632.172

GMP/GDP/GTP 410.234 633.248 223.014 54.363

dAdo/dAMP/dADP/dATP 6.017 6.305 0.288 4.777

dGMP/dGDP/dGTP 3.026 3.293 0.267 8.816

RNA 28680.584 30152.000 1471.000 5.129

DNA 5180.797 5432.700 251.925 4.863

HX/Ino/dIno 9.519 9.579 0.061 0.639

Xa 5.06 34.879 29.819 589.310

Gua/Guo/dGuo 5.507 33.198 27.691 502.818

UA 100.296 86.599 −13.697 −13.656

%
Metabolomics data are simulation results using enzymatic assay data from 15 for samples from human kidney cortex.

^
For the metabolites names, please refer to the legend of Figure 1.

Mol Biosyst. Author manuscript; available in PMC 2018 February 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qi and Voit Page 17

Table 2

Skewness indices of distributions of hypothesized cancer actions

Enzyme or reaction Abbreviation EC Index of skewness
%

phosphoribosylpyrophosphate synthetase PRPPS 2.7.6.1 0.484

amidophosphoribosyltransferase ATASE 2.4.2.14 0.264

adenine phosphoribosyltransferase APRT 2.4.2.7 0.347

‘pyrimidine synthesis’ PYRS # 0.322

inosine monophosphate dehydrogenase IMPD 1.1.1.205
0.000

$

guanosine monophosphate synthetase GMPS 6.3.5.2 0.344

adenylosuccinate synthetase ASUC 6.3.4.4 0.376

adenylosuccinate lyase ASLI 4.3.2.2 0.278

adenosine monophosphate deaminase AMPD 3.5.4.6 0.254

methionine adenosyltransferase MAT 2.5.1.6 0.319

protein O-methyltransferase MT 2.1.1.77, 2.1.1.80, and 2.1.1.100 0.247

s-adenosylmethionine decarboxylase SAMD 4.1.1.50 0.252

adenosine deaminase ADA 3.5.4.4 0.308

RNases RNAN # 0.142

xanthine oxidase/xanthine dehydrogenase XD 1.17.1.4 and 1.17.3.2
0.002

$

guanine hydrolase GUA 3.5.4.3 0.428

%
The index reflects the degree of asymmetry between the activating section and the inhibitory section of the distribution of a parameter (see 

Supplements).

#
Multiple enzymes.

$
Significance: index of skewness < 0.05.
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